CEUR-WS.org/Vol-1321/dsmodelsl4_7.pdf

Explicit Modelling of Model Debugging and
Experimentation

Simon Van Mierlo

University of Antwerp, Belgium

Keywords: Model-Driven Engineering, Debugging, Simulation, Statecharts

Abstract. In this paper, I present the topic of my PhD: the explicit
modelling of model debugging and experimentation. Semantics of mod-
elling formalisms include non-determinism, concurrency, and hierarchy,
amongst others. Moreover, simulated time can have different relations
to the wall-clock time and supports certain operations such as pausing.
Providing debugging support for model simulations is non-trivial using
traditional software development techniques. We therefore propose to
model simulators, their debuggers, and environments explicitly.

1 Problem Definition

The systems we analyse, design, and develop today are characterized by
an ever growing complexity. Modelling and Simulation (MéS) become
increasingly important enablers in the development of such systems, as
they allow rapid prototyping and early validation of designs. Domain
experts, such as automotive or aerospace engineers, build models of the
(software-intensive) system being developed and subsequently simulate
them having a set of “goals” or desired properties in mind. Every aspect
of the system is modelled, at the most appropriate level of abstraction,
using the most appropriate formalism [1]. The M&S approach can only be
successful if there is sufficient tool support, i.e., if the modeller has access
to tools which sufficiently support each phase in the M&S approach. This
is no different from traditional, code-based software development meth-
ods: programmers have access to various helpful tools such as version
control software, testing tools, and debuggers. Debuggers allow to locate
the source of a defect (which was detected by a failing test, meaning that
one of its properties was not satisfied) using breakpoints, stepping, and
tracing of runtime variables [2]. Support for simulation debugging is cur-
rently limited, and a challenging issue, as the next subsections explain.

1.1 Formalisms

As was mentioned above, different aspects of a system are modelled
in a number of different modelling formalisms. This means that, un-
like a programming project, where usually one programming language
is used, a debugger has to be aware of the different semantic aspects of



these formalisms. A few examples of such languages include Petrinets [3]
and rule-based model transformations, which allow for non-determinism,
Statecharts [4], which allow to model concurrency and timed, reactive be-
haviour, and Modelica [5], which allows to model sets of mathematical
equations. These formalisms can be combined, either using “embedding”
(for example, action language in constraints or actions of patterns in
the rules of a model transformation), or, for hybrid systems, by compos-
ing them heterogeneously, for which semantic adaptation methods were
developed [6].

1.2 Time

The notion of time plays a prominent role in model simulation. Simu-
lated time differs from the wall-clock time: it is the internal clock of the
simulator. In general, a simulator updates some state variable vector,
which keeps track of the current simulation state, each time increment.
This is shown visually in Figure 1a. The state is updated by some com-
putations, or “steps”: a big step corresponds to the computation of the
next value of the state variable, and consists of a number of small steps.

i i i o—9 -
s | | | | | =
7] % ! ! ! o . e
(] | | | | | Q
s | | | | | £
s ' ' o—o ' [
S o o | | | | o
> i i i i i K "big step"
® | | | | I ® o —
] | \ \ | | S .
> : O. .I : : § "small step"
@ i i i i i n - o

1 2 : . .

Simulated Time (ST) Simulation Step (SSTEP)

(a) Change of the state variable over (b) Multiple steps executed on a single
time. simulation time instance.

Fig. 1: Simulation time and steps.

Executing program code is always done as fast as possible, i.e., the speed
of the program is limited by the machine executing it. Simulations, how-
ever, have an additional notion of time: the simulated time. A simulation
can be run as-fast-as-possible, or in (scaled) real-time, which is useful
for simulating models of real-time systems which might be deployed as
such on a real-time device. In this case, there is a linear relation between
the wall-clock time and the simulated time. The relation of the different
notions of simulated time and the wall-clock time is shown visually in
Figure 2. Note that there is no linear relation in as-fast-as-possible simu-
lation, meaning that the “current simulation time” is simply a variable in
the simulator. Moreover, operations can be performed on simulated time,
such as pausing, or stepping back, which are not allowed on wall-clock
time.



Simulated Time (ST)

analytical time (as fast as possible) - « ST>WCT

stop event
e

ST<WCT

Wallclock Time (WCT)

Fig. 2: Different notions of simulated time.

1.3 User Interaction

Users interact with a simulation through the simulation environment.
The interleaving of user events coming from the environment with the
real-time, interruptible behaviour of the simulator (or interacting simu-
lators, in the case of hybrid system simulation), is non-trivial.

The challenge is to manage the inherent complexity of constructing
model debugging and experimentation environments. The interplay of
formalism execution semantics, different notions of simulated time, and
user interaction makes this a challenging task if traditional software de-
velopment methods are used. While examples exist of model simulation
debuggers implemented in code, it is clear that, especially for multi-
formalism environments, techniques are needed to overcome this com-
plexity.

2 Related Work

One research question of the PhD is how concepts of program debugging
are mapped onto model simulation. For example, what does it mean to
step over or into a state in a Statecharts model, or a Place in a Petrinets
model? In some cases, this mapping is straightforward: stepping into a
composite Statechart state will change the scope of the simulation to
its contained states. Sometimes, such a mapping cannot be constructed.
Mannadiar and Vangheluwe [7] survey the state-of-the-art in debugging
and explore how these concepts can be translated to the realm of Domain-
Specific Modelling.

e 7 sT=weT



Model debugging has received some attention in the literature on the
Modelica language. In [8-11], the authors develop techniques for debug-
ging equation-based models, which differ greatly from sequential pro-
grams, where each statement is executed one after the other. They look
at static and dynamic debugging, as well as how to make the debugging
techniques scalable for large models.

In [12], Mustafiz and Vangheluwe tackle the problem of constructing a
debugging environment for debugging Statecharts by explicitly modelling
it as a Statechart. In essence, the debugged Statechart is embedded into
the Statechart describing the behaviour of the environment.

3 Proposed Solution and Expected
Contributions

The goal of this thesis is to construct a set of techniques for developing
useful debuggers for model simulations, taking inspiration from the code
debugging world and the simulation-specific concepts discussed in Sec-
tion 1. In this section, we further split this up into a number of sub-goals.

A first goal is to construct a set of debugging environments for a number
of well-known general-purpose modelling formalisms: Petrinets, State-
charts, Causal Block Diagrams (CBDs) [13], DEVS [14], Modelica, and
rule-based model transformations (MoTif [15] in particular). Most simu-
lators and simulation environments are implemented in code. On top of
the inherent complexity, this software development method brings with
it accidental complexity, as it is not the most appropriate language to
develop a timed, reactive system with complex interleaving of user and
simulator events. We therefore propose to explicitly model the debugging
environment using Statecharts. In general, each simulator has a “main
simulator loop”. This comprises a number of states and transitions be-
tween them, performing some action that updates the state of the model.
In the most naive case, there is a single state which represents the main
loop of the simulator and a transition going from and to that state, each
time performing one simulation “step”. This is the so-called “modal part”
of a simulator, which is intuitively represented as a Statechart.

The process of extracting this modal part, which we call de/reconstructing
the simulator, is shown in Figure 3. The first step, deconstrucing the
simulator, extracts the modal part of the simulator in a Statechart (SC)
model called SIMF,, ... This model is combined with a Statechart sim-
ulator, interpreter, or compiler called SIMsc to give it operational se-
mantics. The Statechart together with its executor interface with the
non-modal part of the simulator for formalism F (SIMF\modal’ which,
in this case, consists of the coded functions to run the simulator). The
combination of the modal and non-modal part of the simulator results
in a behaviourally equivalent simulator to SIMp. From the user’s point
of view, the black-box containing the model to be simulated and its sim-
ulator is unchanged.

In Figure 3c, the last step in creating an instrumented simulator is shown.
We merge the modal part of the simulator for F with the behavioural



SIM;

(a) A model in formalism F and a sim-
ulation kernel for F. (b) De/Reconstructing the simulator.

MDebug | I%

sIMFmociaI | I§
‘ ['finished]

MERGE
INSTRUMENT

SIMFmodall

SC

(¢) Merging the debugging concepts with the modal be-
haviour of the simulator.

Fig. 3: The workflow for explicitly modelling the simulator’s behaviour.



model of the debugger. This results in an instrumented model of the
modal behaviour of the simulator. The last step is to replace SIMF,, .,
in Figure 3b with this instrumented model. Again, this should not change
the behaviour of the simulator in any way if the user does not make use
of the debugging functionality. Extra behaviour has been added, but
running the simulator as before is still possible. In the (trivial, but rep-
resentative) example shown, the debugger includes the concepts of start,
pause, resume, and stop. The simulator only has two states: running, and
stopped. It runs the main loop of the simulator until the finished condi-
tion is satisfied, signalling that the simulation is done.

In a more advanced stage of the thesis, the idea is to apply the same tech-
niques for environments which allow heterogeneous model composition,
for which multiple simulators and semantic adaptation are necessary. It
is our intuition that explicitly modelling the debugger and simulator will
facilitate this.

4 Preliminary Work

The techniques described in the previous section have been successfully
applied to model an experimentation and debugging environment for
Causal-Block Diagrams. We took an existing CBD simulator, identified
its modal part, and extracted it as a Statechart model. We then instru-
mented this model with debugging support. A graphical user interface
allowed users to simulate (as-fast-as-possible or in (scaled) real-time),
pause simulation, and step through the simulation (either “big step”,
meaning the values of all blocks for the next iteration were calculated at
once, or “small step”, where only the value of one block was computed).
It also allowed to set breakpoints and define the maximum number of
simulation iterations.

5 Evaluation and Validation

From the very onset of the project, the goal is adoption of the developed
methods, techniques, (prototype) tools and processes in industry (and
academics). During each phase of the project, interaction with compa-
nies is planned as to align industrial needs and scientific developments.
This will ensure the results are relevant and usable in an industrial con-
text. Moreover, the results of my work are to be published in a number
of different communities. For the simulation side, conferences such as
SpringSim and WinterSim are ideal venues for early validation of results.
In a later stage, results will be published in the SIMULATION jour-
nal. For the model-driven engineering side, the MODELS and ECMFA
conferences, and the journals Software and Systems Modelling (SoSyM)
and Science of Computer Programming are ideal. The ICGT and ICMT
conferences, as well as the GraBaTs workshop, are ideal venues for the
validation of results when using model transformations.



Having both industrial and scientific feedback from a strong community
will ensure the quality of the work, and the relevance of the results. Cur-
rently, I do not plan usability studies of the proposed approaches. The
main contribution of my work are the techniques for constructing ad-
vanced debugging environments by explicitly modelling them. Validation
of the techniques is provided by implementations for specific (combina-
tions of ) formalisms.

6 Current Status

Currently, most of my efforts are directed towards developing the re-
quired foundations. In particular, I'm working on a new metamodelling
framework, which enables modular language design and uniform access
to models called the Modelverse. This framework, as well as its web-based
front-end called AToMPM [16] will be used to implement the techniques
described in this paper.

I started in September of 2013. The end of my PhD is planned in Decem-
ber 2017. Below is a course-grained schedule, with expected contributions
per year:

— 2014: In the coming months, I will be working on a debugging en-
vironment for Parallel DEVS. I will also redo the work of [12], but
extending the set of debugging operations, as well as apply the tech-
niques which I propose here, instead of embedding the model directly.

— 2015: In this year, I will define a set of debugging environments and
model environments explicitly for a number of other formalisms, in-
cluding rule-based model transformations, Petrinets, and Modelica.

— 2016-2017: I will validate my techniques by interacting with indus-
try. Furthermore, I will extend the techniques to multi-formalism
environments and domain-specific languages.

I will also continue working on the language engineering topics - in par-
ticular, the explicit modelling of entire modelling languages using the
Modelverse, and the effect on explicit modelling of transformation and
the technique of RAMification [17].

Acknowledgements. This work was partly funded with a grant from
the Agency for Innovation by Science and Technology in Flanders (IWT).

References

1. P. J. Mosterman and H. Vangheluwe, “Computer Automated Multi-
Paradigm Modeling: An Introduction,” Simulation, vol. 80, pp. 433—
450, Sept. 2004.

2. A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.

3. T. Murata, “Petri nets: Properties, analysis and applications,” Pro-
ceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

4. D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8, pp. 231-274, June 1987.



10.

11.

12.

13.

14.

15.

16.

17.

P. Fritzson and P. Bunus, “Modelica — a general object-oriented lan-
guage for continuous and discrete-event system modeling,” in IN
PROCEEDINGS OF THE 35TH ANNUAL SIMULATION SYM-
POSIUM, pp. 14-18, 2002.

F. Boulanger, C. Hardebolle, C. Jacquet, and D. Marcadet, “Seman-
tic adaptation for models of computation,” in Application of Concur-
rency to System Design (ACSD), 2011 11th International Conference
on, pp. 153162, June 2011.

R. Mannadiar and H. Vangheluwe, “Debugging in domain-specific
modelling,” in Software Language Engineering (B. Malloy, S. Staab,
and M. Brand, eds.), vol. 6563 of Lecture Notes in Computer Science,
pp- 276—285, Springer Berlin Heidelberg, 2011.

M. Sj6lund and P. Fritzson, “Debugging Symbolic Transformations
in Equation Systems,” in EOOLT, Linkdping Electronic Conference
Proceedings vol. 56, pp. 67-74, 2011.

M. Sjolund, F. Casella, A. Pop, A. Asghar, P. Fritzson, W. Braun,
L. Ochel, B. Bachmann, and P. Milano, “Integrated Debugging of
Equation-Based Models,” in Proceedings of the 10th International
ModelicaConference, pp. 195-204, 2014.

A. Pop, M. Sjélund, A. Asghar, P. Fritzson, and C. Francesco, “Static
and Dynamic Debugging of Modelica Models,” in Proceedings of the
9th International Modelica Conference, pp. 443-454, Nov. 2012.

A. Asghar, A. Pop, M. Sj6lund, and P. Fritzson, “Efficient Debug-
ging of Large Algorithmic Modelica Applications,” in Proceedings of
MATHMOD 2012 - 7th Vienna International Conference on Math-
ematical Modelling, 2012.

S. Mustafiz and H. Vangheluwe, “Explicit modelling of statechart
simulation environments,” in Summer Simulation Multiconference,
pp. 445 — 452, Society for Computer Simulation International (SCS),
July 2013. Toronto, Canada.

H. Vangheluwe, D. Riegelhaupt, S. Mustafiz, J. Denil, and S. Van
Mierlo, “Explicit modelling of a CBD experimentation environ-
ment,” in Proceedings of the 2014 Symposium on Theory of Mod-
eling and Simulation - DEVS, TMS/DEVS ’14, part of the Spring
Simulation Multi-Conference, pp. 379 — 386, Society for Computer
Simulation International, 2014.

B. P. Zeigler, H. Prachofer, and T. G. Kim, Theory of Modeling and
Simulation. Academic Press, 2 ed., 2000.

E. Syriani and H. Vangheluwe, “A modular timed graph transfor-
mation language for simulation-based design,” Software and Systems
Modeling (SoSyM), vol. 12, no. 2, pp. 387-414, 2013.

E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo,
and H. Ergin, “AToMPM: A web-based modeling environment,” in
MODELS’18 Demonstrations, 2013.

T. Kiithne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer,
“Explicit Transformation Modeling,” in MoDELS Workshops, Lec-
ture Notes in Computer Science vol. 6002, pp. 240-255, Springer,
2009.



