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Abstract 

Three dimensional point cloud data obtained from mobile laser 

scanning systems commonly contain outliers. In the presence of 
outliers most of the currently used methods such as principal 

component analysis for point cloud processing and feature extraction 

produce inaccurate and unreliable results. This paper investigates the 

problems of outliers, and explores advantages of recently introduced 

statistically robust methods for automatic robust feature extraction. 

The robust algorithms outperform classical methods and show distinct 

advantages over well-known robust methods such as RANSAC in 

terms of accuracy and robustness. This paper shows the importance 

and advantages of several recently introduced robust statistics based 

algorithms for (i) planar surface fitting, (ii) surface normal estimation, 

(iii) edge detection, and (iv) segmentation. Experimental results for 
real mobile laser scanning point cloud data consisting of planar and 

non-planar complex objects surfaces show the proposed robust 

methods are more accurate and robust. The robust algorithms have 

potential for surface reconstruction, 3D modelling, registration, and 

quality control for point cloud data.   

1 Introduction and Motivation 

Mobile Mapping System (MMS) is an emerging technology for acquiring a three-Dimensional (3D) survey of the 

environment and objects in the vicinity of the mapping vehicle accurately, quickly and safely. Laser scanning 

provides explicit and dense 3D measurements that generate sparse point clouds. Due to its cost effectiveness and 

reasonable data accuracy it has been used in many applications including smart city modelling, road and rail 

corridor asset and inventory maintenance and management, environmental monitoring, accidental investigation, 

industrial control, construction management, archaeological studies, marine and coastal surveying, change detection 

for military and security forces, man-induced and natural disaster management (Tao and Li, 2007; Vosselman and 

Maas, 2010).  

A MMS incorporates various navigation and sensors on a common moving platform. The vehicle (Figure 1) 

has advanced imaging and ranging devices, such as cameras, laser scanners or Light Detection and Ranging 
(LiDAR) systems, and navigation/positioning/geo-referencing devices such as a Global Navigation Satellite System 

(GNSS) for the determination of the position of the moving platform. An Inertial Measurement Unit (IMU) that 

contains sensors to detect rotation and acceleration used for determining the local orientation of the platform. A 

Distance Measurement Instrument is often connected to a wheel of the vehicle to provide linear distance in case of 

GNSS outage. The continuous integration between GNSS and IMU deals with a possible loss of signal sent by the 

satellite and to constantly maintain the high accuracy of data acquisition. A computer with storage and operational 

software is used to control the data acquisition task. Laser scanners mounted on the platform (usually at a 45o angle 

to the vehicle track) swing the laser beam through 360o and time-of-flight is used to determine the distance to 
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targets. The unit can rotate up to 200 revolutions per second and the laser records points at frequencies of up to 200 

kHz. Performance includes a spatial resolution of up to 1 cm at 50 km/hour, range > 100 metres (with 20% 

reflectivity), and measurement precision ±7 mm (Arditi et al., 2010). These configurations and advantages vary for 

different systems. MMSs are now able to collect more than 600,000 points per second. To extract 3D coordinates of 

objects and features from the geo-referenced images, modelling and data fusion are required. MMSs produce huge 
volumes of 3D geospatial point cloud data (Figure 2) defined by their x,y,z coordinates (or latitude, longitude and 

elevation). Point cloud data may have colour r,g,b information from co-registered cameras and intensity from the 

reflected laser beam. The output point cloud data is generally stored in an industry standard format (such as LAS), 

which encodes the data into a point based binary or text file. 

 

 

Figure 1: Mobile mapping vehicle with onboard sensors; (curtesy: Department of Spatial Sciences, Curtin 
University).  

 

Figure 2: Mobile laser scanning point cloud data with laser intensity (curtesy of AAM1). 

                                                        
1
 http://www.aamgroup.com/ 
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Important tasks in point cloud processing include feature extraction, visualization, analysis, modelling, surface 

fitting, and reconstruction. Segmentation is required for surface reconstruction, feature extraction, object 

recognition and modelling (Pfeifer and Briese, 2007). For surface reconstruction, the quality of the results depends 

on the quality of estimated local surface normals. The data acquired from MMSs typically contains regions of 
particular surface shape (planes, cylinders), undefined surface shape, of complex topology and geometrical 

discontinuities, inconsistent point density, sharp features, missing points that can create holes, and features varying 

in size, density and complexity. Moreover, it is unreasonable to think of point cloud data without outliers. Outliers 

may occur because of noise, occlusions, multiple reflectance, objects getting in the way including rain, birds and 

other unimportant features w.r.t. the specific study (Leslar et al, 2010). Inclusion of outliers in point cloud data 

exacerbates the problems for reliable and robust point cloud processing and feature extraction tasks. 

The presence of outliers affects the estimates of normal and curvature, resulting in misleading and inconsistent 

results. Outliers can be dealt with by robust methods that have been widely used in computer vision, machine 

learning, pattern recognition, photogrammetry, remote sensing and statistics (Rousseeuw and Leroy, 2003; Meer, 

2004). In spite of the recognition of outlier, many applications still use classical non-robust techniques including 

Least Squares (LS) and Principal Component Analysis (PCA) for point cloud processing tasks (Rabbani et al., 

2006). It is well known that most of the classical techniques work well only for high-quality data and fail to perform 
adequately in the presence of outliers, giving inconsistent and misleading estimates of the model parameters 

(Nurunnabi et al., 2012a; 2014). 

In this paper we investigate outlier problems in classical methods as well as in robust methods such as 

RANSAC (Fischler and Bolles, 1981) that have been widely used for feature extraction and other point cloud 

processing tasks. We present some recently introduced robust methods those have been developed based on robust 

statistical techniques as a solution to outlier influence. This will be demonstrated through four essential point cloud 

processing tasks: planar surface fitting, robust local saliency features (normals and curvature) estimation, edge 

detection, and segmentation. 

The paper is organised as follows. In Section 2, the relevant literature is briefly discussed. Section 3 gives 

some general ideas about relevant principles and methods used in feature extraction. Robust feature extraction 

methods are discussed in Section 4. The limitations of the classical methods and advantages of the robust statistical 
methods are highlighted using real MMS acquired point cloud datasets in Section 5. Section 6 concludes the paper.  

2 Background 

Accurate plane fitting and the resultant estimates of the plane parameters are essential in point cloud data 

processing because of the presence of planar objects in the built environment. The LS method is the most well-

known classical method for model parameter estimation (Klasing et al., 2009). Hoppe et al. (1992) introduced PCA 

for plane fitting that has been subsequently used and extended by many authors for point cloud processing (Pauly et 

al., 2002; Rabbani et al., 2006; Sanchez and Zakhor, 2012). Nurunnabi et al. (2014) showed that PCA based planar 

surface fitting is better than LS based fitting. Fleishman et al. (2005) proposed a forward-search approach based on 

a robust moving least squares (Levin, 2003) technique for reconstructing a piecewise smooth surface. The method 

can deal with multiple outliers, but it requires very dense sampling and a robust initial estimator to initialize the 

algorithm. The RANSAC algorithm has been used frequently for planar surface fitting and extraction (Schnabel et 
al., 2007; Masuda et al., 2013). RANSAC is very efficient for detecting large planes in noisy point clouds 

(Deschaud and Goulette, 2010). The Hough Transform (Duda and Hart, 1972) has been used to detect geometric 

shapes and for plane detection in point clouds (Borrmann et al., 2011).  

Many methods have been developed to improve the quality of estimated normals and curvatures. 

Combinatorial and numerical approaches (Dey et al., 2005; Castillo et al., 2013) are two methods for normal 

estimation. Dey et al. (2005) developed combinatorial methods for estimating normals in the presence of noise, but 

in general, this approach becomes infeasible for large datasets. Hoppe et al. (1992) estimated the normal at each 

point to the fitted plane of nearest neighbours by applying the ‘total least squares’ method, which can be computed 

efficiently by PCA. PCA based plane fitting can be shown to be equivalent to the Maximum Likelihood Estimation 

(MLE) method (Wang et al., 2001). Distance weighting (Alexa et al., 2001), changing neighbourhood size (Mitra et 

al., 2004) and higher-order fitting (Rabbani et al., 2006) algorithms have been developed to modify PCA for better 
accuracy near sharp features and to avoid the influence of outliers on the estimates. Oztireli et al. (2009) used local 

kernel regression to reconstruct sharp features. However Weber et al. (2012) claimed there is a problem with the 

reconstruction from Oztireli et al. (2009) as it does not have a tangent plane at a discontinuous sharp feature. 

Segmentation groups the data points into a number of locally uniform regions. Algorithms proposed can be 

organised roughly into three types: edge and/or border based, region growing based, and hybrid (Koster and Spann, 

2000; Huang and Menq, 2001). In edge/border based methods, points positioned on the edges/borders are detected, 

and then points are grouped within the identified boundaries and connected edges. In region growing algorithms, 

generally a seed point is chosen, and then local neighbours of the seed point are combined with the seed point if 

they have similar surface point properties. Many authors claim that region growing based methods suffer from over 
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and under segmentation (Liu and Xiang, 2008). This is overcome by hybrid methods that comprise both the 

boundary/edge and region growing based approaches (Woo et al., 2002). Marshall et al. (2001) used LS fitting and 

identified surfaces of known geometric features within a segmentation framework. Klasing et al. (2009) identified 

the limitations of high computational cost for a large number of features. Poppinga et al. (2008) developed an 

efficient method of plane fitting by mean squared error computation. Castillo et al. (2013) introduced a point cloud 

segmentation method using surface normals computed by the constrained nonlinear least squares approach.   

3 Related Classical and Robust Methods used in Feature Extraction 

3.1 Principal Component Analysis and Robust Principal Component Analysis  

PCA is one of the most popular multidimensional statistical techniques for dimension reduction and data 
visualization (Johnson and Wichern, 2002). It finds a small number d of linear combinations of the m observed 
variables that can represent most of the variability of the data. Data transformation generates a new set of 
uncorrelated and orthogonal variables that can explain the underlying covariance structure of the data. The new set 
of variables (the linear combinations of the mean centered original variables) called Principal Components (PCs) 
produce the corresponding directions using the eigenvectors of the covariance matrix (Johnson and Wichern, 2002). 
Many point cloud processing methods analyze the nature of the data for a local neighbourhood of a point of interest 
𝑝𝑖 (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) through the study of the covariance matrix of the neighbourhood. Performing Singular Value 
Decomposition (SVD; Searle, 2006) on the covariance matrix C of k neighbouring points of 𝑝𝑖,  

                                                                𝐶3×3 =
1

𝑘
∑ (𝑝𝑖 − 𝑝̅)𝑘

𝑖=1 (𝑝𝑖 − 𝑝̅)𝑇,                                                               (1) 

where 𝑝̅ is the centre of the data, and solving the eigenvalue equation: 

                                                                                   𝜆𝑉 = 𝐶𝑉,                                                                                  (2) 

produces the diagonal matrix of eigenvalues as its diagonal elements 𝜆𝑖, and the eigenvector matrix V  that contains 
eigenvectors or PCs as its columns. Given the required eigenvectors and the corresponding eigenvalues, C can be 
rewritten as: 

                                                                            𝐶 = ∑ 𝜆𝑖
2
𝑖=0 𝑣𝑖𝑣𝑖

𝑇,                                                                            (3) 

where 𝜆𝑖  and 𝜐𝑖 are the ith eigenvalue and eigenvector, respectively. The eigenvalues denote the variances along the 
associated eigenvectors (Johnson and Wichern, 2002). The PCs are usually ranked in descending order of 
explanation of the underlying data variability.  

Robust Principal Component Analysis (RPCA) is a robust version of PCA for determining the PCs that are 
resistant to outliers (Hubert et al., 2005; Feng et al., 2012). For processing 3D point cloud data, where the number 
of dimensions of a point is very small comparing with the number of points, an efficient method developed by 
Hubert et al. (2005) has been shown to give good results (Nurunnabi et al., 2014). The method maximizes certain 
robust estimates of univariate variance to obtain consecutive directions on which the data are projected. Hubert et 
al. (2005) coupled the ideas of using the robust estimator of the covariance matrix and the well-known Projection 
Pursuit method (PP) to use advantages from both the approaches. In the RPCA (Hubert et al., 2005), the data are 
pre-processed to make sure that the transformed data are lying in a subspace whose dimension is less than the 
number of observations. A useful way for reducing the data space is by using the SVD on the mean-centred data 
matrix. Then, the h points, where 𝑛/2 < ℎ < 𝑛, i.e. the “least outlying” data points are identified, and a measure of 
outlyingness is computed by projecting all the data points onto many univariate directions, each of which passes 
through two individual data points.  In order to speed up the computation, the data set is compressed to PCs 
defining potential directions. Then, every direction for a point 𝑝𝑖 is scored by its corresponding value of 
outlyingness (Stahel, 1981; Donoho, 1982): 

                                                   𝑤𝑖 = arg max𝑣
|𝑝𝑖𝑣𝑇−𝑐MCD(𝑝𝑖𝑣𝑇)|

ΣMCD(𝑝𝑖𝑣𝑇)
,       𝑖 = 1,2, … , 𝑛                                                  (4)   

where 𝑝𝑖𝑣
𝑇 denotes a projection of the ith observation onto the v direction, and 𝑐MCD and ΣMCD are the FMCD 

(Rousseeuw and van Driessen, 1999)  based mean and scatter (covariance matrix) on an univariate direction v. The 
FMCD  based estimators are used as the robust estimators of the mean and scatter in Eq. (4). In the next step, an 
assumed h (ℎ > 𝑛/2) portion of observations with the smallest outlyingness values are used to construct a robust 
covariance matrix Σℎ. A larger h can give a more accurate RPCA and a smaller h is better for more robust results. In 
this paper for the RPCA we use ℎ = ⌈0.5 × 𝑛⌉. Then, the method projects all the remaining observations onto the d 
dimensional subspace spanned by the d largest eigenvectors of Σℎ, and computes the mean and the covariance 
matrix by means of the reweighted MCD estimator, with weights based on the robust distance of every point. The 
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eigenvectors of this covariance matrix from the reweighted observations are the final robust PCs. Using RPCA has 
the advantages of yielding accurate estimates of outlier free datasets and more robust estimates for contaminated 
data. In addition, it has the further advantage of classification of points into inliers and outliers (Hubert et al., 2005). 
Hubert et al. (2012) developed a deterministic algorithm for the MCD (DetMCD) to get the robust mean vector and 
covariance matrix. It uses the same iteration step but does not draw a random subset. Rather it starts from only a 
few well-defined initial estimators. The authors claimed that DetMCD is much faster than FMCD and is at least as 
robust as FMCD. The DetMCD (Hubert et al., 2012) based mean vector and covariance matrix in Eq. (4) can find 
outlying cases, and use of the DetMCD based mean vector and robust covariance matrix in relevant places in the 
RPCA algorithm produces the DetMCD based RPCA, which is called Deterministic robust PCA (DetRPCA).  

3.2 RANdom SAmple and Consensus (RANSAC)   

Fischler and Bolles (1981) developed a model-based robust approach: RANdom SAmple Consensus (RANSAC) 
that has been used in many applications for estimating model parameters from outlier contaminated data such as 
planar surface fitting, extraction and normal estimation in computer vision, photogrammetry and remote sensing. It 
can tolerate a large fraction of outliers, depending on the complexity of the model, up to and above 50%.  RANSAC 
classifies data into inliers and outliers by using the LS cost function with maximum support (the number of data 
points that match with the model). It consists of two steps. First, a subset is randomly sampled and the required 
model parameters are estimated based on the subset. The size of the subset should be minimal of the random subset 
that is enough to estimate the model parameters (three points for a plane). In the second step, the model is compared 
with the data and its support is determined. This two-step iterative process continues until the likelihood of getting a 
model with better support than the current best model is lower than a given threshold, usually 1% to 5%.  

4 Robust Algorithms for Feature Extraction 

In this section we discuss recently introduced robust statistics based algorithms for both low level and high level 
feature extraction. We estimate normals and curvature as the low level saliency features that are later used for high 

level feature extraction. We also detect sharp features such as object edges and corners as the low level features. In 

this paper we perform robust segmentation (Nurunnabi et al. 2012b) to get individual surfaces (high level features) 

for the objects acquired by MMS.  The methods for feature extraction used in this paper consist of four related tasks 

(Figure 3): (i) Plane fitting, (ii) edge detection, (iii) normal estimation, and (iv) segmentation.  

 

 

Figure 3: Feature extraction process 

 

Using PCA for 3D point cloud data, the first two PCs form an orthogonal basis for the best-fit-plane, 

explaining the most variability. The third PC corresponding with the least eigenvalue expresses the least amount of 

variation, which defines the normal to the fitted plane. The elements of the third PC are used as the estimates of the 

plane parameters. The PCs (eigenvectors) 𝜈2 , 𝜈1  and 𝜈0  can be arranged according to the corresponding eigenvalues 

𝜆2, 𝜆1 and 𝜆0. Thus 𝜈0  approximates the normal 𝑛̂ of the surface, and 𝜆0 indicates the surface variation along the 
normal. It is known that PCA is extremely sensitive to outliers, so in the following algorithms RPCA is used. Pauly 

et al. (2002) defined surface variation or curvature as: 

                                                                   𝜎𝑝 =
𝜆0

∑ 𝜆𝑖
2
𝑖=0

,      𝜆0 ≤ 𝜆1 ≤ 𝜆2.                                                                  (5) 

Nurunnabi et al. (2012a) developed the method for edge detection in point cloud data, where the ith point is an edge 

point if  

                                                     𝜆0 ≥ mean (𝜆0) + 1 × standard deviation (𝜆0).                                                 (6) 
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In this paper, we use the robust segmentation algorithm (Nurunnabi et al., 2012b) that is based on robust 
saliency features using DetRPCA. The robust segmentation algorithm uses a region growing approach, where the 
region growing starts with the least curvature value 𝜎𝑝 in Eq. (5). It uses the k nearest neighbours defined as the 
neighbourhood 𝑁𝑝𝑖 for every point in the data. A local planar surface is determined for every point and its 
neighbourhood in the point cloud using the DetRPCA algorithm. Three measures are used by DetRPCA: 
Orthogonal Distance OD𝑖 for the ith seed point 𝑝𝑖 to its best-fit-plane, Euclidian Distance ED𝑖𝑗 between the seed 
point 𝑝𝑖 and one of its neighbours 𝑝𝑗 , and angle 𝜃𝑖𝑗 between two points 𝑝𝑖 and 𝑝𝑗 . These are defined as:  

                                                                            OD𝑖 = (𝑝𝑖 − 𝑝̅)𝑇 . 𝑛̂,                                                                         (7) 

where 𝑝̅ and 𝑛̂ are the centre and the unit normal for the fitted plane for 𝑝𝑖, 

                                                                            ED𝑖𝑗 = ‖𝑝𝑖 − 𝑝𝑗‖,                                                                           (8) 

and  

                                                                          𝜃𝑖𝑗 = arccos|𝑛̂𝑖
𝑇. 𝑛̂𝑗|,                                                                         (9) 

where 𝑛̂𝑖 and 𝑛̂𝑗  are the unit normals for the i
th
 seed point and one of its neighbours 𝑝𝑗 . The segmentation algorithm 

grows region by adding more neighbouring points one at a time from the set of data points P to the current region 
𝑅𝑐 and to the seed point list 𝑆𝑐  using the following conditions: 

                                               (i) OD𝑖 < OD𝑡ℎ, (ii) ED𝑖𝑗 < ED𝑡ℎ, and (iii) 𝜃𝑖𝑗 < 𝜃𝑡ℎ,                                              (10) 

where the OD threshold OD𝑡ℎ = median {OD (𝑁𝑝𝑖)} + 2 × MAD {OD (𝑁𝑝𝑖)}, {OD (𝑁𝑝𝑖)} is the set of all OD in 
the 𝑁𝑝𝑖, MAD is the Median Absolute Deviation for all the ODs in 𝑁𝑝𝑖, and ED threshold ED𝑡ℎ = median {ED𝑖𝑗}. 
If the 𝑝𝑗  fulfil the above conditions in Eq. (10) then the point is removed from the data P and considered as the next 
seed point for the region 𝑅𝑐. 𝑅𝑐 grows until no new point is available in 𝑆𝑐 . After completing the region 𝑅𝑐, the next 
seed point is selected from the remaining points in P in a similar fashion as the first one, and the process of region 
growing continues until P is empty.  

5 Demonstration of the Algorithms and Results Evaluation 
 
In this section we demonstrate the algorithms for planar surface fitting, edge detection, normal estimation, and 
segmentation. We explore the effects of outliers on the results based on PCA, RANSAC and DetRPCA on real 
MMS 3D point clouds. The results presented are mainly qualitative as it is difficult, many times, to quantitatively 
present results compared to, say, ground truth because of the wide variation in the results that depend on the 
position of outliers and the shape of the surfaces. However the results shown are representative of what would be 
achieved in reality.  

5.1 Planar Surface Fitting 

We consider the MMS dataset shown in Figure 4a. This figure shows a house and a tree with the planar surface 
(roof) of interest marked as blue.  We label this dataset as the ‘roof’ dataset. The roof plane contains 2293 points, 
many of which have neighbouring points in the tree. The task is to isolate the roof from the rest of the data requiring 
the tree points to be detected as outliers. Figure 4b shows the points used to fit a plane using PCA (magenta), which 
deviate from the orientation of the original points (green) because of the influence of the outlying points in the tree. 
The black ellipses in Figure 4e shows the fitted and extracted plane contains many outliers projected onto the 2D 
approximation. That means, the outliers appear as inliers in the PCA determined plane, which clearly shows the 
masking effect (Hadi and Simonoff, 1993) caused by the presence of multiple outliers. We also use RANSAC 
algorithm for finding outliers and after removing the outlier points we fit a plane by the classical PCA, which is a 
diagnostic approach. The RANSAC results are in Figure 4 (c and f). Figure 4f shows many points are missing in the 
black rectangle and some outliers are still present in the black ellipse. Although RANSAC plane is better because 
the orientation of the fitted plane (magenta) in Figure 4c is almost coincides to the real points but the fitted plane 
(magenta) for PCA in Figure 4b is significantly distracted by the outliers. Now we perform DetMCD based RPCA 
(DetRPCA) to fit the plane. Results in Figure 4d shows that the fitted plane is in right direction without the effect of 
outliers, and the resultant extracted final plane in Figure 4g is clearly free from the effect of outlier without showing 
any masking effect. That means, DetRPCA results are robust to outliers.  
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Figure 4: Plane fitting and identification for (a) roof and tree dataset surrounded by a tree, the roof points are in 

blue. Plane (magenta) orientation by (b) PCA, (c) RANSAC, and (d) DetRPCA.The fitted/extracted plane by (e) 

PCA, (f) RANSAC, and (g) DetRPCA.  

 

5.2 Edge Detection and Normal Estimation 

We take a dataset containing part of a building (Figure 5a) consisting of 58,371 points. We label the data as the 
‘building and wall’ dataset that has sharp edges and corners. To extract these sharp features we use the 

classification algorithm (Nurunnabi et al., 2012a). We fit a plane to each point in the data with a local 

neighbourhood of k = 50. We choose the value of k based on similar real data empirically. We calculate the 𝜆0 

values and classify the points into inliers (surface points) and outliers (edge or corner points) according to Eq. (6). 

The classification results are in Figure 5(b, c and d). The results in Figure 5b show that PCA fails to recover the 

sharp features (edge/corner points), marked by the black ellipse and polygon. Although RANSAC (Figure 5c) is a 

robust method, it does not correctly classify surface, edges and corners, with many surface points appearing as edge 

points. Figure 5d shows that the proposed DetRPCA is significantly more accurate than PCA and RANSAC.  
Normals on or near sharp features become overly smooth mainly for two reasons: (i) neighbourhood points 

may be present locally from two or more surfaces, and (ii) the presence of outliers/noise in the local neighbourhood 
(Nurunnabi et al., 2014). We consider a small part from Figure 5a shown in Figure 6a where three edges and one 
corner are present. In Figure 6b, the PCA method counts all the points for plane fitting in a local neighbourhood and 
so misrepresenting the normal at the vertex and smoothing out the sharp features. Figure 6c shows that RANSAC 
normals are not properly estimated and oriented, with many misclassified points around the edges and corners. This 
is because RANSAC was unable to get the most homogeneous points within the neighbourhoods. The robust 
statistical method used in the DetRPCA algorithm groups the majority of points that are homogeneous w.r.t. the 
neighbouring points. Hence, the estimated normal represents the surface consisting of the majority of homogeneous 
points. In Figure 6d, we see that robust normals are correctly oriented on the corner and on the edge points and 
results in normals that preserve the sharp transitions while PCA and RANSAC have smoothly changing normals 
areas by the black lines.   
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Figure 5: (a) The building and wall data, edge and corner point recovery (in magenta): (b) PCA, (c) RANSAC, and 
(d) DetRPCA. 
 

 
 

Figure 6: (a) Point cloud data, and normal orientation for: (b) PCA, (c) RANSAC, and (d) DetRPCA.  

5.3 Segmentation  

For segmentation, we consider a MMS dataset shown in Figure 7a of a petrol station, consisting of many planar and 

non-planar surfaces described by 111,070 points. We name this the ‘petrol station’ dataset.  We set the required 

parameters: k = 30 and angle threshold 𝜃𝑡ℎ= 7o. Segmentation results are in Figure 7 (b, c and d) in which points 

that belong to each region are shown in different colours. 

Perfect Segmentation (PS) is identified as a true segment from manually determined ground truth i.e. one 

segment describes a single feature such as the wall of a house that is one planar surface. Over Segmentation (OS) 

occurs where one true segment is broken into two or more separate segments, and Under Segmentation (US) is 

where more than one true segment are wrongly grouped together as one segment (Nurunnabi et al., 2014). Figure 7b 
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shows that PCA produces the worst results and failed to segment most of the different surfaces correctly. Much OS 

and US occurs in different places, these are highlighted by the black ellipses. Although the results in Figure 7c look 

slightly better than those in Figure 7b, likewise PCA, RANSAC fails to separate the road, kerb and footpath.  In 

Figure 7c the black ellipse on the roof shows much unwanted OS occurring. DetRPCA based segmentation results 

in Figure 7d show that most of the surfaces are properly segmented with very little OS and without any US, out of 

76 Total Segments (TS), 62 are PS. The road, kerb and footpath are extracted correctly. Performance for the 
methods is evaluated quantitatively in Table 1.  

 

 
 

Figure 7: (a) Petrol station dataset, and segmentation results for: (b) PCA, (c) RANSAC, and (d) DetRPCA. 

 
Table  1: Segmentation performance evaluation. 

 

Methods TS PS OS US 

PCA 88 27 34 03 

RANSAC 97 32 37 01 

DetRPCA 76 62 09 00 

 

6 Conclusions  

This paper describes some of the recently proposed algorithms for robust feature extraction in MMS 3D point cloud 

data. It demonstrates that robust statistics based algorithms outperform classical methods and significantly produce 

much better results than the popular RANSAC method. Results show the planar surfaces were fitted more robustly 

than the existing methods, edge and corner points were identified more accurately without any misclassification 

error, normals from the robust method are perfectly oriented, and segmentation results were more accurate with 

much less over and under segmentation. The algorithms have the limitation that the quality of the results reduces in 

the presence of more than 50% outliers. However, this is an extreme case but the presented algorithms are much 

better at dealing with this than others. The robust feature extraction methods are much better than others, and they 
have potential for surface reconstruction, registration and quality control for the point cloud data. 
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