
Maintaining Relational Consistency in a Graph-Based 

Place Database 

Abstract 

People use natural language (NL) descriptions to 

communicate spatial information, mostly referring to space 

in qualitative terms. In this research, a graph database is 

used to store such qualitative spatial information as derived 

from NL descriptions. It focuses on developing and testing 

qualitative spatial reasoning mechanisms to maintain 

relational consistency within the graph database. The study 

provides a first step into using a graph database to storing 

and querying qualitative spatial data from NL place 

descriptions, and provides some insights for the system 

implementation. 

1 Introduction 

People represent environment in natural language (NL) descriptions typically in a qualitative way of spatial 
features and their relationships, such as “Building A is to the left side of Building B” or “The campus is a little bit 
north from the city”. Such qualitative information could provide an intuitive approach for representing human 
spatial knowledge. Since this knowledge can be extracted in the form of triplets of locatum-relationship-relatum (as 
in “campus”-“north of”-“city”) a formal model of two nodes and a linking edge comes to mind. Graph databases, 
which have already proven useful for modelling qualitative relationships in other areas, present a way to store and 
query these triplets. 

This research focuses on building such a graph database that can store triplets while maintaining relational 
consistency. The research will go back to Qualitative Spatial Reasoning (QSR) for consistency checking. QSR has 
been used in other contexts, such as robot navigation, e.g. (Moratz, Nebel et al. 2003), general QSR calculi in AI, 
e.g. (Frank 1991, Freksa 1992, Zimmermann and Freksa 1996), or for systems modelling NL descriptions, e.g. 
(Belouaer, Brosset et al. 2013, Basiri, Amirian et al. 2014).  

The hypothesis of this study is that a graph-based place database can preserve relational consistency in 
transactions about triplets representing locata, qualitative spatial relationships, and relata. It is anticipated that, as an 
outcome, a graph-based place database is able to identify and flag if new input is violating the current consistency 
and causing logical contradictions. For this purpose the paper studies the relationships and calculi in question, 
suggests reasoning constraints and algorithms for consistency checking, and tests these algorithms. 

The rest of this paper is structured as follows: Section 2 discusses related work and tools. Section 3 explains the 
methodology for data modelling, as well as reasoning configurations to preserve relational consistency. Section 4 
explains the experiments and provides a demonstration of the implemented system. The experiment results 
presented in Section 5 and discussed in Section 6. Section 7 includes conclusions and suggestions of future work. 
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2 Related work 

2.1 Graph database as a NoSQL database 

The NoSQL database family (NoSQL means ‘not only SQL’) includes a variety of database management 
systems that are not restricted to relational SQL models. It is not in contrast to but rather complements relational 
databases (Basiri, Amirian et al. 2014). Graph databases are one of the major databases in the NoSQL family other 
than key-value, document and column databases (Tiwari 2011). Graph databases are based on graphs (Biggs, Lloyd 
et al. 1986) and employ nodes and edges with properties to store data and their relations. 

Graph databases have two advantages in modelling rich-connected data, compared to relational databases 
(Güting 1994, Wiebrock, Wittenburg et al. 2000). First, they provide a natural and efficient way for network-based 
data modelling using nodes and edges, while relational databases are more suitable for modelling set-based data. 
Second, querying connected data can be cheaper in a graph database by traversing paths rather than by a join 
operation (or even recursive join) in a relational database. 

Graph databases are today used in modelling information from social networks, such as Facebook, as well as 
general knowledge, for example the Google Knowledge Graph. In this study, a graph database is used to model 
place information since it provides a natural, suitable, efficient and flexible way for modelling spatial objects and 
the qualitative spatial relationships among them, with no need for pre-defining a tabular schema as in a relational 
database. 

2.2 Modelling spatial information in a graph structure 

The concept of triplets has been widely utilized (Wiebrock, Wittenburg et al. 2000, Sproat, Coyne et al. 2010, 
Kordjamshidi, Frasconi et al. 2012). One specific triplet, that of locatum-qualitative spatial relationship-relatum, has 
been introduced as the spatial property graph (Vasardani, Timpf et al. 2013). It consists of the spatial object to be 
located (the locatum L), the reference object (the relatum R) and the qualitative spatial relationship between them 
(r). So far, the spatial property graph has been used for constructing plausible sketch maps (Vasardani, Timpf et al. 
2013). Belouaer et al. introduced another rule-based approach to generate a spatial semantic network inferred from 
verbal descriptions (Belouaer, Brosset et al. 2013). Both approaches focus on identifying semantic similarity among 
stored nodes. Our study, on the other hand, focuses on the relationships instead of spatial objects. 

2.3 Qualitative Spatial Reasoning and Calculi 

QSR is a constraint-based process that enables spatial intelligence to reasoning about space (Cohn and Hazarika 
2001, Dylla, Frommberger et al. 2006). QSR algorithms can be used to solve constraint-based problems by 
reasoning on different types of qualitative spatial relations. 

In this context, Frank suggested QSR with cardinal directions and qualitative distance relationships (Frank 1991, 
Frank 1992). For cardinal directions he suggested a cone model (Figure 1a), half-plane models (Figure 1b), and a 
neutral zone model (Figure 1c). The neutral zone model with its composition table is applied in this study, with 
additional rules to increase the flexibility of natural language.  

 

(a)           (b)        (c) 

Figure 1: Cardinal direction systems 

For qualitative distance relationships Frank discussed two-step (close, far), three-step (close, middle, far) and 
multi-step systems (Frank 1992). Those systems consider qualitative distance as mappings into intervals that form a 
partition of the positive real numbers, such as (for a three-step system) close = [0, 1); middle = [1, 3); far = [3, ∞) 
(Figure 2a). In a linear space such relationships can be added, and dist(A,B) + dist(B,C) ≥ dist(A,C). The resulting 
interval will then be mapped back to the corresponding symbols (close, middle, far) again. In place databases, 
however, stored place configurations are from two-dimensional space, where nothing else than the usual triangle 
inequality holds. Figure 2b shows for example a situation where “A is middle to B” and “B is middle to C” means 
that A and C can be in any relationship, for example near.  
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(a)            (b) 

Figure 2: Deriving qualitative distance relationship on a plane 

Freksa provided an approach for reasoning with relative direction relationships (Freksa 1992). Later, 
Zimmermann and Freksa discussed composition cases (Zimmermann and Freksa 1996). However, relative direction 
relations are not considered in this study, for reasons discussed in Section 3. 

Egenhofer et al. discussed a methodology for modelling and reasoning with topological relations (Egenhofer and 
Herring 1990, Egenhofer and Franzosa 1991), known as the 4-intersection and 9-intersection models. The two 
models consider whether the interior (A° and B°), the boundary (∂A and ∂B) and the exterior (A𝑐  and B𝑐) of two 
spatial objects intersect, and map the different cases to topological relationships. A composition table was also 
introduced for reasoning (Egenhofer 1991). An alternative model, based on first order logic instead of point-set 
topology, is the Region Connection Calculus (RCC) introduced by Randell, Cui and Cohn in 1992 (Randell, Cui et 
al. 1992). The 4-intersection model and the RCC both distinguish the same eight relations between two simple 
connected spatial objects. In this study, Egenhofer’s 4-intersection model and composition table are used. 

The different calculi of QSR, each of them applicable on one type of spatial relationships, have been packed into 
toolboxes. For example, SparQ (Wallgrün, Frommberger et al. 2007) is an integrated system which provides a 
series of Qualitative Spatial Calculi functionalities and aims at supporting tasks related to constraint-based 
reasoning and qualitative consistency-checking. In this research, however, the flexibility that comes with the use of 
natural language requires a critical discussion and extension of such calculi. 

3 A relationally consistent graph-based place database 

Triplets of place information, as extracted from NL description, can be integrated and stored in a graph database. 
The graph database should only store relationships that are consistent with each other in order to avoid 
contradictions in querying or reasoning, even if the information is not necessarily true according to geographic 
reality. In this section, methods will be provided to maintain relational consistency. 

3.1 Modelling place information using graph database 

A triplet consisting of {locatum, relation, relatum}, such as {Building A, to the right of, Building B} is 
represented in a graph database using two distinct nodes for locatum and relatum, and a directed edge from the 
locatum to the relatum, as shown in Figure 3. In the following sections, L-r->R will be used to represent a triplet, 
such as “Building A–to the right of–>Building B”. 

 

 

Figure 3: A stored triplet of two nodes and one edge 

Each time a new triplet is to be added, the names of the locatum and relatum will be queried to verify whether 
already nodes of these names exist in the database. If the nodes already exist, the triplet is integrated in the existing 
graph, otherwise new nodes are created and connected with directed edges. The graph can become a multi-graph 
when more than one triplet are added with the same locatum and relatum (e.g., A–right of–>B; A–west of –>B). 

3.2 Relational consistency 

Relational inconsistency occurs in a graph database when two pieces of information can be derived from the 
stored data that are logically contradicting. For example, if a real world situation as shown in Figure 4 is described 
by “A-west of->B” and then by “B-west of->A” there is a contradiction. Contradictions can also occur over longer 
cycles, such as in “A-west of->B”, “B-west of->C” and then “C-west of-A”.  
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(a) 

Figure 4: Three buildings in the cardinal reference frame 

Definition: Two triplets are relationally-consistent if, without any additional knowledge, no contradicting 
information can be derived according to the provided reasoning rules. 

Definition: A graph database is relationally-consistent if, at any state, it is free from relational inconsistency 
within the stored data. 

3.3 Composition of relationships 

A compositional inference is a deduction based on two relationships R1(A, B) and R2(B, C), which results in 
R3(A, C) (Cohn and Hazarika 2001). Qualitative spatial calculi, with a limited set of expressions, may require 
R3(A, C) to be a set of possible relations S3(A, C). Let us denote ∘ for the composition operation between two 
relationships. Composition operation can (but not necessarily) follow the following rules: 

Commutative law: A ∘ B = B ∘ A 
Associativity law: (A ∘ B) ∘ C = A ∘ (B ∘ C) 
Distributive law: A = {A1. . A𝑖}, B = {B1. . B𝑗}, A ∘ B = ∑ ∑ A𝑚 ∘ B𝑛

𝑗
𝑛=1

𝑖
𝑚=1  

A table can be constructed to represent the composition results  S3(A, C) . For a calculus of n possible 
relationships, an n*n composition table consists of each composition result between any two relationships in n.  

3.4 General reasoning configuration 

For the time being, any new triplet L-r->R, r must be from one of the three categories: cardinal direction, 
qualitative distance, or topological relationship. All other relationships are not yet covered; they might be stored 
without consistency checking, or conservatively just rejected.  

In order to identify relational inconsistency, any new input triplet L-r->R will be compared to existing 
knowledge between L and R derived from the stored data.  

Definition: Given a triplet L-r->R, an existing path (EP) is a sequence of nodes and edges in the graph database 
that starts from L and ends with R, while all the relationships in the path belong to the category of r. 

Definition: An existing knowledge (EK) is a set of derived relationships between L and R from an EP. If the 
length of EP equals to one, then EK is the single relation in the EP. If the length of EP is greater than one, then for 
all relationships with 1..n in EP in sequence order, EK = 𝑟1 ∘  𝑟2 ∘. . 𝑟𝑗, which could be either a single relationship or 
a set of relationships. 

A new triplet L-r->R is regarded consistent with a database if it is relationally consistent with all EKs between L 
and R. If the triplet is consistent, it will be added to the graph database; otherwise an inconsistency will be flagged. 

3.5 Reasoning configuration for cardinal direction relationships 

Table 1 below shows the implemented cardinal direction relationship set (left), and possible verbalizations 
(right). 

Table 1: Cardinal direction relationships 

Cardinal Directions Example of NL Descriptions 
north of north, to the north of, northern, north from, N, etc. 
northeast of northeast, to the northeast of, northeast from, NE, etc. 
east of east, to the east of, eastern, east from, E, etc. 
southeast of southeast, to the southeast of, southeast from, SE, etc. 
south of south, to the south of, southern, south from, S, etc. 
southwest of southwest, to the southwest of, southwest from, SW, etc. 
west of west, to the west of, western, west from, W, etc. 
northwest of northwest, to the northwest of, northwest from, NW, etc. 
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For cardinal directions this research adopts the neutral zone system (Figure 1c), as it is assumed that all spatial 
features have a two-dimensional extend. As for any other system, each cardinal direction can be associated with a 
region such that these regions form a JEPD partition of the Euclidian plane. The size of the neutral zone is defined 
by the relatum R, while the locatum L in a triplet L-r->R belongs to one of the eight zones (NW, N, NE, E, SE, S, 
SW and W). 

Table 2 shows Frank’s composition table for the neutral zone model. ‘Any’ in the table means again that any of 
the eight relationships is possible. However, the composition table is not directly applied in this work. This is 
because the semantics of cardinal directions in NL descriptions are more vague than a logical model suggests. For 
example, when people say North, they could mean anywhere within zones of W, NW, N, NE and E—in the neutral 
zone model—instead of only N, because if the half-planes of cardinal directions intersect in a valid relation, it 
seems that people consider them as conceptually consistent (i.e., non contradicting), as they can generalize from the 
more specific relations, to the more general and broader application region of each relation (half-planes). Therefore, 
without more detailed knowledge, a certain level of uncertainty should be accepted and not be regarded as 
inconsistency. For instance, in reasoning N and NW should be considered as consistent while N and S should be 
regarded as inconsistent. 

Table 2: Frank’s composition table for the neutral zone model 

 N NE E SE S SW W NW 
N N N NE E Any W NW N 
NE N NE E E E Any N N 
E NE E E E SE S Any N 
SE E E SE SE S S S Any 
S Any E SE S S S SW W 
SW W Any S S S SW W W 
W NW N Any S SW W W W 
NW N N N Any W W N NW 

 
Definition: An extended cardinal direction set (ECD) is a set of consistent cardinal direction relationships given 

a cardinal direction relationship r in a NL description.  
The ECD for any cardinal direction relationship is shown in Table 3. The table provides a set of relationships 

that are regarded as relationally consistent with r. For instance, “Building A-north of->Building B” and “Building 
A-east of->Building B” are considered as relationally consistent, and their half-plane intersection exists in the form 
of a valid relation north-east (NE); while “Building A-north of->Building B” and “Building A-south of->Building B” 
are relationally inconsistent, as obviously an intersection of their half-planes does not exist.  

Table 3: Extended cardinal direction set for r 

 ECD set 
N W, NW, N, NE, E 
NE N, NE, E 
E N, NE, E, SE, S 
SE E, SE, S 
S E, SE, S, SW, W 
SW S, SW, W 
W S, SW, W, NW, N 
NW W, NW, N 

 
ECDs provide a ‘tolerant’ mechanism that first stores triplets which are considered to be relationally consistent. 

Then, when more triplets with new knowledge between the same two spatial objects are stored, and the number of 
EP (and EK) increases, the system becomes less tolerant, as a new input triplet will need to be consistent with every 
EK in order to be consistent with the graph database. 

Rule 1: Given an input triplet L-r->R and r is a cardinal direction relationship, if for every EK between L and R, 
r belongs to the ECD of at least one of the elements in that EK, then the triplet is relationally consistent with the 
graph database. 

3.6 Relative direction relationships 

Relative direction relationships require a reference frame for relative directions. The reference frame can be 
linked to the orientation of the observer (egocentric, to my left), the orientation of the relatum (allocentric, to the left 
of the front side), or be a projection of the speaker to the reference frame of the recipient (your left). Unfortunately 
triplets do not provide this spatial reference frame. For instance, when someone says “A is in front of C” then this 
sentence’s ambiguity with respect to the spatial reference frame cannot be resolved without further context (which 
is not accessible). This is the reason why in this research reasoning mechanisms for relative direction relationships 
are not provided.  
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3.7 Reasoning configuration for qualitative distance relationships 

Table 4 below shows the implemented qualitative distance relationship set, followed by possible verbalizations. 

Table 4: Qualitative distance relationships 

Qualitative Distance Relation Examples of NL descriptions 
Near beside, next to, close to, near, around, etc. 
Middle not far from, middle, etc. 
Far far from, furthest, distance from, very far, end, etc. 

 
The only reasoning rule for the qualitative distance relationship between A and C is the triangle inequality. 

Frank’s three-step intervals are applied: (N = [0, 1); M = [1, 3); F = [3, ∞)). Table 5 shows the corresponding 
composition table, using the distance computations of Algorithm 1. 

Table 5: Composition table of qualitative distance intervals 

 N = [0, 1) M = [1, 3) F = [3, ∞) 
N = [0, 1) [0, 2) N, M [0, 4) any [2, ∞) M, F 
M = [1, 3) [0, 4) any [0, 6) any [0, ∞) any 
F = [3, ∞) [2, ∞) M, F [0, ∞) any [0, ∞) any 

 

Algorithm 1: Distances for qualitative distance interval composition 

1: a = [𝑥𝑎 , 𝑦𝑎), b = [𝑥𝑏 , 𝑦𝑏) # a ∘ b = [𝑥𝑐 , 𝑦𝑐) 

2: 𝑦𝑐 = 𝑦𝑎 + 𝑦𝑏  
 

3: if 𝑥𝑏 ≥ 𝑥𝑎:  

4:     𝑥𝑐 = |𝑥𝑏 − 𝑦𝑎|  

5: else: 
 

6:     𝑥𝑐 = |𝑥𝑎 − 𝑦𝑏| 
 

7: return [𝑥𝑐 , 𝑦𝑐)   

 
Rule 2: Given an input triplet L-r->R and r is a qualitative distance relationship, if r is element of EK between L 

and R, then the triplet is relationally consistent with the graph database. 

3.8 Reasoning configuration for topological relationships 

Table 6 shows the implemented topological relationship set (left), followed by possible verbalizations (right). 

Table 6: Topological relationships 

Topological relation Example of NL descriptions 
Disjoint Building A is away from building B 
Meet Building A is adjacent to building B 
Equal A and B are actually the same building 
Inside The office is inside Building A 
coveredBy The pond is at the north end of the park 
Contains Building A contains the office 
Covers The park covers the pond at its north end 
Overlap Part of Building A is on the neighbour’s parcel 

 
Egenhofer’ s composition table for the 4-intersection model (Egenhofer 1991) is shown in Table 7. Here, ‘any’ 

means no more specific information can be deducted: any topological relationship is possible. The commutative law 
does not apply for the composition operation between topological relationships. For instance, disjoint ∘ inside = {d, 
m, i, cB, o} while inside ∘ disjoint = d. 
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Table 7: Composition table of topological relationship 

 disjoint meet equal inside 
covered 

By 
contains covers overlap 

disjoint any 
d,m,i, 
cB,o 

d 
d,m,i, 
cB,o 

d,m,i, 
cB,o 

d d 
d,m,i, 
cB,o 

meet 
d,m,ct, 

cv,o 
d,m,e, 

cB,cv,o 
m i,cB,o m,i,cB,o d d,m 

d,m,i, 
cB,o 

equal d m e i cB ct cv o 

inside d d i i i any 
d,m,i, 
cB,o 

d,m,i, 
cB,o 

covered
By 

d d, m cB i i,cB 
d,m,ct, 

cv,o 
d,m,e, 

cB,cv,o 
d,m,i, 
cB,o 

contains 
d,m,ct, 

cv,o 
ct,cv,o ct 

e,i,cB, 
ct,cv,o 

ct,cv,o ct ct ct,cv,o 

covers 
d,m,ct, 

cv,o 
m,ct, 
cv,o 

cv i,cB,o e,cB,cv,o ct ct, cv ct,cv,o 

overlap 
d,m,ct, 

cv,o 
d,m,ct,

cv,o 
o i,cB,o i,cB,o 

d,m,ct, 
cv,o 

d,m,ct,
cv,o 

any 

 
Rule 3: Given an input triplet L-r->R and r is a topological relationship, if r is element of EK between L and R, 

then the triplet is relationally consistent with the graph database. 

4 Implementation 

The data used to test the algorithms are 731 triplets derived from 42 place descriptions collected by Vasardani et 
al. (Vasardani, Timpf et al. 2013). The triplets were extracted from NL descriptions of the University of 
Melbourne’s Parkville campus, given by a group of graduate students with different levels of familiarity with the 
campus. These descriptions had already been pre-processed by NL parsing rules, synonym detection and 
relationship classification. Of these 731, 325 triplets have a cardinal direction, a qualitative distance, or a 
topological relationship. 

4.1 System overview 

The Neo4j community version is used in this research as local host visualization platform. The Neo4j 
Python-embedded is the main module used to interact with the local database host. The system structure is shown in 
Figure 5.  
 

triplets

create node

node already 

exist?
yes

no

checking 

procedure

cardinal direction 

relationship

qualitative distance 

relationship

topological 

relationship

other

Rule 1

Rule 2

Rule 3

consistent?

yes

create L-r->R

reject

no

 

Figure 5: Diagram of reasoning process 

4.2 Experiment design  

The experiment consists of two parts. In Part 1, during the import stage, the reasoning algorithms were applied to 
identify inconsistent triplets form the set of 731. Each flagged triplet is then manually verified of whether it really 
causes relational inconsistency or not. Thus, rate P1 calculated by Formula 4.2.1, is the precision of the algorithm. 
For instance, if the system detects 10 inconsistent triplets, and 9 of them are verified, then P1 equals to 0.9 
(maximum 1). 

𝑃1 =
number of verified inconsistent triplets

number of inconsistent triplets identified
                             (4.2.1) 
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In Part 2, after all triplets are imported, an additional set of 60 made-up consistent and inconsistent triplets of the 
three categories of relationships were input to the database. In this case it was known in advance which of the 
triplets are consistent or inconsistent. Again it was tested whether the system is able to correctly accept or reject 
each of them accordingly. The rate P2 calculated by Formula 4.2.2 provides another insight on the precision of the 
algorithm. 

𝑃2 =
number of correctly acceptedor rejected triplets

number of all made−up triplets
                         (4.2.2) 

In line with the hypothesis it is anticipated that both P1 and P2 equal to 1, in which case the graph database is 
proven to be able to maintain relational consistency. 

4.3 Maximum query depth 

When querying for EPs that start from node L and end with R, a maximum path length has been set, since 
computing all the paths between two nodes in a graph draws on computation time. This theoretical drawback can 
only be justified by pragmatics: First, it can be observed that after just a few steps of reasoning, composition tables 
in many places end with ‘any’ anyway. The second pragmatic argument is based on the First Law of Geography: 
Near things are more related than far things, which raises the expectation that relevant spatial information is 
provided in short cycles. The parameter for the maximum path length, Maximum Query Depth (MQD), has been 
tested in order to observe when the overall computation time becomes unacceptable. This test was done by adding 
all the 731 triplets into an empty graph database and recording the overall computation time of reasoning for each 
triplet, over a range of MQD. 

5 Observed Results 

For Part 1, all 731 triplets were added from the descriptions, and no inconsistent triplet occurred. All triplets 
were then verified, and P1=1. For Part 2, 60 triplets were tested. 60 out of 60 were processed correctly—both all 
consistent and all inconsistent cases were identified—by the graph database, thus P2=1.  

Figure 6a shows the overall number of EP computed in Part 1 for every triplet from the set of 325 in the 
considered relation categories. Figures 6b, 6c, and 6d show the number of EP for triplets for each respective 
category (MQD = 3). 

 

(a)  (b) 

(c)  (d) 

Figure 6: Number of EP computed in Part 1 
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Figure 7 shows that once a made-up consistent triplet was accepted and added, the following inconsistent triplet 
has at least one more EP queried than the previous one. 

 

(a)   (b)  

(c)  

Figure 7: Number of EP computed in Part 2 

Computation time for MQD that equals to 1, 2, 3 and 4 respectively is shown in Figure 8. When MQD is set to 1, 
2 and 3, the computation time is rather stable (around 0.1s). But when it is set to 4, the computation time suddenly 
begins to soar as the size of the graph database grows.  

 

(a) (b)  

(c) (d) 

Figure 8: Computation time for MQD equals to 1, 2, 3 and 4 
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6 Discussion 

The implementation of relational consistency rules is the first step of automatically reason with qualitative 
spatial relationships from NL descriptions in a graph database. The implemented mechanisms are flexible and 
robust to preserve relational consistency in a graph database. 

In Part 1 of the experiment, the 731 triplets extracted from the 42 place descriptions are relationally consistent. 
This result is not surprising, since the descriptions are from students that are already, to various extents, familiar 
with the environment of the University of Melbourne’s Parkville campus, therefore the possibility of giving 
misleading descriptions is low (but still possible, such as by mistake, and which makes the consistency checking 
mechanisms necessary). Alternatively, also malicious users could try to add inconsistent knowledge and should be 
prevented. However, the system does only flag an inconsistency; it has no mechanisms to decide whether the 
already stored or the added relations are the truer representation of geographic reality.  

According to the result given by Part 2, the system is capable of distinguishing consistent and inconsistent 
triplets. Additionally, as shown in Figure 6, the numbers of EP found for qualitative distance relationships are 
overall small. This indicates that there are not as many neighbouring relationships that belong to the qualitative 
distance relationship category, therefore it is not as rich-connected as cardinal direction and topological 
relationships.  

The system is flexible and accommodates certain degrees of ambiguity and uncertainty. The graph database is 
robust for maintaining relational consistency with given rules and formalized triplets, even though the reasoning 
algorithms are flexible. 

Among the input spatial objects, ‘Campus’ is a special one. It is rather a container of most other spatial objects in 
these (campus) place descriptions. Among all 731 triplets, 144 of them (approximately 19.7%) related to ‘Campus’.  

Although relative direction relationships were not reasoned, it was observed that some relative direction 
relationships appear ‘inconsistent’ in expression when considered without their individual spatial reference frame. 
For instance, in one triplet, the Engineering Department is “right of” the South Lawn, while in another triplet, the 
relationship between them is “left of”. Triplets of relative directions occupy approximately 25% of the total number 
of triplets; hence they must be addressed in future work by ways of capturing and maintaining their spatial reference 
frame.  

Additionally, each relationship is only checked for consistency within its own category. Relational consistency 
checking among different categories is not considered in this research; therefore the system is not yet able to reason 
relationships from multiple categories. For example, “A-inside->B” and “A-far->B” are contradicting since A and 
B must be disjoint in order to be far from each other. Due to the fact that ‘inside’ and ‘far’ do not belong to the 
same category, they will not be regarded as relationally-inconsistent by the implemented database. Thus, reasoning 
rules among different categories of relationship should be developed in future research. 

It was anticipated that by setting different MQD, the number of EP queried for any triplet L-r->R would be 
different. Also, it is expected that the reasoning results would be different since cycles longer than MQD can still be 
inconsistent with a triplet to be added. When implemented, no difference in reasoning result was detected by setting 
different MQD; however, the difference of number of EP detected is significant. 

Although more EP could be queried by setting larger MQD (and consequently more EK can be used for 
consistency checking), it is suggested to set MQD to 3 in order to limit the computation time. As shown in Figure 8, 
it can be predicted that with a larger dataset, the computation time would soon become unacceptable with larger 
MQD.  

7 Conclusions and future work 

This research proves that a graph database can preserve relational consistency when modelling qualitative place 
information derived from NL. The hypothesis is verified by the outcomes of the experiments described in earlier 
section. The implemented system is overall flexible enough to accommodate NL descriptions and robust for 
maintaining relational consistency. 

Data triplets in this research include spatial relationships from categories such as cardinal directions, qualitative 
distances, topological relations, relative directions and other (non-categorized) relationships. Reasoning rules were 
developed for the first three categories. When a new input triplet violates a consistency rule, it will be flagged by 
the graph database to prevent logical contradiction and relational inconsistency. Currently, the system can only 
process reasoning based on relationships that belong to the same category. It is not yet able to reason on triplets 
with relationships from multiple categories. 

The path length of reasoning cycles has to be limited for computational reasons. Different MQD were tested for 
composition reasoning, and an MQD of 3 still delivered acceptable computation times. 

This research is the first step in attempting to build a relationally consistent database for place information from 
NL. Such a graph database, built and maintained in relational consistency, can then be used to solve relevant 
decision making tasks, such as landmark navigation; or be used for other applications, such as plausible sketch map 
drawing. 

The major limitations of this research are the limited size and context of the test dataset (all campus descriptions 
of the same campus). More interesting observations are expected if the graph database is used for testing datasets 
referring to different locations. Second, the robustness of mapping NL descriptions of qualitative distance 
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relationships into intervals needs further research. It is known that qualitative distance judgements change with the 
context in a conversation, do not follow the commutative law (from “A is near B” does not necessarily follow that, 
within the same context, “B is near A”), and negation within the three-step model is not addressed. For instance, 
“not far” could mean either ‘near’ or ‘middle’ in a description, however it is mapped to ‘middle’ in this research. 
Third, as discussed, the system is not yet able to reason over relationships from different categories, and also it is 
not able to reason with relative direction relationships. 

Apart from the limitations discussed above, other work can also be done in future studies. First, semantic 
reasoning could be introduced to automatically identify synonyms of relationship labels, thus helping a graph 
database further to maintain relational consistency over a larger variety of relationship names. Secondly, due to the 
ambiguity of natural language descriptions, relationships cannot be categorized automatically currently. For 
instance, ‘in’ and ‘on’ in NL descriptions could stand for not only topological ‘inside’ (i.e. room in the building; 
clock-tower on the lawn), but also other relations (i.e. station on the road). Mechanisms could be developed by 
considering the type of the referenced objects as well as the context, in order to categorize relationships 
automatically.  
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