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Abstract 

Detecting transport modes in near-real time is important 
for various context-aware location based services and 
understanding urban dynamics. In this paper we present a 
simulated study on detecting transport modes in near-real 
time using a neural network. We have shown how 
detection accuracy will vary with different temporal 
window sizes and different combination of modes. Since in 
urban environment transport modes move slowly due to 
traffic, considering movement attributes or kinematics 
alone for mode detection is not sufficient. That is why we 
investigated how spatial information can improve mode 
detection accuracy. The model has achieved 82%-95% 
accuracy using different simulation designs and proves its 
efficacy over other detection models.  

1 Introduction 
Transport mode detection from trajectories has seen growing interest in research over last few years for its 

importance in various domains such as context-aware computing, location based services, understanding urban 
dynamics, travel demand surveys, traffic monitoring, and travel behaviour analysis. Traditionally travel modes have 
been surveyed in questionnaires, enabling also to capture additional knowledge including purpose of trip. Travel 
surveys, however, are burdensome, erroneous if made from memory, of low spatial detail, and reach only small 
sampling rates. Automation should overcome all these issues.  

Since the late 1990's, due to advancements in positioning and navigation technology, GPS started being used as a 
mean to collect travel data and assess its reliability and future possibilities (Wolf, 2000). Eventually, the use of GPS 
has increased as it has become more precise, portable and ubiquitous. Nowadays people themselves can track their 
movement trajectories using GPS and potentially other sensors on-board their smart phones (Periera et al., 2013).  

Most of the research on travel mode detection is based on rigid velocity based model. However, a velocity based 
approach is not always sufficient. For example, low speed conditions, which are nowadays typical in urban traffic 
due to traffic at capacity, or bad weather, produce mode ambiguities. In low speed traffic conditions, the speed of a 
bus is similar to a car or bicycle. Therefore, there is a need to consider various non-kinematic attributes along with 
movement attributes (kinematics) in order to detect different transport modes. 
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Existing transport mode detection research is mostly offline. That means modes are detected once a trip is 
completed from historical trajectories. Existing methods use the entire trip record in the form of trajectory and then 
separates the trajectory based on walking based segments into number of meaningful parts that correspond to 
respective transport modes. 

The hypothesis behind this research is that a neural network based model can adjust well in real time with 
varying movement behaviour and overcomes the mode ambiguity under low speed conditions. 

In detecting transport modes, movement characteristics derived from trajectories of the users are the raw data 
source. In this paper we will concentrate on trajectories of a single sensor, as provided by GPS enabled smart 
phones. Such GPS trajectories are unlabelled and come in raw format. Other sensors in the phone are neglected for 
the time being, but can easily be included in the model. A classifier is required that can detect the various transport 
modes used along each trip in real to near-real time. In this paper, a neural network based classifier has been tested. 
Our contributions are as follows- 

1) We developed a simulated near-real time transport mode detection model based on a multi-layer perceptron 
neural network. 

2) Earlier approaches to neural network based transport mode detection are mostly offline and did not use any 
spatial information. In this research we show how spatial information can increase the detection accuracy. 

3) Selecting a proper temporal window for detecting transport modes in near-real time is critical and context 
dependent. In this paper we investigate how detection accuracy varies with different temporal window sizes, which 
helps in selecting a proper window size based on accuracy requirement. 

In this paper we also evaluate the performance measure of a multi-layer perceptron neural network in order to 
detect transport modes in near-real time. A real time model can detect the transport mode epoch by epoch basis 
(such as second by second). In this research, we simulated queries within short temporal window to detect a given 
mode instead of second by second basis. Hence, we call this model a near-real time mode detection approach. 

Detecting transport mode in near-real time is comparatively an emerging research area. In this paper we have 
developed a basic but intuitive near-real time mode detection model using a supervised learning approach. Real 
time mode detection can be useful for a number of applications. Applications include various context-aware 
location based services where the context could be a given transport mode. A petrol pump can distribute an 
electronic discounted coupon within its neighbourhood to all the private cars only. Detecting transport modes in real 
time can also help developing various context-aware mobile applications that can sense the modality and act 
accordingly. One instant could be developing a mode-dependent auto-answering service on smart-phones. If the 
mobile senses the owner is in driving mode then the auto-answer can automatically be enabled and helps driver to 
concentrate on the road rather than receiving any incoming call. Thereby this can help in reducing distractions on 
the road in order to reduce road accidents. This approach can also be helpful for urban planners or emergency 
service providers who want to know people’s mode choice at a given route or in a given region at a given time 
window for modeling travel demand or various spatio-temporal events. 

The paper is organized as follows. Section 2 discusses related works in transport mode detection from various 
perspectives. Section 3 discusses some of the basic terminologies and methodology. Section 4 demonstrates data 
preparation and experimentation. Section 5 shows the experimental results. Section 6 presents the discussion of 
these results, and Section 7 concludes the paper. 

2 Related work 
Nowadays, smart-phones come with GPS enabled facilities. Since smart-phones are carried by the users almost 

everywhere and all the time, hence, this positioning facility can be utilized in order to collect trajectories without 
any external intervention. Once a GPS trajectory has been collected or is in the process of being collected, those 
trajectories or part there-of can be used for transport mode detection in real time or post-processing mode. In this 
regard, existing work is mostly based on post-processing of the trajectories or detecting modes offline. Existing 
literature shows a wide variety of post-processing algorithms and classifiers. Some of the approaches used the 
classification technique directly without segmenting the GPS trajectories (Byon et al., 2007; Dodge et al., 2009; 
Reddy et al., 2010). At the same time  there are approaches applying segmentation of the entire trajectory into 
meaningful parts, corresponding to different modes, before classification (Mountain and Raper, 2001; Tsui and 
Shalaby, 2006; Schussler and Axhaussen, 2009; Zheng et al., 2010; Biljecki et al., 2012; Hemminki et al., 2013).  

Segmentation is done based on those points that show high probability of mode change. Mountain and Raper 
used change in speed and direction for segmentation in their work (Mountain and Raper, 2001). However, this 
approach creates ambiguities in certain cases where the vehicles move slowly and constrained to specific roads or 
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the rail or tram networks. Liao et al. used proximity to potential change points, such as bus stops or train stops for 
offline mode detection (Liao et al., 2007). However, GPS accuracy greatly varies in urban environments, depending 
on the number of satellites in view, time of the day and season, atmospheric conditions and surrounding sources of 
multipath effects. Other research used change in peaks of acceleration curves in order to segment the trajectory 
(Hemminki et al., 2013). However this approach also suffers from low ambiguity resolution, typically in low speed 
condition such as during bad weather or traffic congestion. Another common and intuitive way for segmenting the 
trajectory is based on detecting walking segments. The rationale behind this approach is the observation that a 
person generally walks between using two modes of transport. This approach has achieved promising results for 
segmentation (Tsui and Shalaby, 2006; Zheng et al., 2010; Biljecki et al., 2012). However this approach also fails 
when there is a quick mode change or walking is negligible.   

There have been a number of different algorithms for mode classification used so far. Zheng and colleagues used 
a decision tree, Bayesian Net, Conditional Random Field (CRF) and Support Vector Machine (SVM) in their work 
with 75% reported accuracy (Zheng et al., 2010). Gonzalez et al. used neural networks with 91% accuracy 
(Gonzalez et al., 2010). Some works are solely based on statistical measures (Patterson et al., 2003).  

As far as the input parameters or indicators are concerned, prior work mostly concentrated on velocity attributes 
(Bohte et al., 2008; Schussler and Axhausen, 2009). But in low speed condition velocity and acceleration are not 
sufficient to resolve the ambiguities. So, more recently, research has incorporated additional movement attributes 
including heading rate change and stop rates (Zheng et al., 2010). Vibration data has also been tested as an 
additional attribute with promising results (Ohashi et al., 2013). However, in order to achieve better accuracy and 
account for GPS signal loss others have used inertial localization and navigation sensors such as accelerometers, 
along with GPS sensors (Reddy et al., 2010; Hemminki et al., 2013; Ohashi et al., 2013). 

Byon and colleagues used GPS trajectories collected by GPS loggers to study detection accuracy in real time. 
However there focus was mainly on how accuracy varies with different sampling frequencies (Byon et al., 2009). 
They achieved high detection accuracy at 20 min temporal window. However they observed mainly four modes 
auto, walk, car, bus. Although Byon and colleagues developed two neural network models, one route specific and 
another one a universal model, they did not explore how spatial knowledge can help in detecting different modes. 
Also their approach is limited by their use of GPS loggers: they used instantaneous speed, acceleration, number of 
satellites in view for a given transport mode to train their classifier. Number of satellites in view depends on 
particular transport mode. Such as GPS device inside a bus is obstructed by the metallic body and ceiling and 
vertical windows limiting the number of satellites in view. Whereas a car would have wider front windshield that 
would allow stronger and multiple GPS signals. However when using smart-phones for detecting modes, 
instantaneous acceleration, number of satellites in view or horizontal dilution of precision values may not be 
available.  

Gonzalez and colleagues developed a neural network based mode detection model with a core focus on how to 
reduce streaming of movement data. Earlier work used a static and fixed data transmission procedure but that 
suffered from high financial costs associated with data transmission as well as computational overhead and storage 
issues. Gonzalez and colleagues proposed a novel critical point (CP) algorithm to transmit only the relevant GPS 
points during the trip (Gonzalez et al., 2010).   

Since movement states are uncertain and imprecise there are a couple of mode detection appraoch using fuzzy 
logic (Tsui and Shalaby, 2006; Biljecki et al., 2010). A fuzzy approach with three criteria and five to ten modes has 
been tested with an accuracy of more than 90% (Schussler and Axhausen, 2009; Biljecki et al., 2010). However 
these approaches are rule-based and involve fuzzy antecedents and fuzzy consequents (Zadeh, 1965; Mamdani and 
Assilian, 1975). This approach cannot adapt with different movement behaviour in real time. Since fuzzy logic 
based models are developed based on expert knowledge with predefined premise and consequents hence they are 
not scalable with new parameters and thus pose scalability and flexibility issues. In this paper we present a neural 
network based model that can learn in real time. A neural network based model is flexible and scalable.     

3 Theory 
 
In this section we presented some basic definitions, concepts and methodology used in this research. 

3.1 Raw Trajectory 
A raw trajectory is a set of spatio-temporal points arranged in a chronological order. This can be mathematically 

expressed as  
Tr ={Pi }: Pi= (xi, yi, zi, ti) ; i є [0, N] ;∀  i : (ti<ti+1) …………………………………………….  (1) 
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3.2 Segment  
Any connected part of a raw trajectory with a specific semantics is a segment. For example, if a part of trajectory 

is extracted with a given annotated mode, then that is a modal segment. Similarly, if certain part(s) of a trajectory is 
extracted over a given time period that part would be a temporal segment.  

3.3 Model architecture 
The architecture of a multi-layer feed forward back propagation neural network is explained as follows- 

A multi-layer feed forward neural network consists of mainly three layers- a) input layer, b) hidden layer, c) 
output layer. These layers contain one or more than one nodes or neurons. Input nodes are connected to hidden 
nodes and hidden nodes are connected to output nodes. But nodes of the same layer have to be disjoint and they 
cannot be connected to each other. Input layer is responsible to get input signals from the external world typically in 
the form of movement attributes (kinematics) or spatial attributes (non-kinematics) in the context of transport mode 
detection.  

3.4 Training 
Neural network can learn online and adapt well with given instances. However before using a neural network, it 

has to be trained to map a given set of inputs to a given output class. The training typically starts from input layer as 
soon as input stimuli are fed in. Nodes in each layer receive input signal from the preceding layer and send an 
output signal to the nodes in immediate succeeding layer. Each node multiplies the input signal with a previously 
established weight, adds a threshold, converts into an output signal through an activation function and sends it to the 
other nodes in the succeeding layer. The hidden layer is not directly connected to real world. This is the most 
important layer that processes the information and creates categorizing features for classification which sends signal 
to the output layer to categorize a given set of feature vectors. Once the output signal produces a response it is 
evaluated with the actual response. The difference between the predicted response and desired response is the error 
term of the neural network which is then back propagated to the model in order to adjust the weight and threshold 
values iteratively. This iterative process goes on in a cyclic way until a prescribed number of cycles (epochs) or a 
desired error level is achieved during training phase.  

The rate at which a neural network learns can be adjusted by changing certain parameters called learning rate 
(LR) and momentum (M). These parameters control the change in weight and their persistence throughout total 
number of epochs. 

3.5 Near-real time simulation 
 In order to detect transport modes in near-real time, queries will be fetched to a central server with kinematic 

and non-kinematic information. In this research we used a set of historical trajectories for near-real time simulation 
purpose. In order to train a neural network model small temporal segments have been extracted from the 
trajectories. Kinematic and non-kinematic attributes are then estimated over that temporal window in order to 
capture various movement behaviour of the given mode within that time period. Since a transport mode can exhibit 
different movement behaviour at different instant hence there is a need to train the classifier with movement 
behaviours for each mode at different instant of time over different trajectories. In order to extract movement 
behaviour of each transport mode, temporal segment over a given temporal window of a given mode segment has 
been extracted at regular interval of time.  

3.6 Mode segmentation 
Each trajectory can be expressed as a set of modal segments. This can be expressed as  
T={SMj} ………………………………………………………………………………………… (2) 
Where, j ϵ [1, N]; N= total number of modes used by the user over the trajectory   
Each modal segment can be expressed as SMj= {Pij, Mij}………………………………………. (3) 
where i= ith spatio-temporal index; j= jth modal segment index; SMj= jth segment of the trajectory; Pij= ith patio-

temporal point in jth segment; Mij= mode for ith point in jth segment.  
A modal segment can be divided into a number of overlapping temporal segments. That can be mathematically 

expressed as - 
SMj={TWkj}t : k ϵ  [1, M] …………………………………………………………………..….. (4) 
Where, TWkj= kth temporal segment of j modal segment over time window t; M= total number of temporal 

segments over a given modal segment. 

3.7 Temporal segmentation 
Once a trajectory is segmented into number of modal segments then each modal segment is segmented in 

number of temporal segments overlapping by (n-1) spatio-temporal points, where n is the number of spatio-
temporal points in a given temporal segment. The overlap is chosen as n-1 in order to capture diverse movement 
behaviour of the given mode at a finer granularity. 
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Each temporal segment can be expressed as TWkj
t={Pijk, Mijk}  ……………………………. (5) 

Where, TWkj
t= kth temporal segment of ‘t’ time length in jth modal segment 

Pijk= ith spatio-temporal point in kth temporal segment of jth modal segment 
Mijk= Annotated mode in kth temporal segment of jth modal segment 

3.8 Kinematics and spatial information 
In this research eight kinematic attributes are estimated using Euclidean functions in space-time domain such as 

average speed, average acceleration, variance of speed, variance of acceleration, maximum speed, maximum 
acceleration, minimum speed and minimum acceleration. In order to understand how a given mode behaves 
spatially with respect to different spatial objects (route network or POI), eight spatial relevance measures have been 
considered (see Table 2). Spatial relevance with respect to different spatial objects is calculated based on spatial 
proximity of spatio-temporal points to the given spatial object or a part thereof. 

3.9 POI relevance estimation 
In order to estimate POI relevance (proximity to bus stop, train stop, traffic signal or car wash or parking lot) a 

density-based clustering kernel is ran over each temporal window. Then POI relevance over a given temporal 
segment is estimated as 

POIRelc=POIRelc-1+ s*(n/N) ……………………………………………………….…….. (6) 
Where, POIRelc= Relevance measure of a given POI over cluster ‘c’ over temporal window  [t1, t2] 
POIRelc-1= Relevance measure of a given POI over cluster ‘c-1’ over temporal window  [t1, t2] 
s= scaling factor (s=10 in this case) 
n= number of elements in the cluster falling in the search radius of the given POI 
N= total number of the elements in the cluster 

3.10 Instance formation 
In order to train and test the model using N-fold cross-validation, instances are created in the form of feature 

vectors which include kinematics and spatial attributes estimated over each temporal segment and fed into the 
model. A flowchart is given to show the workflow in Figure 1. 

3.11 Performance measure 
In order to evaluate the performance of the model, we used N-fold cross-validation. Since in N-fold cross-validation 
all the feature space is used using N-1 as training and 1 set of feature vectors as test thus it can capture the state 
behaviour at a fine granularity. However in hold-back type training, the accuracy of the model depends on the 
percentage of training instances that can represent all the details and characteristic behaviour of the entire 
population. Since in real time mode detection instances may vary with a temporal window size and modal 
movement behaviour, hence performance measure of a N-fold cross-validation strategy has been presented in this 
research (see experiment and result section), assuming an iterative N-fold cross-validation over growing time can 
dynamically improve the model in near-real time. 

 

Figure 1: Flowchart of simulated mode detection modeling architecture 
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4 Data preparation and experimental setup 
In order to evaluate our hypothesis Microsoft’s GeoLife datset has been used in this experiment (Zheng et al., 

2008a; Zheng et al., 2008b; Zheng et al., 2010). The dataset mainly covers Beijing CBD and its surrounding suburb.  
The dataset was collected by smart-phones and GPS loggers in the form of GPS trajectories.  Different sampling 
intervals ranging from 2-5 seconds have been used in this dataset. Users provided their trajectories and ground truth 
separately. This dataset contains various transport modes such as car, walk, bus, taxi, train, subway and bike.  
However, no accuracy measure such as horizontal dilution of precision (HDOP) is provided in this dataset. The 
dataset also suffers from semantic gaps due to both technical reasons such as urban canyons, indoor environments 
and misreporting such as time gap between annotating two different mode segments by a user. During pre-
processing stage some of the GPS points are found to be outside the study area. There were also some 
inconsistencies in the annotations, such as walking over unreasonable longer duration or with unreasonable speed. 
There are also semantic gaps during signal loss and missing annotations in the dataset. The portions of the dataset 
containing such semantic inconsistencies are discarded. However a future work can use signal loss and contextual 
information to detect certain modes such as train in a subway.  

 

Figure 2: Beijing GeoLife GPS dataset overlaid on the road network (in blue colour) and rail network (in red 
colour) 

In a data filtration stage 2.5 m/s has been set as walking speed threshold (Minetti, 2000), and some of the 
trajectories are discarded. In this experiment 264 trajectories have been used including training and test trajectories 
(Fig. 2).  

Earlier works used HDOP value and can easily filter noise points (Byon et al., 2009; Gonzalez et al., 2010), but 
in this dataset we do not have any information that can provide positional accuracy or confidence level for each 
GPS fix. Hence, we setup two different experimental designs. One with filtered GPS data points where walking 
speed more than 2.5 m/s have been removed. Another setup was used without any filtering walking speeds. In both 
cases, raw velocity values are smoothed using an inverse distance weightage (IDW) smoothing kernel. 

However technically a segment can also be viewed as a trajectory if it is treated discretely for further analysis. In 
order to detect transport modes in near-real time, we used a portion of a historical GPS dataset with transport mode 
annotated to train the mode detection model. Then we generated queries randomly at different instant of the 
trajectory and fetch the queries to the model to detect the transport mode as if the queries are coming in near-real 
time. A multi-layer perceptron (MLP) neural network has been realized in this research in order to detect various 
transport modes. The reason neural network has been investigated in this research because neural network is 
flexible, easily scalable and most importantly, it can learn online and adapt well.  

In this research, five transport modes are considered: car, walk, bus, train and bike. Since car and taxi are 
difficult to distinguish especially in near-real time hence car and taxi are both grouped as car for time being. 
However in future car and taxi can be treated separately depending on the availability of contextual information. 
Similarly, train or light rail and subway are grouped as train. A multi-layer perceptron (MLP) neural network has 
been modelled using Weka, a Java based open source machine learning package. Since the time window is a critical 
factor in near-real time mode detection hence different temporal window size has been evaluated such as 120 sec, 
180 sec, 240 sec, 300 sec and 600 sec based on subjective judgement. Experiments are also set up using only 
kinematic information and spatial information along with kinematics. For kinematic information eight movement 
attributes over a given temporal window have been considered since different modalities may exhibit different 
movement behaviour (Table 1). When kinematic attributes are used a 8-6-5 MLP was formed, and using spatial and 
kinematic attributes a 16-10-5 MLP model was used to detect different transport modes (Fig. 3). A popular 
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approach to select number of hidden nodes can be calculated as the closest integer value of [(input nodes+target 
nodes)/2]. Hence we selected 6 hidden nodes when input nodes are 8 and output nodes are 5. Likewise, for 16 input 
nodes and 5 target nodes, number of hidden nodes are 10.  

Table 1: Kinematic attributes 

Attribute Relevance 
Average speed (avgSpeed) Central tendency of a temporal segment in order to 

approximate a characteristic movement behaviour Average acceleration (avgAccl) 
Variance of speed (varSpeed) Spread of movement behaviour over the temporal 

window Variance of acceleration (varAccl) 
Maximum speed (maxSpeed) Upper bound of respective movement attributes within 

a given temporal window Maximum acceleration (maxAccl) 
Minimum speed (minSpeed) Lower bound of respective movement attributes within 

a given temporal window Minimum acceleration (minAccl) 

For spatial information eight spatial attributes including proximity to route network and different POIs over a given 
temporal window have been considered (Table 2). 

Table 2: Spatial attributes 

Attribute Relevance 
Average road proximity (avgRoadProx) Central tendency of proximity distribution over a 

given temporal window Average railway proximity (avgTrainProx) 
Variance of road proximity (varRoadProx) Spread of proximity distribution over a given temporal 

window Variance of railway proximity (varTrainProx) 
Relevance score for bus stop (busRel) Relevance measure of each relevant cluster from a 

given POI based on spatial proximity  Relevance score for train stop (trainRel) 
Relevance score for traffic stop (trafficRel) 
Relevance for parking lot and car wash (plcwRel) 

In order to study the performance of neural network through different training strategies, the model has been 
realized through N-fold cross-validation (where N=10). Table 3 shows number of instances used in N-fold cross- 
validation for different time window. 

Table 3: Time window vs instances 

Time window Instances 
120 15060 
180 13735 
240 12600 
300 11488 
480 9166 
600 7835 

 

5 Experimental results 

The performance of the model has been evaluated on five modes against different temporal window size using 
filtered walking speeds in order to compare with the existing works that used positional uncertainty information. An 
experiment has also been carried out without filtering walking speeds assuming in real time people may run instead 
of walking during mode transfer or GPS positions can be subjected to various errors leading to walking speed 
greater than any threshold value.  

The model was trained and tested using 10-fold cross-validation. In the first stage accuracy was tested against 
different temporal window sizes on trajectories where walking speeds are filtered. In the second stage accuracy was 
evaluated without filtering the trajectories in order to simulate real time mode detection. In both cases, the model 
shows that using spatial information can easily outperform the accuracy produced by only kinematics attributes. 
The reason behind this is that all transport modes may move slowly during traffic congestion or bad weather which 
leads to mode ambiguities. Figure 4 shows how mode ambiguity may arise using only acceleration measure. In this 
figure different modes may not be distinguished from their acceleration since they are clustered around the similar 
acceleration measures (Fig. 4). 
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Figure 3: A 16-10-5 MLP neural network based mode detection model. L1 indicates input layer, L2 indicates 
hidden layer and L3 indicates output layer. 

But when spatial relevance, in particular proximity to route network or given POI relevance, is considered the 
mode has been detected more accurately. In figure 5, the bus mode shows high bus stop relevance and hence bus 
mode is more prominent from other modes. However since walking can take place anywhere over the footpath near 
the bus stop hence, some of the walking instances have shown high bus stop relevance owing to false positives (Fig. 
5). The rational is, a car can travel like a train with similar speed and acceleration but the underlying route network 
would be different and POI relevance will also vary accordingly. 

 

 

 

 

 

 

 

Figure 4: Mode ambiguities from similar acceleration distribution. Class map: {blue: walk; red: car; green: bus; 
indigo: train; brown: bike}. X-axis: modes; Y-axis: acceleration value  

From the accuracy measures it is clear that there is a trade-off between temporal window size and mode 
detection accuracy. Selecting an optimal window size is context dependent. Overall 300 sec seem to an optimal 
window size for near-real time mode detection as the accuracy starts increasing gradually from this point and the 
accuracy measure is more than 82% for unfiltered trajectories and 86% for filtered trajectories (Fig. 6; Fig. 7).  

 

 

 

 

 

 

 

 

Figure 5: Bus stop relevance vs different modes. Class map: {blue: walk; red: car; green: train; indigo: bus; brown: 
bike}; X-axis: modes and Y-axis: bus relevance 
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Figure 6: Accuracy measure with filtered walking speed             Figure 7: Accuracy without filtered walking speed              

The methodology was also tested on car, walk and train assuming these modes will show quite distinct behaviour 
in terms spatial relevance as well as kinematic relevance. When spatial information was used accuracy reached 95% 
for filtered trajectories and 93% for unfiltered trajectories (Fig. 9). A spatial visualization is also presented to show 
the classification accuracy for three modes (train, car and walk). The diagonals are true positives and off-diagonals 
are false positives (Fig. 8). The figure shows the model can give a high accuracy and less type I and type II error for 
walking. However due to similar kinematic behaviour some of the car instances are mostly classified as walk owing 
to type I error. Likewise train instances are sometimes classified as walk and car.  

In order to compare state-of-the-art approaches that used only kinematic information, another test was conducted 
within temporal window of 300 sec, on car, bus and walk modes. It was found there was a small difference in 
estimated accuracy by using only kinematics inputs, and kinematics and spatial inputs together. However using 
spatial information and kinematics, the accuracy is certainly more than that of using kinematics alone. The small 
difference of accuracy can be justified as the bus network has not been used in this research; only the road network 
was used. A car or bus both can travel on road network and hence it was not easy to distinguish between car and 
bus. But there is a good chance that car and bus can be easily distinguished by using a bus network.  Using spatial 
information average accuracy for car, walk and bus was achieved 81.24 % whereas without spatial information the 
accuracy was 79.50 %. 

We also compared the performance of our MLP neural network with some of the well-studied machine learning 
algorithms. The result shows a MLP neural network outperforms other approach. Interestingly the accuracy of a 
MLP neural network increases as the size of the time window increases whereas other approaches show saturation 
over growing time window. This clearly shows the ability of a MLP to learn and adapt well in near-real time as 
more instances come in with fine and varied state behaviour of different modes (Table 4).  

 

 

 

 

 

 

Figure 8: Classification accuracy visualization. Class map: {blue: walk; red: car; green: train}; X-axis indicates 
actual modes and Y-axis indicates predicted modes 

 

6 Discussions 

From the result it is evident that spatial information can improve mode detection accuracy significantly, especially 
in near-real time. In near-real time detecting different transport modes is challenging from their movement 
attributes only, as the queries are issued for a very short interval and different modes may have similar movement 
behaviour. Earlier literature did not consider minimum speed and acceleration as all of them are offline and based 
on segmenting the entire trajectory in each modal segment that normally starts with zero speed and zero 
acceleration (Gonzalez et al., 2010). 
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Figure 9: Accuracy measure for three modes 

Table 4: Accuracy measures for different classifiers against different time window 

Time window (sec) SVM (%) MLP Neural 
network (%) 

Logistic regression 
(%) 

RBF Network (%) 

120 59.10 74.08 68.51 58.77 
180 60.65 79.65 70.32 60.37 
240 64.15 79.34 72.51 64.15 
300 61.78 82.55 75.20 66.89 
480 66.84 86.63 77.86 68.95 
600 68.35 87.05 77.76 66.87 

 

But in real time since a query can come at any time and the given mode need not to start or finish from stationary 
state within the given temporal window, hence minimum and maximum bounds, central tendency and variance of 
speed and acceleration distribution over the given time window have been considered. In order to supplement the 
mode detection accuracy various spatial information have been considered assuming the fact that each mode shows 
distinct spatial behaviour, such as bus and car will travel along the roadway; likewise train will travel on train 
network only. However, in this research the bus network of Beijing was not used, instead the entire road network 
consisting of the bus network and roads together was used. In order to distinguish different modes especially bike, 
car and bus different POI relevance has been considered such as bus stop for bus, traffic for bike, bus and car, car 
wash and parking lot for car. However, it has been observed that when the time window is short it cannot capture 
distinct behaviour and thus leads to ambiguities especially for car, bus, walk and bike that share similar movement 
and spatial relevance at some instants.  

From individual classification accuracy for five modes it has been observed walking has the highest false 
positives as different modes can be slowed down and behave like walking. At the same time this can also give false 
negative as people can walk on the road, near the bus stop, traffic signal or parking lot and hence respective POI 
relevance may be higher for a walking segment. That gives a false impression of other modes corresponding to the 
respective spatial relevance. 

There is also a trade-off between the temporal window and the accuracy that raises questions of selecting the 
proper time window for a given location based service. Say for emergency services, the amount of response time 
required is less than the time required by an urban planner or traffic engineer to understand travel demand from 
people’s mode choice or location based context-aware advertisements. This also poses challenges of selecting a 
proper and optimal window size to detect transport modes as accurately as possible. However from this study it is 
evident that the window size bears an inverse relationship with the accuracy measure, assuming the mode is not 
changed within the temporal window.    

Earlier work using neural network only performed offline analysis considering only three modes. The highest 
reported accuracy achieved was 91% (Gonzalez et al., 2010). However our approach capable of real time estimation 
that shows accuracy can reach up to 95% or more when using the road network along with other relevant 
information for three modes, and 87% when using five modes over 600 sec. However the accuracy depends on 
number of modes, their spatial relevance and the size of the temporal window. The accuracy also depends on the 
clustering algorithm used to estimate POI relevance over a given temporal window. 
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However, at this moment this approach is limited by detecting only a single mode within a given temporal 
window. But in real time there is a possibility that a quick transfer can take place from one mode to another mode 
followed by walking. This creates composite mode segments within a same temporal window which is difficult to 
detect using only GPS signals (Das et al., 2014). In order to distinguish two different modes with in a composite 
segment different inertial sensor information along with GPS is required that can distinctly detect presence of two 
different modal class within a given temporal segment from their characteristic kinematic signatures. 

7 Conclusions 

Detecting transport modes in near-real time is an emerging research area. This is particularly useful in various 
context-aware location based services and understanding urban dynamics in near-real time. In order to detect 
various transport modes Microsoft’s GeoLife dataset has been used in this research. In this research a simulated 
near-real time mode detection classification framework has been developed using a neural network based classifier. 
We have evaluated the performance of neural network in detecting various modes, since neural networks can adjust 
well with different input and output parameters online. Neural networks also offer flexibility and scalability in 
terms of learning ability and accommodating new information from the external world. In this paper, we 
particularly focused on how real time mode detection accuracy varies with varying temporal window size. This has 
been figured out within a small temporal window all the transport modes show similar kinematic behaviour. In 
order to detect different modes more accurately we used various spatial information such as route network 
information and POI information. 

We tested our hypothesis on three sets of modes: two sets containing three modes and one set containing five 
modes). Our result shows incorporating spatial information can improve mode detection accuracy. We achieved 
accuracy 95% accuracy on three modes only and 93% accuracy on all five modes. The result also shows a MLP 
neural network can outperform other machine learning algorithms with growing temporal window size. 

Future work will look into distinguishing a composite segment within a given temporal window where a quick 
transfer has occurred. In order to explore different modes within a temporal segment, different sensor signals such 
as accelerometer, proximity sensor, gyroscope information are required that can give characteristic movement 
behaviour of each modes at a very fine granularity. In this research while forming the clusters we only considered 
spatial relevance of each cluster with respect to given POI. We did not consider temporal relevance as temporal 
window may vary from as small as 120 sec to as high as 600 sec or more. During smaller temporal window, it is 
difficult to set a temporal relevance or dwell time. Future research will address spatio-temporal issues while 
developing potential clusters within a given temporal segment to calculate spatio-temporal relevance for each mode. 
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