
Report on the Third Workshop on Verification
of Model Transformations (VOLT 2014)

Moussa Amrani1, Eugene Syriani2, Manuel Wimmer3, Robert Bill3,
Martin Gogolla4, Frank Hermann5, and Kevin Lano6

1 University of Namur, Belgium
Moussa.Amrani@unamur.be
2 University of Montreal, Canada
syriani@iro.umontreal.ca

3 Vienna University of Technology, Austria
{wimmer,bill}@big.tuwien.ac.at

4 University of Bremen, Germany
gogolla@informatik.uni-bremen.de

5 Université du Luxembourg, Luxembourg
frank.hermann@uni.lu
6 King’s College London, UK
kevin.lano@kcl.ac.uk

Abstract. This report is a summary of the Third International Workshop on the
Verification Of modeL Transformation (VOLT 2014) held at the STAF 2014 con-
ference. The workshop brought together researchers from model-driven engineer-
ing, in particular from model transformation language engineering and model-
based verification. The major aims of VOLT 2014 were to identify motivations,
problems, and requirements for model transformation verification as well as to
present different proposals supporting different kinds of model transformations
and verification techniques.

1 Introduction

Model transformations are everywhere in software development, implicitly or explicitly.
They became first-class citizens with the advent of Model-Driven Engineering (MDE).
Despite some recent activity in the field, the work on the verification of model trans-
formations remains scattered and a clear perspective on the subject is still not in sight.
Furthermore, current model transformation tools mostly lack verification techniques to
support such activities.

VOLT 2014 was a full-day workshop that promoted discussions between theoreti-
cians and practitioners from academy and industry, making it a dedicated forum to clas-
sify, discuss, propose, and advance verification techniques dedicated to model transfor-
mations. The presenters contributed with various approaches for modelling and trans-
formation languages, with as special focus this year on the OMG standard OCL [12],
but also on domain completeness for graph-based transformations and the verification
of language-independent transformations.



This edition of the workshop was co-located with the STAF (Software Technologies:
Applications and Foundations) series of conferences in York, UK on July, 21th, 2014.
Traditionally, the workshop includes a large timeslot for discussions on topics inspired
by the presentations of the accepted papers, and this edition is no exception. This report
documents the various presentations, as well as the enthusiastic and intense discussions
that composed the afternoon moderated sessions. In Section 2, we recall the history of
the workshop, showing that despite its young age, VOLT is a key venue in the field of
Verification & Validation in MDE. Section 3 summarises the presentation and individ-
ual discussions around each paper; while Section 4 documents the discussions around
the chosen topics for the afternoon discussion forum, namely model transformation
verification in general and about property languages for model transformations in par-
ticular. Finally conclusions are presented in Section 4 with an outlook on future efforts
to further establish and advance the model transformation verification community.

2 Workshop History and Organisation

Model-Driven Engineering (MDE) gained enough maturity for allowing software ex-
perts to easily define metamodels and Domain-Specific Languages (DSL), and thus
offer tool-supported assistance for editing models, producing associated code, extract-
ing partial views of systems, and so on. Beyond simply documenting processes or early
designs, MDE is nowadays an effective way for supporting the development of software-
intensive systems that can be deployed in different contexts such as in-house manage-
ment systems, configurable software, or embedded and critical systems.

Many software-intensive industries like automotive, avionics, aerospace or tele-
phony, have nowadays standardised the use of MDE and incorporated models and model
transformation in their development, inducing a significant gain in terms of manufac-
turing costs and a more responsive time-to-market delay. It seems natural to study tech-
niques to raise the level of confidence in the deployment of model transformations to
ensure their correctness depending on their usage context, in order to favour a wider
adoption of MDE in real-life and mainstream projects, while at the same time solidify-
ing the whole area of research in MDE.

Regularly, top-tier conferences such as the International Conference on Model Driven
Engineering Languages and Systems (MODELS) or the International Conference on
Model Transformation (ICMT) accept papers related to that matter, and welcome work-
shops dedicated to the analysis of model transformations or more broadly the study of
their foundations. However, no dedicated venue exists for tackling the challenges raised
by such software-intensive industries that need strong insurance that their software will
not fail.

The specific contribution of VOLT is to propose an open discussion space that com-
bines solid theoretical work with practical on-the-field experience in (formal) verifica-
tion of model transformations. During the last three editions, the Call for Papers invited
contributions to the following topics:

– Application of formal verification, theorem proving, model checking or testing to
model transformation;

– Verification techniques dedicated to model transformation;



– Taxonomies of techniques for model transformation verification;
– Properties relevant to specific model transformations;
– Verification of model transformations expressed in languages such as: ATL, QVT,

TGG, VIATRA, Kermeta, Epsilon, etc.
– Verification of domain-specific model transformations [9], in contrast to general-

purpose transformations;
– Case studies, comparisons, and experience reports;
– Tools and automation.

After three editions, the workshop is still young but consistently attracted new partici-
pants every year, and stimulated the field of model transformation verification by having
each time a dedicated forum for discussion, experience exchange, and feedback from
industry. The three editions were organised as follows:

VOLT 2012 was co-located with the International Conference on Software Testing,
Verification and Validation (ICST) in Montreal, Canada and co-organised by Levi
Lúcio, Eugene Syriani, and Stephan Weißleder. The workshop started with a keynote
given by Pieter Mosterman (Mathworks) on Model Transformations and Testing
in Model-Based Design of Cyber-Physical Systems. The high-quality papers pre-
sented in plenary sessions attracted over 30 attendants. The two parallel discussion
sessions topics were inspired by the reactions of the audience to the presented ma-
terial, and addressed in particular the bridges with “traditional” verification tech-
niques, the place of requirement elicitation and quality criteria for influencing the
verification process, and the variety of properties to handle.

VOLT 2013 was co-located with the Software Technologies: Applications and Founda-
tions (STAF) conference series in Budapest, Hungary and co-organised by Moussa
Amrani, Leen Lambers, Eugene Syriani, and Manuel Wimmer. Dániel Várro (Bu-
dapest University of Technology and Economics) gave a keynote on V&V chal-
lenges for model queries and transformations in design tools for avionics. The
event attracted over 20 attendants during the day of the workshop, especially in
the afternoon where four groups formed to discuss topics related to the categori-
sation of verification approaches, the techniques for testing and/or verifying model
transformation properties and their impact in industry, and the gap between domain
representation and verification representation.

VOLT 2014 was co-organised by Moussa Amrani, Eugene Syriani, and Manuel Wim-
mer. The accepted papers and the afternoon discussion sessions are presented in
more details in the following sections.

3 Papers and Presentations

All accepted papers and the associated presentations are available on the workshop
website: http://volt2014.big.tuwien.ac.at.

http://volt2014.big.tuwien.ac.at


Checking Transformation Model Properties with a UML and OCL Model Validator,
by Martin Gogolla, Lars Hamann, Frank Hilken

This contribution discussed model transformations in the form of transformation mod-
els which connect source and target metamodels. A transformation model is a direction-
neutral transformation characterization that specifies in a descriptive way by means of
OCL [12] invariants the [source,target] pairs constituting the transformation. Transfor-
mation models are analyzed with (what we call) a UML and OCL model validator on the
basis of an implementation of relational logic on top of Kodkod. Within this approach
it is feasible to prove transformation model consistency, i.e., to automatically construct
a valid metamodel instance. Transformation model consistency is discussed in various
flavours, i.e., (a) weak consistency, (b) class instantiability, and (c) class and association
instantiability. Certain properties implied by the transformation model, e.g., whether a
particular property is preserved by the transformation, can be inspected as well.

The discussion at the workshop brought up (among other interesting questions) the
following topics: (a) Transformation computation: The model validator may be used to
effectively compute the transformation that is determined by the transformation model;
it is possible to specify a partial object diagram that represents, for example, the source
part of a [source,target] pair; the model validator can then complete the partial object
diagram, if possible, and present the target part of the model transformation again in
form of an object diagram; this also works in the opposite direction from the target to
the source; (b) Used OCL features: Transformation models and their properties typically
employ only a subset of full OCL; in particular patterns involving nested occurrences of
forAll and exists are frequently used; depending on the nature of the underlying source
and target metamodel, the closure operation may be needed in connection with reflexive
associations; (c) Nature of analyzable transformation properties: Any property that can
be formulated as an OCL invariant and that can be added to the current transformation
model can be checked; the added invariant is then negated, added to the present invari-
ants and an adequate configuration must be prepared by the developer for the model
validator; if the model validator does not find a valid object diagram under the given
configuration for the given invariants and the added negated invariant, it is assumed that
the newly introduced invariant is a consequence from the stated invariants.

Language-Independent Model Transformation Verification, by Kevin Lano,
Shekoufeh Kolahdouz Rahimi, Tony Clark

We present work on establishing a general verification framework for model transfor-
mations which is able to represent and analyse transformations in a range of model
transformation languages. Specifications in different transformation languages are rep-
resented in a single transformation metamodel formalism. From this representation
mappings to semantic models in specific verification formalisms, such as theorem provers
and satisfaction checkers, can be defined.

This approach means that only one semantic mapping needs to be defined and veri-
fied for each target formalism, rather than semantic maps for each different transforma-
tion language and target formalism. The approach is illustrated by applying it to ATL.



Null considered harmful (for transformation verification), by Kevin Lano

OCL [12] is the official textual specification language used with the UML, and it is also
widely used as a constraint language within model transformation languages, such as
ATL, QVT, ETL, Kermeta and others to define transformation rules. The OCL standard
defines two special values which may be used in specifications, null and invalid: null
represents the absence of a valid value, in contrast to invalid, which represents an
invalid evaluation.

This paper identifies problems with use of explicit null and invalid values in OCL,
when OCL is used as part of a transformation specification language. The paper pro-
poses an alternative restricted use of OCL which avoids these problems and facilitates
transformation verification. Verification techniques are also described for a transforma-
tion language, UML-RSDS, based on this approach.

MocOCL: A Model Checker for CTL-Extended OCL Specifications, by Sebastian
Gabmeyer, Robert Bill, Petra Kaufmann, Martina Seidl

This contribution discussed MOCOCL7, a framework for the verification of CTL ex-
tended Essential OCL constraints on behavioral models defined using graph transfor-
mations specified by the tool HENSHIN and an initial Ecore state. Valid parts of CTL
formulae like “always globally” are syntactically treated like regular boolean expres-
sions requiring boolean parameters.

MOCOCL consists of a web interface for putting in metamodel, behavioral specifi-
cation, initial model and the expression to be verified and an interspecting the result and
an iterative, explicit state model checker integrated into the Xtext OCL Engine calculat-
ing the expression result and a cause, a generalized form of a counterexample providing
all information sufficient to explain the result. The cause is visualized by an expression
tree displaying subexpressions and information about states and transitions as subtrees,
the leaf nodes being single values or objects. The (sub)statespace corresponding to the
cause of a subexpression of a CTL operation is visualized as well. A click on a state
gives the model for the state, a click on a transition gives displayed the two states in sto-
ryboard notation. Objects and values occurring in the cause are highlighted. The paper
mainly discusses the visual interface and general use of the tool.

Since the tool has not been used for industrial-sized examples, yet, a main topic
of discussion was performance, especially (a) the state explosion problem typically
occurring in model checkers which could be reduced by the use of symbolic model
checking and/or differential states like in GROOVE and (b) that parallelization efforts
could provide some speedup, both by parallelizing graph transformation applications
and the model checking process in general.

Towards Domain Completeness for Model Transformations Based on Triple Graph
Grammars, by Nico Nachtigall, Frank Hermann, Benjamin Braatz, Thomas Engel

This presentation discussed the property of domain completeness for model transforma-
tions, which states that the model transformation can be executed for each valid input

7 Available at http://modelevolution.org/prototypes/mococl with a web demo for a Pacman ex-
ample available on http://modelevolution.org/mococl

http://modelevolution.org/prototypes/mococl
http://modelevolution.org/mococl


model. The main challenge here for analysing and ensuring this property is to bridge the
gap between the specification formalism used for defining the source domain language
and the specification formalism or technique used to define the model transformation.

The presentation focussed on model transformations that are based on triple graph
grammars (TGGs) [1, 8, 13], which are a well-established concept for the specification
and execution of bidirectional model transformations within model driven software en-
gineering. Their main advantage is an automatic generation of operational rules for
forward and backward model transformations, which simplifies specification and en-
hances usability as well as consistency. Several formal results for ensuring correctness
and completeness have been published [4, 5, 7]. However, the result for ensuring com-
pleteness requires that the source domain language is a subset of the source component
of the language generated by the TGG. Up to now, checking this condition was left to
the domain expert.

In practical scenarios, the source and target languages are given independently from
the TGG. In particular, this is the case for an industrial application for satellite systems
using the tool HenshinTGG8 [6]. As main result, we provided a general method for
analysing and showing that the source domain language LS is included in the language
L(TGGS) that is generated by the source rules of the TGG. This provides the first of
two components for verifying domain completeness.

Since the presented method does not yet fully bridge the described gap, the work-
shop discussion addressed questions on how effective and usable the approach already is
and how it can be adapted to show full domain completeness. One solution for showing
the remaining step for analysing full domain completeness is to show that L(TGGS)
is contained in L(TGG)S, i.e., that the triple rules imply the same restriction on the
source domain as it is the case for the derived source rules of the TGG. This would
allow us to apply the general result of TGGs that ensure completeness for L(TGG)S.

4 Discussions

The discussion session was structured as follows: first, we aimed at determining the
current tool support of the formalisms used in the talks given during the workshop; sec-
ond, we outlined a potential wish list for property languages for model transformations
based on the results of the first discussion. This section summarizes each discussion.

4.1 Formalisms for Model Transformation Property Languages

We concluded that currently, two formalisms are mainly used for defining structural as
well as temporal properties of model transformations, a fact that was also reflected by
the presentations of the workshop:

Structural Properties are commonly expressed with either graph patterns or using
the Object Constraint Language (OCL). It seems that each formalism corresponds
to the underlying constructs for designing models (either graph-based or MOF-like
models, respectively), and reflects the practice and the familiarity of modelers.

8 Available at http://de-tu-berlin-tfs.github.io/Henshin-Editor/

http://de-tu-berlin-tfs.github.io/Henshin-Editor/


Temporal Properties exist in both styles as extensions in the literature to go beyond
structural properties [11, 16].

Kevin Lano’s paper on language-independent model transformation verification raised
an interesting discussion about which intermediate language could act as a pivot model
to bridge the current formalisms to formal methods and accompanying tool support.

Both types of property languages could be used to catch properties of interest for in-
place and out-place transformations [10]. However, as noted by the audience, upcoming
transformation paradigms such as streaming transformations [3] or approximate trans-
formations [15] may challenge the current state-of-the-art, thus requiring to build new
property languages more suited to these kinds of transformations. As a result, a general
theory may be required to derive a mapping between property kinds and transformation
kinds, e.g., it is not clear if temporal properties are of particular purpose for out-place
transformations, while they seem perfectly applicable for in-place transformations.

Based on the discussions, the participants concluded that we are still in the explo-
ration phase concerning property languages for model transformations. Therefore, more
empirical studies are needed to compare, classify, and potentially (partially) unify the
different approaches currently available.

4.2 Wish List for Property Languages

We dedicated the second part of the discussion at exploring two research questions: (i)
what kind of properties transformation engineers may like to specify? (ii) Which future
can we foresee for property languages?

One major distinction made by the audience is the difference between white-box
and black-box properties: the black-box approach only reasons about the input/output
models pairs, while the white-box approach allows to reason about the state/transition
systems induced by the application of the transformation rules.

Another important challenge for property languages is to find a acceptable balance
between reusing well-known languages such as modelling standards, while reaching
the performances of current mature mainstream model-checking tools available from
the Computer-Aided Verification community. This challenge seems impossible to reach
because it seems contradictory, even if dedicated transformations between transforma-
tion languages as well as the associated property languages towards the input languages
of such tools may seems largely feasible. Furthermore, what has to be explored in this
respect are the current boundaries of model transformation verification approaches con-
cerning the impact of property specifications and transformation implementations on
the memory consumption and execution time of verification approaches.

Another topic of discussion was the different ways of addressing non-functional
properties of models and/or transformations. Currently, there is no standard way to rep-
resent model or transformation traces, because the abstraction level into which traces
are expressed may highly depend on the verification purpose. One interesting approach
allowing to define only the necessary traces is presented in [14]: it builds on the idea
of observers that record certain information during transformations. Having more gen-
eralized observers which may be reusable in different transformations but which are



specific for certain properties is considered as a promising research line to enable spe-
cific verification properties with keeping the trace models minimal. To summarise, the
question about the relationship between property languages and trace languages has to
be explored further in the context of model transformation verification.

Finally, we discussed about transformations that may be used for Models@Runtime
which may have quite strict requirements on performance and timing. In this context,
the question came up if probabilistic properties may be of interest for model transfor-
mation verification as well compared to the state-of-the-art of having flat properties.

5 Conclusion

At the end of the workshop many participants agreed that there is a need for further
working on the foundations as well as application of model transformation verifica-
tion. A future research line for an upcoming VOLT workshop may include to propose a
common model verification example to compare different model transformation verifi-
cation approaches; similar as it has been done in 2005 to compare different approaches
for implementing model transformations [2].

Acknowledgement

The authors would like to thank all the authors and participants of VOLT 2014 for their
contributions.

References

1. Andy Schürr and Felix Klar. 15 Years of Triple Graph Grammars. In Proceedings of the 4th
International Conference on Graph Transformations (ICGT), volume 5214 of LNCS, pages
411–425. Springer, 2008.

2. J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. Model Transformations in Practice Workshop.
In Satellite Events at the MoDELS’05 Conference, pages 120–127, 2005.

3. J. S. Cuadrado and J. de Lara. Streaming model transformations: Scenarios, challenges and
initial solutions. In Proceedings of the 6th International Conference on the Theory and
Practice of Model Transformations (ICMT), volume 7909 of LNCS, pages 1–16. Springer,
2013.

4. Fernando Orejas, Esther Guerra, Juan de Lara, and Hartmut Ehrig. Correctness, Complete-
ness and Termination of Pattern-Based Model-to-Model Transformation. In Proceedings
of the International Conference on Algebra and Coalgebra in Computer Science (CALCO),
volume 5728 of LNCS, pages 383–397. Springer, 2009.

5. Frank Hermann, Hartmut Ehrig, Ulrike Golas, and Fernando Orejas. Formal analysis of
model transformations based on triple graph grammars. Mathematical Structures in Com-
puter Science, 24(4):1–57, 2014.

6. Frank Hermann, Susann Gottmann, Nico Nachtigall, Hartmut Ehrig, Benjamin Braatz, Gian-
luigi Morelli, Alain Pierre, Thomas Engel, and Claudia Ermel. Triple Graph Grammars in the
Large for Translating Satellite Procedures. In Proceedings of the 7th International Confer-
ence on Model Transformations (ICMT), number 8568 in LNCS, pages 122–137. Springer,
2014.



7. H. Giese, S. Hildebrandt, and L. Lambers. Bridging the gap between formal semantics and
implementation of triple graph grammars. Software & Systems Modeling, 13(1):273–299,
2014.

8. Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele Taentzer. Infor-
mation Preserving Bidirectional Model Transformations. In Proceedings of the 10th Inter-
national Conference on Fundamental Approaches to Software Engineering (FASE), volume
4422 of LNCS, pages 72–86. Springer, 2007.

9. T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer. Explicit Transformation
Modeling. In MODELS 2009 Workshops, volume 6002 of LNCS, pages 240–255. Springer,
2010.

10. T. Mens and P. Van Gorp. A Taxonomy Of Model Transformation. Electronic Notes in
Theoretical Computer Science (ENTCS), 152:125–142, 2006.

11. B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and M. Wimmer. Promobox:
A framework for generating domain-specific property languages. In Proceedings of the 7th
International Conference on Software Language Engineering (SLE), volume 8706 of LNCS,
pages 1–20. Springer, 2014.

12. Object Management Group. Object Constraint Language (OCL) Specification (Version 2.2,
formal/2010-02-01). Technical report, Object Management Group, 2010.

13. A. Schürr. Specification of graph translators with triple graph grammars. In Graph-Theoretic
Concepts in Computer Science, volume 903 of LNCS, pages 151–163. Springer, 1994.

14. J. Troya, J. E. Rivera, and A. Vallecillo. Simulating domain specific visual models by ob-
servation. In Proceedings of the Spring Simulation Multiconference (SpringSim), page 128.
SCS/ACM, 2010.

15. J. Troya, M. Wimmer, L. Burgueño, and A. Vallecillo. Towards approximate model trans-
formations. In Proceedings of the 3rd Workshop on the Analysis of Model Transformations
(AMT) @ MODELS, pages 1–10, 2014.

16. P. Ziemann and M. Gogolla. OCL extended with temporal logic. In Proceedings of the
5th International Andrei Ershov Memorial Conference - Perspectives of Systems Informatics
(PSI), volume 2890 of LNCS, pages 351–357. Springer, 2003.


	Report on the Third Workshop on Verification of Model Transformations (Volt 2014)

