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Abstract. The analysis of model transformations is a challenging re-
search area within model driven engineering. Triple graph grammars
(TGGs) have been applied in various transformation scenarios and their
formal foundation has been a vital ground for general results concerning
notions of correctness and completeness.
This paper addresses existing gaps between practical scenarios and the
formal results of TGGs concerning the notion of completeness. Since the
source domain language of a model transformation is usually specified in-
dependently from the TGG, we use the notion of domain completeness,
which requires that the model transformation has to provide a corre-
sponding target model for each model of the source domain language.
As main result, we provide a general method for showing that the source
domain language is included in the language that is generated by the
source rules of the TGG. This provides the first of two components for
verifying domain completeness. The running example is the well studied
object-relational mapping.

Keywords: model transformation, completeness, graph grammars, con-
straints

1 Introduction

Triple graph grammars (TGGs) [1,2,3] are a well-established concept for the
specification and execution of bidirectional model transformations within model
driven software engineering. Their main advantage is an automatic generation
of operational rules for forward and backward model transformations, which
simplifies specification and enhances usability as well as consistency. Several
formal results for analysing general properties of model transformations based
on TGGs have been developed. In present work [4], the notion of completeness
and correctness of model transformations via TGGs is based on the language
L(TGG) that is induced by the TGG itself.

However, in practical scenarios, the source and target languages are given
independently from the TGG. We consider the general case where the source
domain language LS = L(TGS , CS) is given by a source type graph TGS and
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a set of source constraints CS . The TGG generates the language L(TGG)S of
source models. In this more general case, we may observe that LS 6= L(TGG)S.
This is not problematic, as long as we can still ensure completeness with respect
to LS , which we call domain-completeness in this paper.

Definition 1 (Domain Completeness). A model transformation MT with
source language LS is called domain complete, if it generates a target model MT

for each source model MS ∈ LS. 4

The challenge for showing domain completeness is to verify that LS ⊆
L(TGG)S. The main contribution of this paper provides the first of two steps
for showing this property. We provide a general technique for verifying that a
language defined by a type graph and constraints is contained in a language that
is defined using a non-deleting graph grammar. Since, TGGs consist of non-
deleting rules only, we can instantiate this result for showing that the source
domain language is contained in the language that is generated by the source
rules of the TGG, i.e. LS ⊆ L(TGGS). The second step is then to show that
L(TGGS) ⊆ L(TGG)S using the constraints of LS .

In Sec. 2, we present the general scenario and framework for proving domain
completeness and Sec. 3 presents our method and main result for showing that
a language defined by constraints is contained in a language defined by a non-
deleting grammar. Sec. 4 discusses related work and Sec. 5 summarises the main
results and describes aspects of future work.

2 General Framework

In the general case of model transformations MT : LS V LT between domain
specific languages (DSLs) LS and LT , we cannot assume that the languages are
specified with graph grammars. In many application scenarios, DSLs are specified
by a meta model and OCL constraints [5]. In the theory of graph transformation
systems, meta models correspond to type graphs and constraints to nested graph
constraints [6]. Hence, we generally assume that the source language is given by
LS = (TGS , CS) with type graph TGS and constraints CS .

Graph constraints and grammars allow the definition of graph languages
in a declarative, or respectively, procedural manner. In this paper, we use the
general notion of M-adhesive transformation systems [7,8] as basis for plain
graph grammars GG and triple graph grammars TGG .

L
(PO)m ��

K
(PO)

oo //

��

R

��

G Doo // H

A transformation rule p is given by a span p =
(L ← K → R) of injective graph-morphisms (mappings
for nodes and edges) with left hand side L and right hand
side R. A transformation step G =

p,m
==⇒ H via match mor-

phism m : L→ G is given by two pushouts as depicted on the right. Intuitively,
H is obtained by removing from G the parts in L \ K at m(L) and adding

R \K. In the case of a non-deleting rule p = (L ←id−− L → R) the rule is simply
p = (L→ R) and the first pushout is ommitted.
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Fig. 1. Domain meta-model (TGS) and triple type graph (TGS ← TGC → TGT )

A triple graph G = (GS ←sG−− GC −tG−→ GT) is an integrated model consisting
of a source graph GS, a target graph GT and explicit correspondences given by
correspondence graph GC together with graph morphisms sG : GC → GS and
tG : GC → GT.

As running example, we use a variant of the well-known model transformation
from class diagrams to relational database models (CD2RDBM) [9,2].

Example 2 (Meta model and triple type graph). Fig. 1 depicts the meta-model
TGS of the source language and the type graph TGS ← TGC → TGT of
the TGG. Class diagrams contain classes (Class) with Attributes (Attribute) and
relational database models contain corresponding tables (Table) with columns
(Column). Abstract node types (label {abstract}) may not appear in instances
and multiplicity constraints on edge types type and attrs require that each
Attribute has exactly one type and is contained in exactly one Class. 4

Formally, we use graph constraints in the notion of (nested) conditions ac-
cording to [6] providing the concepts for both, graph constraints and application
conditions for rules. Conditions consist of formulas in first order logic over mor-
phisms (implications) P → C with premise graph P and conclusion graph C.

Remark 3 (Matches and instances of constraints Inst(C)). In the context of
model transformations, rules should be applied along match morphisms that
do not identify structures of graphs, but which may identify attribute expres-
sions to identical values. This class of morphisms is called almost injective [10].
Moreover, matches may map nodes to nodes with a more concrete type (type
refinement) according to the inheritance relation in the type graph (cf. clan mor-
phisms [8,11]). The same situation arises for matches of constraints. Therefore,
we use the concept of a schema constraint, which interprets a constraint c as
the disjunction of its possible instances Inst(c) which may occur in a graph. The
instances Inst(C) of conditions C subsume all possible type refinements and
merges of data values along match morphism from conditions in C. 4
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Fig. 2. Some domain constraints CS of domain language LS
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Fig. 3. Triple rules of TGG for CD2RDBM transformation

Example 4 (Graph Constraints). Three of nine domain constraints CS for LS are
depicted in Fig. 2. They subsume requirements concerning multiplicities (con-
straint 1 – each attribute must be contained in a class) and forbidden abstract
types (constraint 2 – each named element must be of type Class, Attribute or
PrimitiveType) given in Fig. 1. Additionally, each named element must have one
name (constraint 3). 4

GS

=
mS ��

GC

=

oo //

mC ��

GT

mT��

HS HCoo // HT

Triple graphs are related by triple graph mor-
phisms m = (mS,mC,mT) : G → H [1,2] con-
sisting of three graph morphisms that preserve the
associated correspondences (i.e., the diagrams on
the right commute). A triple rule tr is given by a morphism (tr : L→ R). Thus,
it is non-deleting and specifies how a given consistently integrated model can
be extended simultaneously on all three components yielding again a consis-
tently integrated model. Moreover, triple rules can be extended by application
conditions for restricting their application to specific matches [10].
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Example 5 (Triple Rules). The integrated models of our running example are
specified by the triple rules in Fig. 3. Rule 1 (C2T) creates a Class with its corre-
sponding Table having the same name and a column of type INT that stores the
primary key (edge pkey). Rule 2 (PT2CT) creates a primitive type (PrimitiveType)
with its mapped ColumnType. Rule 3 (A2C) creates an Attribute as a class mem-
ber (edge attrs) with its mapped Column that belongs to the corresponding Table
(edge cols). Rule 4 (TP2T) connects an Attribute with a PrimitiveType as type and
correspondingly, connects a Column via edge type with the ColumnType corre-
sponding to the PrimitiveType, but only, if no other ColumnType is already defined
for this Column (negative application condition NAC). Rule 5 (TC2T) connects
an Attribute with a class as type and correspondingly, connects a Column via
edge ref with the Table corresponding to the Class and via edge type with the
corresponding ColumnType determined by the primary key, but only, if no other
ColumnType is already defined for this Column. 4

A triple graph grammar TGG = (TG ,SG , P ) consists of a triple type graph
TG , a triple start graph SG and a set P of triple rules, and generates the triple
graph language of consistently integrated models L(TGG) ⊆ L(TG) with con-
sistent source and target languages L(TGG)S = {GS | (GS ← GC → GT) ∈
L(TGG)} and L(TGG)T = {GT | (GS ← GC → GT) ∈ L(TGG)}. The op-
erational rules of a TGG for forward and backward model transformations are
derived by an automatic construction [3,10]. The operational source rules TGGS

of a TGG are obtained by restricting the rules of P to their source components.

3 C-Extensions for Domain Completeness

This section presents the first of two parts for showing domain completeness
of a model transformation via TGGs, namely showing that a given source
language LS = L(TGS , CS) with constraints CS is contained in the lan-
guage L′

S = L(TGS ,TGGS) generated by the grammar of source rules TGGS

(LS ⊆ L′
S). Effectively, this means to provide a method for showing that all

graphs satisfying the constraints can be constructed via the source rules. We
introduce the general notion of C-extension completeness of a language for ver-
ifying language inclusions. This notion instantiates to the special case of non-
deleting grammars of source rules in our TGG scenario. C-extension complete-
ness is used to ensure that the constraints guarantee all language restrictions that
are induced by the grammar. We iterate over all minimal fragments of the meta
model and – when needed – extend them to show that they can be constructed
via the grammar. For full formal details we refer to [12].

Def. 6 defines the step-wise extension of a graph G via constraints C. A
constraint c is violation stable under embedding, if for any graph G that violates
c it holds that for any inclusion G ↪→ H also H violates c. Thus, we can neglect
graphs that do not fulfill violation stable constraints (namely C-inconsistent
graphs) when computing extensions.

The extension of a graph G via a set of constraints C is defined recursively
starting with the initial extension that contains graph G only. A new extension
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is derived from an existing extension E as follows: a) Let GE be a graph of E,
let c be an instance of a constraint in C without negations that may have one
or more conclusions connected by disjunctions and let m : P → GE be a match
from the premise P of c to GE . b) Compute all overlappings of the conclusions
of c with GE with respect to m. c) For each overlapping, a new graph G′

E is
potentially added to E leading to extension E′ by adding the non-overlapping

part of the conclusion to GE with extension step E =
extend(GE ,c)
========⇒ E′.

P p //

m
--

f

**
P ′ f ′ //

m′ ��
(1)

C

��

GE
// G′

E

Definition 6 (C-Extensions). Let G be a graph.
The extensions of G via morphism f and match
m form the set of graphs given by extend(G, f,m)
below. The extensions of G via a constraint c
and a match m form the set of graphs given by
extend(G, c,m) below. The extensions of G via a set of constraints C form the
set of sets of graphs given by Extensions(G,C) below.

– extend(GE , f,m) = {G′
E | (1) above is a pushout with f, f ′,m,m′, p ∈M,

m′ ◦ p = m, and f ′ ◦ p = f,
G′

E is not C-inconsistent}

– extend(GE , c,m) =
⋃

i∈I extend(GE , aci,m),m ∈M,
c ≡ ∨i∈I∃(aci : P → Ci, true)

– Extensions(G,C) = {{G}} ∪ {E′ | E′ = E \ {GE} ∪ extend(GE , c,m),
E ∈ Extensions(G,C), GE ∈ E, c ∈ Inst(C),
c ≡ ∨i∈I∃(aci : P → Ci, true),m : P → GE ∈M} 4

In practice, C-extensions are considered only up to isomorphism.

Example 7 (C-Extensions). Fig. 4 depicts some extensions Extensions(G,CS)
of graph G via constraints CS of Fig. 2. The extensions are obtained by the

following extension steps: {G} =
extend(G,c5)
========⇒ {G1} =

extend(G1,c5)
========⇒ {G1, G2};

{G1} =
extend(G1,c2)
========⇒ {G3, G4} =

extend(G3,c1)
∗

=========⇒ {G4, G5} =
extend(G4,c1)
========⇒

{G5, G6} =
extend(G5,c3)

∗

=========⇒ {G6, G7} =
extend(G6,c3)

∗

=========⇒ {G7, G8}. Constraint c5 is
similar to c1 and ensures that each attribute is of type Classifier. 4

For C-extension completeness it is sufficient to consider only the smallest
graphs that may occur in a language, namely effective atoms, and from which
more complex graphs can be composed. With Atoms(ATG) we denote the set
of those graphs that are typed over an attributed type graph ATG and that
are atomic in the sense that they can not be divided into smaller subgraphs.
Therefore, for attributed graphs the structure of each atom is given by either
a) an empty graph, or b) a node, or c) an edge with source and target nodes, or
d) an attribute edge with source and target.

With EAtoms(L) we denote the set of effective atoms of a language L that
is typed over ATG . Effective atoms are those atoms in Atoms(ATG) that may
occur in graphs of language L.
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Fig. 4. C-extensions of effective atom : Attribute

Example 8 (Effective Atom). The effective atoms with respect to the domain lan-
guage LS = L(TGS , CS) of the running example are those atoms in Atoms(TGS)
that fulfill the domain constraint 2 for abstract types in Fig. 2. Graphs G,G3

and G4 in Fig. 4 are effective atoms with respect to LS . Graph G1 is an atom
but not effective, since, Classifier is an abstract type. Graphs G2, G5, G6, G7 and
G8 are not atoms. 4

C-extension completeness (cf. Def. 9) of a language L typed over ATG with
respect to a set of constraints C states that for all effective atoms over ATG , an
extension via constraints C can be found that is in L.

Definition 9 (C-Extension Completeness). Let C be a set of constraints
typed over ATG. Then, a language L typed over ATG is called C-extension
complete, if ∀ a ∈ EAtoms(ATG) : ∃ S ∈ Extensions(a,C) : S ⊆ L. 4

Example 10 (C-Extension Completeness). We show CS-extension completeness
of language L(TGS ,TGGS) from Sec. 2 (cf. Fig. 1 for TGS , Fig. 2 for CS and
Fig. 3 for TGGS). For each effective atom over TGS an extension via constraints
CS must be found that is contained in language L(TGS ,TGGS). An extension
is contained in the language, if it can be constructed via the rules in TGGS . For
atom G in Fig. 4, the extension {G7, G8} ∈ Extensions(G,CS) can be found
via CS (cf. Ex. 7). The extension can be constructed by applying source rules
(1, 1, 3, 5) or (1, 2, 3, 4) successively leading to graphs G7 or G8, respectively. 4

In order to ensure termination, when checking C-extension completeness one
can define an upper bound for the graph size of input graphs for the model
transformation. In addition to C-extension completeness another property called
C-conflict-freeness of marking rules is neccessary in order to verify full language
inclusions L1 = L(TG,C) ⊆ L2 = L(TG ,GG) of languages L1 and L2. For
a non-deleting grammar, the set of marking rules contains for each rule r, a
marking rule r′. Whenever r creates an element x (node, edge or attribute), then
r′ preserves this element and updates its marker from F (false) to T (true).
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The conflict-freeness of the marking rules with respect to a language L
with constraints C is analysed by performing a critical pair analysis with AGG
[13]. Similarly to C-inconsistent graphs, a critical pair (K1 ⇐= O =⇒ K2) is C-
inconsistent if graph O violates a violation stable constraint of constraints C.
C-inconsistent critical pairs do not need to be analysed, since, there exists a vi-
olation stable constraint that forbids the critical pair and any of its embeddings
into larger contexts to be in L. This leads to the notion of C-conflict-freeness
of marking rules. The marking rules are C-conflict-free, if for each critical pair
K1 ⇐p1,o1

==== O =
p2,o2
===⇒ K2 that is not C-inconsistent with marking rules p1 and p2,

the rules and matches are the same (p1 = p2, o1 = o2).
The main result is stated by Thm. 11. Intuitively, the inclusion holds if each

graph G in L1 can be decomposed into its atoms G′ ⊆ G such that for each atom
G′ an extension E ⊆ G can be constructed via constraints C that is contained
in L2 and the composition of the extensions leads to graph G in L2 again by
applying the rules of grammar GG .

Theorem 11 (C-extension Completeness). Let L1 = L(ATG , C) be a
language typed over ATG and with constraints C and let language L2 =
L(ATG ,GG) be restricted by a non-deleting grammar GG = (ATG ,SG , P ) with
an empty start graph SG = ∅. If the marking rules m(GG) are C-conflict-free
and L2 is C-extension complete, then L1 ⊆ L2. 4

Proof (Idea). Let G ∈ L1. G can be decomposed into its atoms A = Atoms(G)
with G =

⋃
a∈A(a). C-extension completeness of L2 ensures that each atom a can

be extended via C to aE with aE ∈ L2 and aE ⊆ G. Therefore, aE can be created
via GG . By the equivalence of marking and transformation sequences, each aE
can be fully marked with true. The C-conflict freeness of the marking rules allows
to apply the Local-Church-Rosser-Theorem and we derive a marking sequence
that fully marks all extended atoms aE to true. Thus, there is a sequence via
GG that creates G (G ∈ L2). The full proof is given in [12]. ut

For the running example in Sec. 2 we successfully verified the language inclu-
sion L1 = L(TGS , CS) ⊆ L2 = L(TGS , TGGS). Language L2 is CS-extension
complete and the marking rules m(TGGS) are CS-conflict free. This means that
the domain constraints CS are strict enough to cover all language restrictions
that are induced by the source rules in TGGS .

4 Related Work

The formal construction and analysis of model transformations based on TGGs
has been started in [2] by analysing information preservation of bidirectional
model transformations and continued in a series of papers concerning correct-
ness and completeness, e.g. [14,15]. Pattern-based model-to-model transforma-
tions have been introduced in [16] and show a strong correspondence to TGGs.
Corresponding correctness and completeness and termination results have been
presented in [17]. The existing results, however, do not concern the actual source
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domain language, whose specification is independent from the TGG and given
by the application scenario for the model transformation. In [18], the notion of
total TGGs is introduced similar to the notion of domain completeness. A TGG
is total if it generates a valid target model for each valid source domain model
where validity is defined by conformance with meta-models and the satisfaction
of domain constraints. Totality is checked by analysing OCL invariants that must
hold for pairs of source and target models.

The concept of translation attributes [10] is applied in this paper for con-
structing marking rules that allowed us to apply the theory for critical pair anal-
ysis in the context of domain completeness. Translation attributes were inspired
by the translation algorithm in [3], which uses a set for storing the elements that
have been translated during a transformation.

In [2], a similar case study based on forward rules is presented, but without
using NACs. The grammar with NACs in this paper handles primary keys and
foreign keys in a more appropriate way and allows us to illustrate the formal
details and possible differences between the involved language types.

5 Conclusion & Discussion

In formal analysis of model transformations, completeness is certainly one of the
most important properties in many domains of model driven engineering. In this
paper, we described the general scenario in which model transformations based
on triple graph grammars (TGGs) are used. We introduced the notion of domain-
completeness, in order to be general enough to match practical scenarios, where
domain languages are specified by meta models and constraints. If the model
transformation does not concern the complete source domain, we assume that
the source language LS specifies the relevant part.

In most previous results it was required that the source domain language is
contained in the language that is derived by restricting the integrated language
generated by the TGG to the source component. This paper closes one half of
this gap by providing a method for showing that the source domain language is
contained in the language that is generated by the source rules of the TGG. For
this purpose, we provided general results for graph transformation systems and
extended the existing formal results for TGGs.

The restriction of the results to non-deleting grammars seems to be very strict
but fits perfectly to the non-deleting nature of TGGs for model transformations.
However, an extension to other (possibly deleting) model transformation for-
malisms is interesting and left for future work. Furthermore, we will extend the
method by the second step to show domain completeness and to apply the pre-
sented approach to a model transformation in the domain of satellite control
languages.
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18. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of
declarative model-to-model transformations through invariants. J. Syst. Softw.
83(2) (February 2010) 283–302

http://www.tfs.tu-berlin.de/agg

	Domain Completeness for Model Transformations Based on Triple Graph Grammars
	Introduction
	General Framework
	C-Extensions for Domain Completeness
	Related Work
	Conclusion & Discussion


