
Advantages of Ultrametric Counter Automata?

Valdis Ādamsons, Kārlis Jēriņš, Rihards Krišlauks, Marta Lapiņa,
Andris Pakulis, and Rūsiņš Freivalds

Faculty of Computing, University of Latvia, Raiņa bulvāris 19, Riga, LV-1586, Latvia
Institute of Mathematics and Computer Science, University of Latvia,

Raiņa bulvāris 29, Riga, LV-1459, Latvia
valdisxp1@gmail.com

Abstract. Ultrametric algorithms are similar to probabilistic algorithms
but they describe the degree of indeterminism by p-adic numbers instead
of real numbers. No wonder that only very few examples of advantages
for ultrametric algorithms over probabilistic ones have been published
up to now, and all they are slightly artificial. This paper considers ultra-
metric and probabilistic one-counter automata with two one-way input
tapes. A language is found which is recognizable by ultrametric but not
by probabilistic automata of this type.

1 Introduction

Let f : {0, 1}n → {0, 1} be a Boolean function. A query algorithm is an algorithm
for computing f(x1, . . . , xn) that accesses x1, . . . , xn by asking questions about
the values of xi. The complexity of a query algorithm is the maximum number
of questions that it asks. The query complexity of a function f is the minimum
complexity of a query algorithm correctly computing f . The theory of compu-
tation studies various models of computation: deterministic, non-deterministic,
and probabilistic and quantum (see [20] on traditional models of computation
and [17] on quantum computation).

Deterministic, nondeterministic, probabilistic and quantum algorithms are
widely considered in literature (e.g., see survey [4]). We consider a relatively
new type of algorithms, namely, ultrametric algorithms introduced in [6]. The
definition of ultrametric algorithms rather closely follow the example of the cor-
responding probabilistic and quantum algorithms.

Our model of the computing device is an automaton with two input tapes
and one counter for memory. There is exactly one reading head on each input
tape. These heads can move only one direction (or to stay at the same square
of the tape). The input words are limited by special markers showing that the
word has been completely read. The counter is empty at the beginning of the
work.
? The research was supported by Project 271/2012 from the Latvian Council of
Science.

2 V. Ādamsons et al.

2 Ultrametric Algorithms

A new type of indeterministic algorithms called ultrametric algorithms was in-
troduced in [6]. An extensive research on ultrametric algorithms of various kinds
has been performed by several authors (cf. [2, 7, 16, 22]). So, ultrametric algo-
rithms is a very new concept and their potential still has to be explored. This is
the first paper showing a problem where ultrametric algorithms have advantages
over quantum algorithms.

Ultrametric algorithms are very similar to probabilistic algorithms but while
probabilistic algorithms use real numbers r with 0 ≤ r ≤ 1 as parameters,
ultrametric algorithms use p-adic numbers as parameters. The usage of p-adic
numbers as amplitudes and the ability to perform measurements to transform
amplitudes into real numbers are inspired by quantum computations and allow
for algorithms not possible in classical computations. Slightly simplifying the
description of the definitions, one can say that ultrametric algorithms are the
same as probabilistic algorithms, only the interpretation of the probabilities is
different.

The choice of p-adic numbers instead of real numbers is not quite arbitrary.
Ostrowski [19] proved that any non-trivial absolute value on the rational num-
bers Q is equivalent to either the usual real absolute value or a p-adic absolute
value. This result shows that using p-adic numbers was not merely one of many
possibilities to generalize the definition of deterministic algorithms but rather
the only remaining possibility not yet explored.

The notion of p-adic numbers is widely used in science. String theory [21],
chemistry [15] and molecular biology [5, 12] have introduced p-adic numbers to
describe measures of indeterminism. Indeed, research on indeterminism in nature
has a long history. Pascal and Fermat believed that every event of indeterminism
can be described by a real number between 0 and 1 called probability. Quantum
physics introduced a description in terms of complex numbers called amplitude of
probabilities and later in terms of probabilistic combinations of amplitudes most
conveniently described by density matrices. Using p-adic numbers to describe
indeterminism allows to explore some aspects of indeterminism but, of course,
does not exhaust all the aspects of it.

There are many distinct p-adic absolute values corresponding to the many
prime numbers p. These absolute values are traditionally called ultrametric. Ab-
solute values are needed to consider distances among objects. We are used to
rational and irrational numbers as measures for distances, and there is a psycho-
logical difficulty to imagine that something else can be used instead of rational
and irrational numbers, respectively. However, there is an important feature that
distinguishes p-adic numbers from real numbers. Real numbers (both rational
and irrational) are linearly ordered, while p-adic numbers cannot be linearly
ordered. This is why valuations and norms of p-adic numbers are considered.

The situation is similar in Quantum Computation (see [17]). Quantum ampli-
tudes are complex numbers which also cannot be linearly ordered. The counter-
part of valuation for quantum algorithms is measurement translating a complex

Advantages of Ultrametric Counter Automata 3

number a+ bi into a real number a2 + b2. Norms of p-adic numbers are rational
numbers. We continue with a short description of p-adic numbers.

Advantages of ultrametric algorithms over deterministic one have been proved
in [2, 6, 10, 16, 22]. It is much more hard to prove advatages of ultrametric algo-
rithms over probabilistic and nondeterministic ones. The only published exam-
ples are in computational learning theory [7].

3 p-Adic Numbers and p-Ultrametric Algorithms

Let p be an arbitrary prime number. A number a ∈ N with 0 ≤ a ≤ p − 1 is
called a p-adic digit. A p-adic integer is by definition a sequence (ai)i∈N of p-adic
digits. We write this conventionally as · · · ai · · · a2a1a0, i.e., the ai are written
from left to right.

If n is a natural number, and n = ak−1ak−2 · · · a1a0 is its p-adic represen-
tation, i.e., n =

∑k−1
i=0 aip

i, where each ai is a p-adic digit, then we identify
n with the p-adic integer (ai), where ai = 0 for all i ≥ k. This means that the
natural numbers can be identified with the p-adic integers (ai)i∈N for which all
but finitely many digits are 0. In particular, the number 0 is the p-adic inte-
ger all of whose digits are 0, and 1 is the p-adic integer all of whose digits are
0 except the right-most digit a0 which is 1.

To obtain p-adic representations of all rational numbers, 1
p is represented

as · · · 00.1, the number 1
p2 as · · · 00.01, and so on. For any p-adic number it is

allowed to have infinitely many (!) digits to the left of the “p-adic” point but
only a finite number of digits to the right of it.

However, p-adic numbers are not merely a generalization of rational numbers.
They are related to the notion of absolute value of numbers. If X is a nonempty
set, a distance, or metric, onX is a function d fromX×X to the nonnegative real
numbers such that for all (x, y) ∈ X ×X the following conditions are satisfied.

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

A set X together with a metric d is called a metric space. The same set
X can give rise to many different metric spaces. If X is a linear space over the
real numbers then the norm of an element x ∈ X is its distance from 0, i.e., for
all x, y ∈ X and α any real number we have:

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,
(2) ‖α · y‖ = |α| · ‖y‖,
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Note that every norm induces a metric d, i.e., d(x, y) = ‖x − y‖. A well-known
example is the metric over Q induced by the ordinary absolute value. However,
there are other norms as well. A norm is called ultrametric if Requirement (3)
can be replaced by the stronger statement: ‖x+y‖ ≤ max{‖x‖, ‖y‖}. Otherwise,
the norm is called Archimedean.

4 V. Ādamsons et al.

Definition 1. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any
nonzero integer a, let the p-adic ordinal (or valuation) of a, denoted ordp a,
be the highest power of p which divides a, i.e., the greatest number m ∈ N such
that a ≡ 0 (mod pm). For any rational number x = a/b we define ordp x =df
ordp a− ordp b. Additionally, ordp x =df ∞ if and only if x = 0.

For example, let x = 63/550 = 2−1 · 32 · 5−2 · 71 · 11−1. Thus, we have

ord2 x = −1
ord3 x = +2

ord5 x = −2

ord7 x = +1

ord11 x = −1
ordp x = 0 for every prime p /∈ {2, 3, 5, 7, 11} .

Definition 2. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any ra-
tional number x, we define its p-norm as p−ordp x, and we set ‖0‖p =df 0.

For example, with x = 63/550 = 2−1325−27111−1 we obtain:

‖x‖2 = 2

‖x‖3 = 1/9

‖x‖5 = 25

‖x‖7 = 1/7

‖x‖11 = 11

‖x‖p = 1 for every prime p /∈ {2, 3, 5, 7, 11} .

Rational numbers are p-adic integers for all prime numbers p. Since the de-
finitions given above are all we need, we finish our exposition of p-adic numbers
here. For a more detailed description of p-adic numbers we refer to [8, 13].

We continue with ultrametric algorithms. In the following, p always denotes
a prime number. Ultrametric algorithms are described by finite directed acyclic
graphs (abbr. DAG), where exactly one node is marked as root. As usual, the
root does not have any incoming edge. Furthermore, every node having outdegree
zero is said to be a leaf. The leaves are the output nodes of the DAG.

Let v be a node in such a graph. Then each outgoing edge is labeled by
a p-adic number which we call amplitude. We require that the sum of all ampli-
tudes that correspond to v is 1. In order to determine the total amplitude along
a computation path, we need the following definition.

Definition 3. The total amplitude of the root is defined to be 1. Furthermore,
let v be a node at depth d in the DAG, let α be its total amplitude, and let
β1, β2, · · · , βk be the amplitudes corresponding to the outgoing edges e1, . . . , ek
of v. Let v1, . . . , vk be the nodes where the edges e1, . . . , ek point to. Then the
total amplitude of v`, ` ∈ {1, . . . , k}, is defined as follows.

(1) If the indegree of v` is one, then its total amplitude is αβ`.
(2) If the indegree of v` is bigger than one, i.e., if two or more computation paths

are joined, say m paths, then let α, γ2, . . . , γm be the corresponding total
amplitudes of the predecessors of v` and let β`, δ2, . . . , δm be the amplitudes
of the incoming edges The total amplitude of the node v` is then defined to
be αβ` + γ2δ2 + · · ·+ δmγm.

Advantages of Ultrametric Counter Automata 5

Note that the total amplitude is a p-adic integer.
It remains to define what is meant by saying that a p-ultrametric algorithm

produces a result with a certain probability. This is specified by performing
a so-called measurement at the leaves of the corresponding DAG. Here by mea-
surement we mean that we transform the total amplitude β of each leaf to ‖β‖p.
We refer to ‖β‖p as the p-probability of the corresponding computation path.

Definition 4. We say that a p-ultrametric algorithm produces a result m with
a probability q if the sum of the p-probabilities of all leaves which correctly pro-
duce the result m is no less than q.

Comment. Just as in Quantum Computation, there is something counter-
intuitive in ultrametric algorithms. The notion of probability which is the re-
sult of measurement not always correspond to our expectations. It was not easy
to accept that L. Grover’s query algorithm [9] does not read all the input on
any computation path. There is a similar situation in ultrametric algorithms. It
is more easy to accept the definition of ultrametric algorithms in the case when
there is only one accepting state in the algorithm. The 2-ultrametric algorithm
in Theorem 1 has only one accepting state.

4 Ambainis’ Function

A. Ambainis exhibited a function f that provides the first superlinear separation
between polynomial degree and quantum query complexity [1].

Ambainis’ function f of 4 Boolean variables is defined as follows:

f(x1, x2, x3, x4) = x1 + x2 + x3x4 − x1x4 − x2x3 − x1x2.

It is easy to check that for arbitrary 4-tuple (x1, x2, x3, x4), if (x1, x2, x3, x4) ∈
{0, 1}4 then f(x1, x2, x3, x4) ∈ {0, 1}. To explore properties of the Ambainis’
function we introduce 6 auxiliary sets of variables.

S1 = {x1, x2} T1 = {x1}
S2 = {x2, x3} T2 = {x2}
S3 = {x1, x4} T3 = {x3, x4}

By S we denote the class (S1, S2, S3) and by T we denote the class (T1, T2, T3).
By α(x1, x2, x3, x4) we denote the cardinality of those Si = (xj , xk) such that

xj = xk = 1. By β(x1, x2, x3, x4) we denote the cardinality of those Ti such that
it contains at least one element xj which equals 0.

6 V. Ādamsons et al.

Table 1.
x1 x2 x3 x4 α(x1, x2, x3, x4) β(x1, x2, x3, x4) f(x1, x2, x3, x4)

0 0 0 0 0 3 0
0 0 0 1 0 3 0
0 0 1 0 0 3 0
0 0 1 1 0 2 1
0 1 0 0 0 2 1
0 1 0 1 0 2 1
0 1 1 0 1 2 0
0 1 1 1 1 1 1
1 0 0 0 0 2 1
1 0 0 1 1 2 0
1 0 1 0 0 2 1
1 0 1 1 1 1 1
1 1 0 0 1 1 1
1 1 0 1 2 1 0
1 1 1 0 2 1 0
1 1 1 1 3 0 0

Lemma 1. For arbitrary 4-tuple (x1, x2, x3, x4) ∈ {0, 1}4, f(x1, x2, x3, x4) = 0
iff α(x1, x2, x3, x4) + β(x1, x2, x3, x4) is congruent to 1 modulo 2.

Proof. Immediately from Table 1. ut

5 A Language for Advantages

Definition 5. Let X and Y be two finite sets such that X ⊆ Y . Let y be a word
in the alphabet Y . Projection projX(y) is the word obtained from y by removing
all the symbols not in X.

To define the language L of pairs of words (v, w) where v ∈ {a1, a2, a3, a4}∗,
w ∈ {a1, a2, a3, a4}∗ we first define four auxiliary languages L1, L2, L3, L4.

L1 = {(v, w) | proj{a1}v = proj{a1}w}

L2 = {(v, w) | proj{a2}v = proj{a2}w}

L3 = {(v, w) | proj{a3}v = proj{a3}w}

L4 = {(v, w) | proj{a4}v = proj{a4}w}

By ci(v, w) where v ∈ {a1, a2, a3, a4}∗, w ∈ {a1, a2, a3, a4}∗, i ∈ {1, 2, 3, 4}
we denote the function

Advantages of Ultrametric Counter Automata 7

ci(v, w) =

{
1 , if (v, w) ∈ Li
0 , if (v, w) /∈ Li.

L = {(v, w) | f(c1(v, w), c2(v, w), c3(v, w), c4(v, w)) = 1}.

Lemma 2. For each i ∈ {1, 2, 3, 4} there exists a deterministic one-counter
automaton with two one-way input tapes recognizing the language Li.

Proof. Immediate. ut

Lemma 3. For each pair (i, j) such that i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3, 4},
there exists a deterministic one-counter algorithm with two one-way input tapes
transforming (v, w) into (ci(v, w), cj(v, w)).

Proof. The needed deterministic automaton does not use counter to check
whether proj{ai}v = proj{aj}w} and synchronizes the reading of the input tapes
to keep the difference between the number of symbols ai already read from the
two input tapes minimal. At every moment the content of the counter equals the
difference between the number of symbols aj already read from the two input
tapes. cj(v, w) = 1 if the counter is empty after reading all the symbols. ut

Theorem 1. There exists a 2-ultrametric automaton with two one-way input
tapes recognizing the language L.

Proof. The desired algorithm branches its computation path into 6 branches at
the root. We assign to each starting edge of the computation path the amplitude
1
7 .

The first 3 branches (labeled with numbers 1, 2, 3) correspond to exactly one
set Si.

Let Si consist of elements xj , xk. Then the algorithm computes the pair
(cj(v, w), ck(v, w)) as decribed in the proof of Lemma 3. If the two computed
values equal 1 then the algorithm goes to the state q3. If at least one of the
computed values equals 0 then the algorithm goes to the state q4.

The next 3 branches (labeled with numbers 4, 5, 6) correspond to exactly one
set Ti. Let Ti consist of elements xj , xk. Then the algorithm computes the pair
(cj(v, w), ck(v, w)) as described in the proof of Lemma 3. If at least one of the
results equals 0 then the algorithm goes to the state q3. If all the results equal
1 then the algorithm goes to the state q4.

1 branch (labeled with number 7) asks no query and the algorithm goes to
the state q3.

In result of this computation the amplitude A3 of the states q3 has become

A3 =
1

7
(1 + α(x1, x2, x3, x4) + α(x1, x2, x3, x4)),

The 2-ultrametric query algorithm performs measurement of the state q3. The
amplitude A3 is transformed into a rational number ‖A3‖. 2-adic notation for the

8 V. Ādamsons et al.

number 7 is . . . 000111 and 2-adic notation for the number 1
7 is . . . 110110110111.

Hence, for every 2-adic integer γ, ‖γ‖ = ‖ 17γ‖.
By Lemma 1, ‖1 + α(x1, x2, x3, x4) + α(x1, x2, x3, x4)‖2 equals 1, if

f(x1, x2, x3, x4) = 0 and it equals 1
2 , if f(x1, x2, x3, x4) = 0 ut

We wish to prove that there is no error bounded probabilistic one-counter
automaton with two one-way input tapes recognizing the language L. Had our
automaton had two-way input tapes, even deterministic automaton could do the
job. The real problem is whether it is possible to combine four deterministic one-
counter automata recognizing L1, L2, L3, L4 in a single probabilistic automaton.
Our Theorem 2 below shows that it is "almost possible".

We define the language

M = L1 ∩ L2 ∩ L3 ∩ L4 = {(v, w) | c1(v, w) · c2(v, w) · c3(v, w) · c4(v, w) = 1}

which seems to be quite similar to L but probabilistic automata can recognize
it. Advantages of ultrametric algorithms can be seen comparing the languages
L and M .

Theorem 2. For arbitrary ε > 0, there exists a probabilistic one-counter au-
tomaton with two one-way input tapes recognizing the language M with proba-
bility 1− ε.

We wish to prove that there exists no error bounded probabilistic one-counter
automaton with two one-way input tapes recognizing the language L. In the proof
we heavily employ the property of Ambainis’ function to be non-monotonic.
Being non-monotonic is the property that distinguishes Ambainis’ function from
conjunction used in definition of the language M .

f(1, 1, 0, 1) = 0
f(0, 1, 0, 0) = 1
f(0, 1, 0, 1) = 1
f(0, 0, 0, 0) = 0

We need main notions of the theory of finite Markov chains for this proof.
(For more details see the classical book [11].)

A finite Markov chain is a stochastic process which moves through a finite
number of states, and for which the probability of entering a certain state de-
pends only on the last state occupied.

We describe a Markov chain as follows: We have a set of states,

S = {s1, s2, . . . , sk}.

The process starts in one of these states and moves successively from one state
to another. Each move is called a step. If the chain is currently in state si,
then it moves to state sj at the next step with a probability denoted by pij ,
and this probability does not depend upon which states the chain was in before

Advantages of Ultrametric Counter Automata 9

the current state. The probabilities pij are called transition probabilities. The
process can remain in the state it is in, and this occurs with probability pii. An
initial probability distribution, defined on S, specifies the starting state. Usually
this is done by specifying a particular state as the starting state.

In particular, the states are divided into equivalence classes. Two states are
in the same equivalence class if they "communicate," i.e. if one can go from
either state to the other one. The resulting partial ordering shows us the possible
directions in which the process can proceed. The minimal elements of the partial
ordering are of particular interest.

Definition 6. The minimal elements of partial ordering of equivalence classes
are called ergodic sets. The remaining elements are called transient sets. The
elements of a transient set are called transient states. The elements of an ergodic
set are called ergodic (or non-transient) states.

An ergodic set of states is a set in which every state can be reached from
every other state, and which cannot be left once it is entered. A transient set of
states is a set in which every state can be reached from every other state, and
which can be left.

Since every finite partial ordering must have at least one minimal element,
there must be at least one ergodic set for every Markov chain. In particular,
if an ergodic set contains only one element, then we have a state which once
entered cannot be left. Such a state is called absorbing. However, there need
be no transient set. The latter will occur if the entire chain consists of a single
ergodic set, or if there are several ergodic sets which do not communicate with
others.

If a chain has more than one ergodic set, then there is absolutely no inter-
action between these sets. Hence we have two or more unrelated Markov chains
lumped together. A chain consisting of a single ergodic set is called an ergodic
chain. A particular case of an ergodic set is cyclic. A cyclic chain is an ergodic
chain in which each state can only be entered at certain periodic intervals. Such
a chain has a period d, and its states are subdivided into d cyclic sets (d > 1).

In any finite Markov chain, no matter where the process starts, the proba-
bility after n steps that the process is in an ergodic state tends to 1 as n tends
to infinity.

An absorbing chain is one all of whose ergodic states are absorbing; or, equi-
valently, which has at least one absorbing state, and such that an absorbing state
can be reached from every state.

In a chain with transient sets the process moves towards the ergodic sets.
The probability that the process is in an ergodic set tends to 1, and it cannot
escape from an ergodic set once it enters it.

Theorem 3. There exists no error-bounded probabilistic one-counter automaton
with two one-way input tapes recognizing the language L.

Proof. Assume from the contrary that A is such an automaton recognizing L
with a probability 1

2 + δ. We introduce a notion of approximating Markov chain

10 V. Ādamsons et al.

(shortly: AMC) for the automaton A. AMC gives only partial information about
the automaton A but it allows to classify several possibilities of properties of
the assumed automaton in order to get to contradiction using these properties
explicitly.

AMC for the automaton A depends on four parameters: n being a natural
number (contradiction is obtained by considering n→∞), parameters

{(r1, r2) | r1 ∈ {1, 2, 3, 4}, r2 ∈ {1, 2, 3, 4}},

and a word u ∈ {a1, a2, a3, a4}∗. The work of A cannot be described as a Markov
chain. The AMC is the Markov chain obtained by simulating the work of the
probabilistic one-counter automaton A on infinitely long input words, namely,
the word on the first input tape being u continued by ω-word ar1ar1ar1 . . . and
the word on the second input tape being the ω-word ar2ar2ar2 . . .

We consider the work of A starting from the moment when the reading of the
first input tape has reached the last symbol of u. In the process of the simulation
the counter is always neglected—assuming that A always gets information "the
counter is not empty". The symbols read from the two input tapes do not change
anymore. The state of the automaton at each moment is completely described
by a Markov chain. This Markov chain is our AMC(n, u, r1, r2).

Hence the simulated process may differ from the work of A. Rather the AMC
describes a part of the work of A.

We start our analysis of A by considering AMC(1, u0, 1, 3) where u0 is an
empty word. This means that A does not receive any information from the input
tapes but the length of the words read. Moreover, AMC has only a finite number
of states, and does not have ability to remember these lengths.

By Theorem 3.1.1 in [11] the probability after n steps that the process is in
an ergodic state tends to 1 as n tends to infinity. By Theorem 4.1.4 in [11] each
ergodic set of states tends to a stable distribution of probabilities. For arbitrary
state s in arbitrary ergodic set, by ξ(s) we denote the minimum recurring time,
i.e. the minimum positive number of steps when the probability to go from the
state s to the same state s is positive.

Let si, . . . , sj be all distinct states in the same ergodic set. Let ξ be the least
common multiple of ξ(si), . . . , ξ(sj). The Markov chain AMC(1, u0, 1, 3) cannot
remember how many fragments of the length ξ have been read form the input.
Hence, since A is to remember this, A remembers this by adding some number
to the counter. If the states si, . . . , sj allow different numbers to be added to
the counter, then reading n fragments of the length ξ where n tends to infinity,
produces a Gauss distribution of the numbers added to the counter. This implies
that A is not able to distinguish between close values of the lengths. Hence each
ergodic set has to be cyclic. Moreover, for each ergodic set there is a constant c
such that, independent of which state the automaton A is in, reading ξ symbols
from the first input adds c to the counter.

Note that there may be several ergodic sets of states. However, if the total
number of the states is k then k! is an upper bound for the least common multiple
of the lengths of all these cycles.

Advantages of Ultrametric Counter Automata 11

Now we consider another AMC, namely, AMC(n, u, 2, 3), where u is a word
in a single-letter alphabet {a1} of the length n (now only letters a2 are read
from the first input). In a similar way we prove that for each ergodic set of this
AMC there is a constant d such that, independent of which state the automaton
A is in, reading ξ symbols from the first input adds d to the counter. This
implies that if we are interested only in the content of the counter, the cut-and-
paste arguments can be used exactly as in deterministic automata. We can add
a fragment consisting of a constant number of symbols to the first input word
and the only change in the perfomance of A is adding another d to the counter.

Let n be a natural number large enough to have three properties:
1) the probability after reading the first n symbols a1 from the first input that
the process is in an ergodic state exceeds 3+2δ

4 .
2) n ≥ k!.

Now we consider the work of A on the pair of words (w1, w2) such that w1 has
a prefix (a1)

n(a2)
n+k!(a4)

n!+k!, w2 has a prefix (a3)
m where m is large enough to

assert that with probability exceeding 3+2δ
8 the automaton A does not leave the

prefix (a3)
m of w2 on the second input tape while reading (a1)

n(a2)
n+k!(a4)

n!+k!

on the first input tape. Additionally, we complement (w1, w2) by symbols
a1, a2, a4 to get (w1, w2) ∈ L1 ∩ L2 ∩ L3 ∩ L4.

Note that the prefix (a1)
n(a2)

n+k!(a4)
n!+k! is long enough to ensure that each

of 3 fragments (a1)
n, (a2)n+k!, (a4)n!+k! allows to use the cut-and-paste argu-

ments exactly as in deterministic automata. We can add a fragment consisting
of a constant number of symbols to the first input word and the only change in
the perfomance of A is adding a constant number to the counter. It is important
to note that A has no possibility to remember how many times this adding has
been performed.

If this addition is performed in no fragment of the prefix, then (w1, w2) /∈ L
because Ambainis’ function f(1, 1, 0, 1) = 0. If this addition is performed in the
fragment (a1)n, then (w1, w2) ∈ L because Ambainis’ function f(0, 1, 0, 1) = 1.
If this addition is performed in the fragments (a1)n and (a4)

n!+k!, then (w1, w2) ∈
L because Ambainis’ function f(0, 1, 0, 0) = 1. If this addition is performed in
the fragments (a1)n and (a2)

n+k! and (a4)
n!+k!, then (w1, w2) /∈ L because Am-

bainis’ function f(0, 0, 0, 0) = 1. However, the automaton A does not distinguish
between these cases. Contradiction. ut

References

1. Ambainis, A.: Polynomial degree vs. quantum query complexity. Journal of Com-
puter and System Sciences, vol. 72, No. 2, pp. 220–238 (2006)

2. Balodis, K., Beriņa, A., C̄ıpola, K., Dimitrijevs, M., Iraids, J. et al.: On the state
complexity of ultrametric finite automata. Proceedings of SOFSEM 2013, vol. 2,
1–9 (2013)

3. Bērziņa, A., Freivalds, R.: On Quantum Query Complexity of Kushilevitz Function.
Proceedings of Baltic DB&IS, vol. 2, Riga, Latvia, pp. 57-65 (2004)

4. Buhrman, H. and De Wolf, R.: Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, vol. 288, No. 1, pp. 21–43 (2002)

12 V. Ādamsons et al.

5. Dragovich, B. and Dragovich, A.: A p-adic model of DNA sequence and genetic
code. p-Adic Numbers, Ultrametric Analysis, and Applications, 1, 1, 34–41 (2009)

6. Freivalds, R.: Ultrametric finite automata and Turing machines. Lecture Notes in
Computer Science, 7907, 1–11 (2013)

7. Freivalds, R. and Zeugmann, T.: Active Learning of Recursive Functions by Ul-
trametric Algorithms. Lecture Notes in Computer Science, Springer, vol. 8327,
pp.246–257 (2014)

8. Gouvea, F.Q.: p-adic Numbers: An Introduction (Universitext), Springer, 2nd edi-
tion (1983)

9. Grover, L.K.: A fast quantum mechanical algorithm for database search. Proceed-
ings of the 28th ACM symposium on Theory of Computing, pp. 212–219 (1996)

10. Jēriņš, K., Balodis, K., Krišlauks, R., C̄ıpola, K. and Freivalds, R.: Ultrametric
Query Algorithms. Proceedings of SOFSEM 2014, vol. 2, 87–94 (2014)

11. Kemeny, J.G., Snell, J.L.: Finite Markov Chains: With a New Appendix "Gene-
ralization of a Fundamental Matrix", Springer, 2nd edition (1983)

12. Khrennikov, A.Y.: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical
Systems and Biological Models, Kluwer Academic Publishers (1997)

13. Koblitz, N.: P-adic Numbers, p-adic Analysis, and Zeta-Functions (Graduate Texts
in Mathematics), vol. 58, Springer, 2nd edition (1984)

14. Kondacs, A. and Watrous, J.: On the power of quantum finite state automata.
Proc. IEEE FOCS’97, pp. 66–75 (1997)

15. Kozyrev, S.V.: Ultrametric analysis and interbasin kinetics. p-Adic Mathemati-
cal Physics, Proc. of the 2nd International Conference on p-Adic Mathematical
Physics, American Institute Conference Proceedings, vol. 826, 121–128 (2006)

16. Krišlauks, R., Rukšāne, I., Balodis, K., Kucevalovs, I., Freivalds, R., Nāgele, I.:
Ultrametric Turing machines with limited reversal complexity. Proceedings of
SOFSEM 2013, vol. 2, 87–94 (2013)

17. Nielsen, M.A. and Chuang, I.L.: Quantum computation and quantum information.
Cambridge University Press (2010)

18. Nisan, N. and Wigderson, A.: On rank vs. communication complexity. Combina-
torica, vol. 15, No. 4, pp. 557–565 (1995)

19. Ostrowski, A.: Über einige Lösungen der Funktionalgleichung ϕ(x)ϕ(y) = ϕ(xy).
Acta Mathematica, 41, 1, 271–284 (1916)

20. Papadimitriou, Ch.H.: Computational complexity. John Wiley and Sons Ltd.
(2003)

21. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical
Physics. World Scientific, Singapore (1995)

22. Zariņa, S. and Freivalds, R.: Visualisation and ultrametric analysis of Koch frac-
tals. Proc. 16th Japan Conference on Discrete and Computational Geometry and
Graphs, Tokyo, 84–85 (2013)

