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Abstract. The idea of using p-adic numbers in Turing machines and
finite automata to describe random branching of the process of compu-
tation was recently introduced. In the last two years some advantages
of ultrametric algorithms for finite automata and Turing machines were
explored. In this paper advantages of ultrametric automata with one
head versus multihead deterministic and nondeterministic automata are
observed.

1 Introduction

The idea of using p-adic numbers as parameters in finite automata belongs to
Rūsiņš Freivalds. In 1916 Alexander Ostrowski proved that any non-trivial ab-
solute value on the rational numbers Q is equivalent to either the usual real
absolute value or a p-adic absolute value. So using p-adic numbers was rather
the only remaining possibility not yet explored [1]. Rūsiņš Freivalds proved that
use of p-adic numbers expose new possibilities which does not inhere in deter-
ministic or probabilistic approaches. He stated that complexity of probabilistic
automata and complexity of ultrametric automata can differ very much.

In this paper authors take a look at how can behave ultrametric algorithms
in the context of multihead finite automata. The main goal of this paper is to
show where ultrametric automata with one head can do better than multihead
deterministic and nondeterministic automata. Some advantages of multihead
ultrametric automata are also observed.

2 p-Adic Numbers

p-adic digit ai is a natural number in 0 and p− 1 where p is an arbitrary prime
number. Infinite sequence of p-adic digits to the left side (ai)i∈N is called p-adic
integer. p-adic numbers are finite to the right side and infinite to the left side.
For each natural x exists p-adic representation and only finite number of p-adic
digits are not zeroes. There also exist p-adic float numbers.
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Addition, subtraction, multiplication and division of p-adic numbers are done
the same way like natural numbers. p-adic numbers are widely used in chemistry
[2], molecular biology [3] and mathematics [4], and were first described in 1897
by Kurt Hensel. More about p-adic numbers and mathematical operations is
written by David A. Madore in [5].

We will also need an absolute value or norm, which is a distance from zero.
It’s denoted by ||x|| and has the following properties:

1. ||x|| = 0 if and only if x = 0,

2. ||x ∗ y|| = ||x|| ∗ ||y||,

3. ||x + y|| ≤ ||x||+ ||y||.

Norm is called ultrametric if ||x + y|| ≤ max(||x||, ||y||).
If p is a prime number, then the p-adic ordinal of a, denoted by ordpa, is the

highest power of p which divides a. Accordingly for any rational number x, it’s

p-norm will be: ||x||p =

{
1/pordpx, if x 6= 0

0, if x = 0
[6].

3 Ultrametric Automata

Ultrametric automata are described in more details by Rūsiņš Freivalds [1]. He
had also introduced some specific definitions of ultrametric automata. Here we
will describe some basics of ultrametric automata.

Most principles of the work of ultrametric automata are in common with
probabilistic automata. Compared to deterministic automaton, probabilistic au-
tomaton has a stochastic vector (vector of probabilities) instead of one beginning
state. Transitions also have probabilities and can be represented with the help
of stochastic matrices. One matrix shows transitions for one specific letter of the
input alphabet. Probabilistic automaton also has a threshold, and input word is
accepted if and only if the sum of probabilities of every accepting state exceeds
threshold after input word is read.

Ultrametric automaton has an additional element - prime number p. Proba-
bilities of transitions are p-adic numbers, and are called amplitudes. Ultrametric
automaton doesn’t have limitation for beginning state vector and transition ma-
trices to be stochastic. While probabilistic automaton has an accepting thres-
hold, ultrametric automaton has an accepting interval, which is represented by
two real numbers. After reading input word amplitude of every accepting state
is transformed into p-norm. If sum of such p-norms belongs to an accepting
interval, input word is accepted.

4 Multihead Automata

Multihead automata are similar to finite automata with one head. Transition
function will be different - it will be in the following form: S × (A ∪ {`,a})k →
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S × {−1, 0, 1}k where k is number of heads, S is the set of states, A is an input
alphabet, ` is left end-marker, a is right end-marker. {−1, 0, 1}k means, that
every one of k heads can:

– move one symbol to the left on the input word, if value is -1;
– stay on the same symbol of the input word, if value is 0;
– move one symbol to the right on the input word, if value is 1.

If head is on the left end-marker it can’t move to the left, and, respectively,
it can’t move to the right, if it is on the right end-marker. Here were mentioned
main principles of how differs two-way multihead deterministic finite automaton
from two-way deterministic finite automaton with one head. In the case of one-
way automata head can’t move to the left. More precise definition can be found
in [7].

In the case of nondeterministic and ultrametric finite automata definition
will differ with the fact that we have to deal with multiple heads. So, the only
difference will be in the transition function. It will be like transition function of
deterministic multihead automata, but transitions will be made with amplitudes.

5 Advantages of Multihead Ultrametric Automata

It is known that one-way deterministic finite automata with k heads are weaker
(can recognize fewer languages) than one-way nondeterministic finite automata
with k heads for k ≥ 2 [7]. Using these results we can prove theorem for multihead
ultrametric automata.

Theorem 1. For every prime number p for every k ≥ 1 set of languages recog-
nized by one-way deterministic finite automata with k heads is a proper subset
of the set of languages, that can be recognized by one-way p-ultrametric finite
automata with k heads.

Proof. For k = 1 let’s take language L1 = {w2wrev2|w ∈ {0, 1}∗} where wrev

consists of the same letters, as w, but in opposite order. In [8] it was proven,
that for every prime p we can construct one-way p-ultrametric automaton with
one head that can recognize the language L1. Language is not regular, so it can’t
be recognized by one-way deterministic finite automaton with one head. On the
other hand, ultrametric automata can recognize all the languages that can be
recognized by deterministic automata.

We can transform any nondeterministic automaton into p-ultrametric. In
this case we will keep all states and transitions of nondeterministic automaton,
all beginning states will have amplitude 1, all transitions will be made with ampli-
tude 1 and input word will be accepted by ultrametric automaton if p-norm sum
of all accepting states will be greater than 0. Resulting ultrametric automaton
does not depend on parameter p. This means that one-way ultrametric automata
with k heads are at least as powerful as one-way nondeterministic automata with
k heads. For every k ≥ 2 for every prime number p the set of languages recog-
nizable by one-way deterministic finite automata with k heads is a proper subset
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of set of languages recognizable by one-way p-ultrametric finite automata with
k heads.

From parts of proof for k = 1 and k ≥ 2 we obtain that for automata with
k heads condition holds for every k ≥ 1.

Now let’s take a look at situation where we can reduce the number of heads
for ultrametric automata compared to deterministic ones.

Theorem 2. For every prime number p for every k ≥ 1 there is a language
which can be recognized by one-way p-ultrametric finite automaton with 2 heads
and cannot be recognized by one-way deterministic finite automaton with k heads.

Proof. In [9] it is shown that there is a language L which can be recognized
by one-way nondeterministic finite automaton with two heads and cannot be
recognized by one-way deterministic finite automaton with k heads for any k.
Like in the proof of the first theorem we can replace nondeterministic automaton
with p-ultrametric automaton for any prime number p.

6 Power of Ultrametric Automata with One Head

There is a proof that for one-way deterministic and nondeterministic finite au-
tomata class of languages recognizable by automaton with k + 1 head is wider
than class of languages recognizable by automaton with k heads, for all natu-
ral k ≥ 1 [9]. This was proven by using language Lb, which is defined for all
positive natural numbers b in the following way: Lb = {w1 ∗ w2 ∗ ... ∗ w2b|(wi ∈
{0, 1}∗) ∧ (wi = w2b+1−i) for all 1 ≤ i ≤ 2b}. This was proven with the help
of theorem which says, that one-way deterministic and nondeterministic finite
automaton with k heads recognizes language Lb if and only if b ≤

(
k
2

)
[9].

Theorem 3. For every integer k ≥ 1 for every prime number p there exist
languages that cannot be recognized by one-way deterministic or nondeterministic
automaton with k heads, but can be recognized by one-way p-ultrametric finite
automaton with one head.

Proof. We will construct 2-adic automaton that recognizes language Lb. For each
1 ≤ i ≤ b we will make set of states which will check equality of the corresponding
pair of fragments, that is, if wi = w2b+1−i. Fragment for one such pair is shown
on fig. 1.

In the states of bottom row on fig. 1 there is a check for fragment length
equality. Beginning amplitude is 1. When automaton is reading fragment wi every
symbol of the fragment multiplies amplitude by 2. Then automaton goes further
on the row of states until it will reach fragment w2b+1−i. While reading this
fragment every symbol will divide amplitude by 2. Amplitude will be equal to 1
if and only if both fragments had same length. Then after reading whole input
word -1 will be added to amplitude, so amplitude of accepting state will be equal
to 0 if condition of fragment equality holds.
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Fig. 1. Fragment of 2-adic automaton for language’s Lb recognition

Upper two rows on fig. 1 ensure check for matching of symbol ”1” positions
in corresponding fragments wi and w2b+1−i. In the first row automaton walks
through states until it reaches fragment wi. Then in the next step symbols ”1”
and their positions are counted, and amplitude after reading fragment gets equal

to
n−1∑
i=0

ai2
i, where n is length of the fragment and ai equals to 1 if i-th symbol was

1, else ai equals to 0. After reading fragment sum is stored in the accepting state.
Second row of states in the similar way ensures finding of fragment w2b+1−i and

then from the accepting state
n−1∑
i=0

ai2
i is being subtracted in the similar way. As

a result amplitude of accepting state will be equal to 0 if and only if positions of
symbol ”1” in both fragments were the same.

If both conditions hold after reading the input word (that means, if fragments
wi and w2b+1−i are equal), then both accepting states will have amplitude 0. So
p-norm sum of accepting states will be equal to 0 if and only if wi = w2b+1−i.
Else p-norm sum of accepting states will be equal to some positive number.

For every fragment pair wi and w2b+1−i same checks for equality will be
made, but in the sets of states will be different amount of states that ensure
finding of the fragment that we are interested in. In the similar way p-norm sum
of accepting states will be equal to 0 if and only if fragments of pair are equal.
Else mentioned p-norm sum will be equal to some positive number. By counting
together p-norms of accepting states of all sets of that kind we will get 0 if and
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only if input word belongs to Lb. In this way we can construct 2-adic automaton
to recognize language Lb for every positive integer b. By taking b too big (b >

(
k
2

)
respectively) one-way deterministic or nondeterministic finite automaton with
k heads won’t be able to recognize language Lb.

To prove a theorem for all prime numbers p we can replace amplitude 2 with
p in all places where we were multiplying or dividing by 2. So the theorem holds
for every prime number p.

In fact we can easily expand the set of the languages that can be recognized by
one-way ultrametric finite automaton with one head and cannot be recognized
by one-way deterministic or nondeterministic automaton with fixed arbitrary
amount of heads. When defining languages we can take as base language Lb,
but this time every fragment wi will consist of n letter alphabet instead of two
letter alphabet {0, 1}. Situation will be similar to language Lb, but this time
p-ultrametric automaton will have to check positions of n− 1 symbols of input
alphabet instead of one symbol (in the example of language Lb such symbol was
”1”). This can result in the increase of number of states.

Results obtained in this chapter and possibility to transform nondeterministic
automaton with k heads into p-ultrametric automaton with k heads for any prime
number p can give us another result about hierarchy of multihead automata.

Theorem 4. For every k ≥ 1 for every prime number p the set of languages re-
cognizable by one-way nondeterministic finite automata with k heads is a proper
subset of the set of languages recognizable by one-way p-ultrametric finite au-
tomata with k heads.

Proof. In the proof of Theorem 1 we can see that for every number of heads k ≥ 1
one-way ultrametric automata are at least as powerful, as one-way nondetermi-
nistic automata. We can use Theorem 3 to say that for every prime number
p for every number of heads k ≥ 1 one-way p-ultrametric automaton will be able
to recognize some languages that cannot be recognized by one-way nondetermin-
istic automata.

7 Summary

Ultrametric automata can have better place in the hierarchy of multihead au-
tomata than nondeterministic automata. All begins with the fact that one head
of ultrametric automaton can do more than one head of deterministic or nonde-
terministic automaton. For any fixed number of heads k one-way k-head ultra-
metric automata are stronger than one-way k-head deterministic and nondeter-
ministic automata.

In some cases ultrametric automata with one head can recognize languages
better than multihead deterministic and nondeterministic automata. The re-
search made shows potential of the heads of ultrametric automata and researches
will be continued to find the place of ultrametric automata in the hierarchy of
multihead automata.
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Slovakia (2014)

9. Yao, A.C., Rivest, R.L.: k + 1 Heads are better than k. Massachusetts Institute of
Technology, Cambridge, Massachusetts (1977)


