
Introduction to Android 5 Security

Lukáš Aron and Petr Hanáček

Faculty of Information Technology, Department of Intelligent Systems,
Brno University of Technology

lukas.aron@gmail.com

Abstract. This paper discusses the basic introduction into Android se-
curity. It is focused on the last version of Android platform. In the world
of numbers it means Android 5.0 with code-name Lollipop. This paper
covers description of SELinux and impact on mobile platform, Android
Application Sandbox and the whole new virtual machine ART, which
was introduced in Android 4.4. The aim of this paper is to introduce
the researchers of security principles on Android into new version of thsi
operating systems and it’s new technologies related to security.

Introduction

Android is a software stack for mobile devices that includes an operating system,
middle-ware and key applications. In these days it’s the most using operating
system on mobile devices on the world. There are a lot of version which are
widespread on mobile devices of different manufactures and almost every manu-
facturer changed the Android user interface. However under user interface it’s
the same Android operating systems with its core and main functionality. We can
say that the most new devices has pre-installed Android version 4.0 and higher.
In November 2014 was introduced new version of this mobile platform - Android
5.0 Lollipop and it has some new features and changes according to previous
versions. This paper is aimed to these features which has impact to Security.
Android 5 brings new view to the security on mobile devices, for example now the
device is encrypted from its beginning. There is analyzed the topic of Security-
Enhanced Linux which was not mandatory on Android 4. Another new feature
is a new virtual machine which replaced the old Dalvik VM. This paper contain
basic introduction into this new features and also describe the basic knowledge
about functionality of these features.

Security-Enhanced Linux

Security-Enhanced Linux - SELinux [12,13,16] is the primary Mandatory Access
Control - MAC [9,10] mechanism built into a number of GNU/Linux distribu-
tions. SELinux originally started as the Flux Advanced Security Kernel (FLASK)
[11] development by the Utah university Flux team and the US Department of
Defence. The development was enhanced by the NSA and released as open source



104 L. Aron and P. Hanáček

software. There are many views on the usefulness of SELinux on Linux based
systems, this section gives a brief view of what SELinux is good at and what
it is not (because its not designed to do it). SELinux is not just for military
or high security systems where Multi-Level Security (MLS) [3] is required (for
functionality such as “no read up” and “no write down”), as using the “type
enforcement” functionality applications can be confined (or contained) within
domains and limited to the minimum privileges required to do their job, so in a
“nutshell”:

• If SELinux is enabled, the policy defines what access to resources and oper-
ations on them (e.g. read, write) are allowed (i.e. SELinux stops all access
unless allowed by policy). This is why SELinux is called a MAC system.

• The policy design, implementation and testing against a defined security
policy or requirements is important, otherwise there could be “a false sense
of security”.

• SELinux can confine an application within its own “domain” and allow it to
have the minimum privileges required to do its job. Should the application
require access to networks or other applications (or their data), then (as part
of the security policy design), this access would need to be granted (so at
least it is known what interactions are allowed and what are not - a good
security goal).

• Should an application “do something” it is not allowed by policy (intentional
or otherwise), then SELinux would stop these actions.

• Should an application “do something” it is allowed by policy, then SELinux
may contain any damage that maybe done intentional or otherwise. For
example if an application is allowed to delete all of its data files or database
entries and the bug, virus or malicious user gains these priviledges then it
would be able to do the same, however the good news is that if the policy
“confined” the application and data, all your other data should still be there.

• User login sessions can be confined to their own domains. This allows clients
they run to be given only the privileges they need (e.g. admin users, sales
staff users, HR staff users etc.). This again will confine/limit any damage or
leakage of data.

• Some applications (X-Windows for example) are difficult to confine as they
are generally designed to have total access to all resources. SELinux can
generally overcome these issues by providing sandboxing services.

• SELinux will not stop memory leaks or buffer over-runs (because its not
designed to do this), however it may contain the damage that may be done.

• SELinux will not stop all viruses/malware getting into the system (as there
are many ways they could be introduced (including by legitimate users),
however it should limit the damage or leaks they cause

• SELinux will not stop kernel vulnerabilities, however it may limit their ef-
fects.

• Finally, SELinux cannot stop anything allowed by the security policy, so
good design is important.



Introduction to Android 5 Security 105

SELinux on Android

This section explains how the previously noted challenges to enabling the ef-
fective use of SELinux in Android were overcome in the SE Android reference
implementation. Overcoming these challenges required changes to the kernel,
changes and new additions to the Android user-space software stack, and the
creation of a new policy configuration for Android. Starting with Android 4.3,
(SELinux) is used to further define the boundaries of the Android application
sandbox.

SELinux operates on the ethos of default denial. Anything that is not ex-
plicitly allowed is denied. SELinux can operate in one of two global modes:
permissive mode, in which permission denials are logged but not enforced, and
enforcing mode, in which denials are both logged and enforced. SELinux also
supports a per-domain permissive mode in which specific domains (processes)
can be made permissive while placing the rest of the system in global enforc-
ing mode. A domain is simply a label identifying a process or set of processes
in the security policy, where all processes labeled with the same domain are
treated identically by the security policy. Per-domain permissive mode enables
incremental application of SELinux to an ever-increasing portion of the system.
Per-domain permissive mode also enables policy development for new services
while keeping the rest of the system enforcing.

In the Android 5.0 L release, Android moves to full enforcement of SELinux.
This builds upon the permissive release of 4.3 and the partial enforcement of 4.4.
In short, Android is shifting from enforcement on a limited set of crucial domains
(installd, netd, vold and zygote) to everything. This means manufacturers will
have to better understand and scale their SELinux implementations to provide
compatible devices. In other words these changes has impact to:

• Everything is in enforcing mode in the Android 5.0 release
• Only init process should run in the init domain
• Any generic denial (for a block device, socket device, default service, etc.)

indicates that device needs a special domain

Using SELinux in Android first requires enabling SELinux and its dependen-
cies in the kernel configuration and rebuilding the kernel. SELinux dependencies
in the kernel include the Linux Security Module (LSM) framework, the audit
subsystem, and file-system support for extended attributes and security labels
for each relevant file-system for the device. File-systems that do not support
extended attributes or security labeling such as vfat can still be used, but
can only be labeled and protected at per-mount granularity rather than per-
file granularity. More recent Android devices have begun using the Linux ext4

filesystem for eMMC storage on Android devices, since eMMC exposes a traditional
block-based interface on which conventional disk-based Linux file-systems can
be layered. Ext4 already incorporates all the necessary support for extended
attributes and security labeling and is already tested with SELinux as part of
conventional Linux distributions.



106 L. Aron and P. Hanáček

Enabling user-space support for SELinux in Android required changes to
a wide variety of software components, ranging from Android’s C library imple-
mentation, file-system generation tools, and init program up through the An-
droid framework services. It also required porting the core SELinux user-space
components to Android.

Let’s clarify some concepts related with SEAndroid:

• Security-Enhanced Linux is an implementation of mandatory access control
using Linux Security Modules (LSM) in the Linux kernel, based on the prin-
ciple of least privilege. It is not a Linux distribution but instead a set of
modifications that can be applied to UNIX*-like operating systems, such as
Linux and BSD.

• Discretionary Access Control (DAC) [8] is the standard security model for
Linux. In this model, access privileges are based on the user identity and
object ownership. Such DAC had been used for previous versions of Android
until Android 4.3.

• Mandatory Access Control (MAC) limits privileges for subjects (processes)
and objects (file, socket, device, etc.).

SELinux does not change any existing security in the Linux environment; in-
stead, SELinux extends the security model to include Mandatory Access Control
(e.g., both MAC and DAC are enforced in the SELinux environment). SEAn-
droid enhances the Android system by adding SELinux support to the kernel
and user space to:

• Confine privileged daemons to protect them from misuse and limit the da-
mage that can be done via privileged daemons.

• Sandbox and isolate apps from each other and from the system. Details
about Android Application Sandbox folows in next section.

• Prevent privilege escalation by apps.
• Allow application privileges to be controlled at installation and runtime using

middleware mandatory access control.
• Provide a centralized, analyzable policy.

Furthermore, in Android 4.4, SEAndroid is enabled in the Enforcing mode,
instead of the non-functional disabled mode or the notification-only permissive
mode, which means that any invalid operation will be prohibited in the Android
run-time environment. In Android 5.0 has been setup full enforcement, as was
described in this section.

Android Application Sandbox

Application sandboxing, also called application containerization, is an approach
to software development and mobile application management (MAM) that limits
the environments in which certain code can execute. The goal of sandboxing is to
improve security by isolating an application to prevent outside malware, intru-
ders, system resources or other applications from interacting with the protected



Introduction to Android 5 Security 107

app. The term sandboxing comes from the idea of a child’s sandbox, in which the
sand and toys are kept inside a small container or walled area. Android uses the
concept of a sandbox [1,7] to enforce inter-application separation and permissions
to allow or deny an application access to the device’s resources such as files and
directories, the network, the sensors, and APIs in general. For this, Android
uses Linux facilities such as process-level security, user and group IDs that are
associated with the application, and permissions to enforce what operations an
application is allowed to perform. Conceptually, a sandbox can be represented
as in Figure 1.

Fig. 1. Two Android applications, each on its own basic sandbox or process

Sandboxes are often located within kernel space since access to critical parts
of the OS can be realized. The kernel is a very essential part of a system because it
acts as bridge between hardware and software. One approach of sandbox systems
is to monitor system and library calls including their arguments. This is often
done trough system call redirecting, also known as system call hijacking. System
calls, short system calls, are function invocations made from user space into the
kernel in order to request some services or resources from the operating system.
Figure 2 shows an example for the read() system call on a Linux based system.
Android uses a modified Linux basis to host a Java-based middleware running



108 L. Aron and P. Hanáček

the user applications. This implies that calls should not be monitored on Java
level since other calls being made by native Linux application might get lost.

Fig. 2. Steps involved in performing a read() system call from user space. Each arrow
in the figure represents a jump in the instruction flow

Virtual Machine

Android is a mobile operating system mainly used for mobile devices, tablets or
TVs. Android is based on Linux kernel as was discussed earlier, supplemented
with middleware and libraries written in C/C++, yet Android application (app)
itself is written in Java and run with the Android framework and Java-compatible
libraries. Android can enjoy the full benefit of Java such as platform indepen-
dence, added security, and ease of app development. Android had its own virtual
machine (VM) to execute Java application, called Dalvik VM [2,4,5]. The Dalvik
VM differs from conventional Java VM [15]. First, the Dalvik VM has its own
register-based bytecode rather than the Java VM’s stack-based bytecode. This



Introduction to Android 5 Security 109

can in theory lead to more efficient interpretation due to fewer bytecode instruc-
tions fetched for interpretation, reducing the fetch overhead which is crucial to
the interpreter performance. Secondly, the Dalvik VM employs trace-based just-
in-time (JIT) compilation [14], while high-performance Java VMs use method-
based JIT compilation. The motivation for the trace-based JIT compilation is
that it would reduce the memory overhead of the mobile devices and compilation
time, without affecting the performance benefit of JIT compilation since only
hot paths within a method will be compiled.

Generally, one of Java’s advantages as a mobile software platform is a plat-
form independence, achieved by using the bytecode that can be executed by the
interpreter on any platform without porting. Since this software-based execu-
tion is much slower than hardware-based execution, just-in-time compilation for
translating bytecode into machine code at runtime has been used in the Java
VM. The Dalvik VM is not an exception and it also employs JIT compilation.
However, there are some differences in the JIT compilation techniques used in
the two VMs. Dalvik VM has been used until Android 4.4 was introduced. In
this version of operating system the user can choose between two types of VM
- Dalvik VM or ART. In Android 5.0 Lollipop is only one version and it is the
new VM called ART or Android RunTime.

Android runtime (ART) is the managed runtime used by applications and
some system services on Android. ART and its predecessor Dalvik were originally
created specifically for the Android project. ART as the runtime executes the
Dalvik Executable format and Dex bytecode specification. ART and Dalvik are
compatible runtimes running Dex bytecode, so apps developed for Dalvik should
work when running with ART. However, some techniques that work on Dalvik do
not work on ART. ART introduces ahead-of-time (AOT) compilation [6], which
can improve app performance. ART also has tighter install-time verification than
Dalvik. At install time, ART compiles apps using the on-device dex2oat tool.
This utility accepts DEX files as input and generates a compiled app executable
for the target device. The utility should be able to compile all valid DEX files
without difficulty. However, some post-processing tools produce invalid files that
may be tolerated by Dalvik but cannot be compiled by ART. Garbage collection
(GC) can impair an app’s performance, resulting in choppy display, poor UI
responsiveness, and other problems. ART improves garbage collection in several
ways:

• One GC pause instead of two
• Parallelized processing during the remaining GC pause
• Collector with lower pause time for the special case of cleaning up recently-

allocated, short-lived objects
• Improved garbage collection ergonomics, making concurrent garbage collec-

tions more timely, which makes GC FOR ALLOC events extremely rare in
typical use cases

ART currently does not use compacting GC, but this feature is under deve-
lopment in the Android Open Source Project (AOSP). In the meantime, don’t
perform operations that are incompatible with compacting GC, such as storing



110 L. Aron and P. Hanáček

pointers to object fields. Information about ART comes from official site of
Android project.

There are some basic information, that comes from comparison of virtual
machines. The new ART VM has better performance on executing application,
because the whole application now runs from compiled code. On the opposite
the application takes more memory on flash disc. This is related to bytecode
(or compress bytecode), where one instruction means more instruction in binary
code. In these day when the cost of memory is low we do not have a problem
with space on mobile devices. The performance is no the most important pointer
in development.

Conclusion

Improvement of the whole security model in Android version 5.0 has impact to
keep users safe and try to protect them before hackers, attackers and also from
processes or malware applications. This paper explains new security features
of new Android operating system and how these features work. Combination
of these changes make a big jump to forward in comparing to older versions.
The new Android 5.0 Lollipop offers mandatory access control, encrypted disc,
encrypted memory, new virtual machine which improves performance and still
keep application separate through Sandbox. There are some questions about
backward compatibility, but it is not related to this article.

Acknowledgement. This article was created within the research plan of the
Security-Oriented Research in Information (MSM0021630528). This work was
supported by the European Regional Development Fund in the IT4Innovations
Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and by the project Ad-
vanced Secured, Reliable and Adaptive IT (FIT-S-11-1).

References

1. Blasing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S.A., Albayrak, S.: An android
application sandbox system for suspicious software detection. In Malicious and
unwanted software (MALWARE), 2010 5th international conference on, pp. 55–62,
IEEE (2010)

2. Bornstein, D.: Dalvik vm internals. In Google I/O developer conference, vol. 23,
pp. 17–30 (2008)

3. Chen, J.F., Wang, J.-S.: Application level security system and method, February 11
1997. US Patent 5,602,918 (1997)

4. Fresko, N., Lam, M., Wong, H.: Platform-independent selective ahead-of-time
compilation, May 1 2007. US Patent 7,213,240 (2007)

5. Li, N.: Discretionary access control. Encyclopedia of Cryptography and Security,
pp. 353–356 (2011)

6. Lindqvist, H.: Mandatory access control. Master’s Thesis in Computing Science,
Umea University, Department of Computing Science, SE-901, 87 (2006)



Introduction to Android 5 Security 111

7. Smalley, S.: Flask: Flux advanced security kernel (1997)
8. Suganuma, T., Ogasawara, T., Takeuchi, M., Yasue, T., Kawahito, M., Ishizaki,

K., Komatsu, H., Nakatani, T.: Overview of the ibm java just-in-time compiler.
IBM systems Journal, 39(1):175–193 (2000)

9. Venners, B.: Inside the Java virtual machine. McGraw-Hill, Inc. (1996)
10. Vermeulen, S.: SELinux Cookbook. Packt Publishing Ltd. (2014)


