
Towards Indestructible Molecular Robots

Ilir Çapuni, Anisa Halimi, and Dorjan Hitaj

Epoka University, Department of Computer Engineering,
Rr. Tirana-Rinas, Tirana, Albania

{icapuni,ahalimi,dhitaj12}@epoka.edu.al

Abstract. We study the fault-tolerance of the recently proposed nubot
model of molecular-scale self-assembly, which generalizes asynchronous
cellular automata to have non-local movement. In particular, we propose
a set of rules that ensures that a particular shape saves its information
and its shape forever even when independently of each other, certain cells
change their state or die with some small probability.

1 Introduction

As computers are growing in importance every day, the never-ending increase
in their performance and the corresponding decrease in their price seems to
be near the end. For this, alternative models of computation are being looked
for, molecular computation being one promising land to look for new models of
computation.

The recently-introduced nubot model by Woods et al. in [8] brings movement
and computation together in one model.

The model can be understood as asynchronous and non-deterministic cellular
automata model where cells — here called monomers — have the capability to
move relative to each other, and to form bonds between them. It also allows
creation and destruction of cells and allows a random uncontrolled motion.

This model is an excellent framework to study the ultimate limitations and
capabilities of the growth and rearrangements at a molecular scale. Its complex-
ity is studied in [2].

Given the probabilistic nature of the computation at this scale and the im-
precise behavior of molecular elements, certain transitions would inevitably be
faulty. Such faults can set a state of a cell to an arbitrary one, create a cell at
any site, move a cell to the neighboring site, or even kill a cell completely. Such
mishaps would inevitably interfere with computation and movement, leading to
undesirable results.

We are interested in a model where faults occur independently at random
with some small probability.

Fault-tolerance has been studied in cellular automata. A simple rule for two-
dimensional cellular automata that keeps one bit forever even though each cell
can fail with some small probability was given in [7]. A 3-dimensional reliably
computing cellular automaton was constructed in [6]. All simple one-dimensional



Towards Indestructible Molecular Robots 113

cellular automata appear to be “ergodic” (forgetting everything about their ini-
tial configuration in time independent of the size). The first, complex, nonergodic
cellular automaton was constructed in [3], and improved upon in [5].

The question of fault-tolerant computation with Turing machines (where
arbitrarily large bursts may occur with correspondingly small probability) is
raised in 1987 by Manuel Blum, and was solved in [1].

1.1 Our Result

In this paper we will focus our attention to the reliable storage problem. The
main concern of this problem is to store information such that losing any small
part of it is not fatal: it can be restored using the rest of the data.

Our construction encodes the information onto a convex shape, and uses the
majority voting to constantly “battle” with the altered bits.

2 Nubot Model

Nubot model consists of two dimensional grid of monomers. Monomer is the
basic unit of this model. It is defined as state-labeled disks of unit diameter
centered on the grid point.

A set of rules specifies how adjacent monomers will interact with each-other.
Monomers have state and are connected to each other through bonds. After
applying a set of rules, they can change their state or the type of bond between
them. These rules are applied asynchronously.

Monomers can move relative to each other by applying a certain kind of rules.
The movement is applied locally, but then it propagates through all the system.

Fig. 1. Coordinate system

The model uses a two-dimensional triangular grid with a coordinate system
using x and y, but we define a third axis w to make the notation easier as shown
in Figure 1. The coordinates of a certain monomer are defined by using only x



114 I. Çapuni et al.

and y. The axial directions are the unit vectors along the grid axes:

D = {w,−w,x,−x,y,−y}.

A pair p ∈ Z2 is called a grid point, and it has 6 neighbors {p + u | u ∈ D}.
Each grid point –also called a site – has at most one monomer.

Two adjacent monomers are connected to each-other by a rigid or flexible
bond, or no bond exist between them (the null bond). In the figures in this paper,
a flexible bond is depicted as a small empty circle and a rigid bond is depicted
as a solid disk. Rigid bonds are more stable and can not be broken easily.

A configuration is a finite set of monomers at distinct locations and the
bonds between them, and is assumed to define the state of the entire grid at
some instance of time.

2.1 Rules

Two adjacent monomers can interact through an interaction rule,

r = (s1, s2, b,u)→ (s1′, s2′, b′,u′),

where s1, s2 ∈ Σ ∪ {empty} are monomer states, empty denotes the lack of
a monomer; b ∈ {flexible, rigid,null} is the bond type between two monomers,
u is the relative position of the s2 monomer to the s1 monomer. The same thing
applies for the right part of the arrow. If s1 or s2 is empty, the bond b between
them is null, also if either or both s1′, s2′ is empty, then b′ is null.

The interaction rule represents the contents of the monomers before and
after the rule r is applied. By applying certain rules, we can add monomers, one
or both monomers can be removed, adjacent monomers can change state and
bonds, or one monomer can move relative to another monomer.

A rule where u 6= u′ and none of s1, s2, s1′, and s2′ is empty is a movement
rule. To apply such a rule, one monomer is chosen nondeterministically to be
stationary and is called the base, and the other one will be called the arm. This
work will not consider this kind of rules.

If monomer X is the arm, then from its current position p(X) it will move
to its new position p(X)−u+u′, and change its state to s2′. However, the arm
may be attached to a group of other monomers, and for this we need to define
the movable set of monomers A and B contained in configuration C,

M(C,A,B,v)

to be the minimal set that can be moved in direction v without disrupting
existing bonds or causing collisions with other monomers. The movement is
performed if the movable set is not empty.

In Figure 2 we give some examples that illustrate state and bond changes.
To change the states of the monomers as shown in the figure we apply r1 =
(2, 4,null,x) → (1, 5,null,x). To make a flexible bond, r2 = (0, 0,null,x) →
(0, 0,flexible,x) is applied. r3 = (1, 1, rigid,x) → (1, 1,null,x) is used to break



Towards Indestructible Molecular Robots 115

Fig. 2. Examples of monomer interaction rules. (a) Change states. (b) Make a flexible
bond. (c) Break a rigid bond. (d) Change a rigid bond to a flexible bond and change the
states. (e) Appearance of a monomer. (f) Disappearance of a monomer. (g) Movement
in the w direction. (h) Movement in the −w direction.

a rigid bond. To change the bond type from rigid to flexible and the states of
the monomers in the same time we use r4 = (5, 2, rigid,x) → (1, 3,flexible,x).
Appearance of a new monomer is done by applying r5 = (a, empty,null,x)
→ (x, 1,flexible,x) and disappearance using r6 = (b, 1, rigid,x) →
(1, empty,null,x). There are two possible choices of movement for the monomer
depending on arm and base selection. To move the monomer in a certain direc-
tion r7 = (a, a, rigid,x)→ (0, 1, rigid,y) is applied.

If si ∈ {s1, s2} is empty and s′i is not, then a new monomer has appeared.
If one or both monomers from non-empty monomers become empty, the rule
induces the monomer disappearance.

2.2 Toom’s Rule

Toom’s rule is an example of a two-dimensional “stable” cellular automaton.
Each small square in the grid has a value of 1 or 0.

At each instance of time, a cell checks its current state, the neighboring
square to the North and the neighboring square to the East. If the majority of
these states is 1, then the state of the current square becomes 1; otherwise it
becomes 0. The rule has been proved to be stable (see [4]).

3 Our Construction

In this section, we first present the way how do we encode the bit that we want to
save onto a shape, and then we devise the rules that can withstand random noise
defined above. Recall, we assume that independently at random, a monomer can
die, change its state, or a new monomer can be created at an empty site.

To save one bit forever we encode it to a geometric shape in which each
monomer is set to the value that we want to save (see Figure 3).

Starting from such a configuration, the Toom rule by its design, will “dis-
solve” the monomers that are in a minority: If the number of the monomers with



116 I. Çapuni et al.

Fig. 3. A shape wrapped with the layers of monomers that consist the shell

state 1 in the initial configuration is greater than the number of the monomers
with state 0, bit 1 is saved; otherwise bit 0 is saved. The shape of the storage
will have a specific kind of a “monomer fabric”: We use rigid bonds between the
monomers.

To apply the plain version of the Toom’s rule, we need the following nubot
rules:

r1 = (1, 0, 1, E)→ (a, 0, 1, E)

r2 = (a, 0, 1, NE)→ (0, 0, 1, NE)

r3 = (a, 1, 1, NE)→ (1, 1, 1, NE).

The state a is an intermediate state that helps us to determine properly the
state of the monomer in the next step. When rule r1 is applied, the monomer
checks its own state and the neighbor in the east. Then by using r2 and r3 we
take into consideration the two possible states of the neighbor monomers in the
northeast, which results in the majority of the states of itself, east and northeast
neighbor. The above rules are given for state 1. Rules pertaining to the state 0
are written analogously.

Since our shape holding the information is of finite size, we need to take care
of the edges. We solve this problem by applying Toom’s rule in E and NE or W
and SW or SE and NW or any combination between the first ones with the second
ones since the rule that is going to be applied, is chosen undeterministically. By
applying the rules in these directions even the monomers on the corners can
change their state according to the Toom’s rule.

Another deterministic solution to this problem would be to update the cells
in each direction in a controlled fashion as follows. We first apply the Toom’s rule
by using NE, E neighbors. Once all the cells have performed these updates, we
will apply the rules from the opposite direction, that is, we apply the Toom’s rule
using W, SW. Once this is completed, in the same fashion as above, we apply
the same rules using E, SE and its opposite direction W, NW. Finally, once



Towards Indestructible Molecular Robots 117

this completes, we will apply the Toom’s rule using NW, NE and its opposite
direction SE, SW.

In the nubot model the rules are not applied at each monomer simulta-
neously at a certain instance of time. In the nubot model, rules are applied
asynchronously and as many times as possible. When none of the rules can be
applied the evolution stops. At that point all the monomers in the configuration
have reached state 0 or 1.

3.1 Shell

To preserve the shape we need to create a “skin”: We add a three layer shell
around the shape made of monomers with specific state. So essentially, an initial
configuration resembles the one shown in Figure 3.

3.2 Filling the Holes

In this section we will show how we achieve to maintain the shape after applying
random noise on the shape and its shell. Recall, the noise causes that some
monomers change their state to an arbitrary one or to vanish completely.

If a monomer is deleted by the noise, then a new monomer with state X is
added instead of it. State X represents a kind of an “undifferentiated state” of
a monomer. Later, application of other rules will set its value according to the
values of its neighbors.

To add a monomer with state X in the interior part of the shape we use
r7 = (1, empty, 0, E) → (1, X, 1, E). We apply rules similar to r7 on any of the
possible six directions in order to fill all the gaps that can be created in the
shape. Then we change the bonds to rigid ones throughout the shape with the
rules like r8 = (X, 1, 0, SW )→ (X, 1, 0, SW ).

The monomer with state X determines its new state according to the state
of its neighbors. If it sees 0 in the East, it behaves like it was a monomer with
state 1 and sets its state to a; otherwise it sets it to b. We do this using r9 =
(X, 0, 1, E)→ (a, 0, 1, E) and r10 = (X, 1, 1, E)→ (b, 1, 1, E).

The states a and b are intermediate states in the process of “differentiation”
of a newly created monomer with the state X to a monomer with a state 0 or 1.

If one of the monomers of the shell is deleted, we add a new monomer using
r11 = (A, empty, 0, NE) → (A,D, 1, NE). If the state of a monomer is D,
and it has a neighboring monomer with a state in {1, 0, a, b}, then, its state
changes to X by r12 = (D, 0, 1,W )→ (X, 0, 1,W ). Further, if a monomer with
a state in {a, b, 1, 0} has a neighbor with state A′, its state switches to D, that is
r13 = (a,A′, 1, NE)→ (D,A′, 1, NE). If a monomer whose state is V neighbors
a monomer with the state in {0, 1, a, b}, then it changes its state to X by rule
r14 = (V, b, 1, SW ) → (X, b, 1, SW ). When it sees X, it becomes D by the
application of r15 = (V,X, 1, E)→ (D,X, 1, E)

To determine properly the state of the new monomers, Toom’s rule is applied
by the monomers comprising the shell, using r16 = (V,A, 1, E)→ (V ′, A, 1, E),



118 I. Çapuni et al.

r17 = (V ′, A, 1, SE) → (A′, A, 1, SE), r18 = (D,V, 1,W ) → (D′, V, 1,W ), and
r19 = (D′, V, 1, NW )→ (A′, V, 1, NW ).

Finally, if the noise causes a monomer to be created on an empty site with
the empty neighborhood, that cell will die, after it has confirmed that it is
surrounded by empty sites. Stability of the Toom’s rule is established in [4].

3.3 Test Results

In Figure 4 we start from a damaged triangle and the simulation reaches a non-
damaged version of it. Similarly, in Figure 5 we repeat the same for the case of
a square.

Fig. 4. Damaged triangle configuration. (a) Initial configuration(40.2%). (b) Final Con-
figuration(3.92%)

Fig. 5. Damaged square configuration. (a) Initial configuration(31%). (b) Final Con-
figuration(3%)



Towards Indestructible Molecular Robots 119

From these examples, we notice that the shape has been able to save the
information and its shape. Even when it has been subject to a considerable
amount of random noise, the percentage of damage that is found in the final
configuration is very small.

4 Conclusions and Future Work

This poster presents the preliminary results on how to solve the storage problem
on a nubot system, that does not make use of movement. The expected time
that is needed to reach a configuration where the information and the shape is
reconstructed needs to be estimated.

It is still not known if nubot model has the intrinsic universality property: for
any nubot program N , there is a nubot program FN that acts just like N , but
with some m ×m scale-up in space, and a moderate slowdown in time, where
m and the slowdown are independent of N and its input. Consequently, it is
a major open question if the above problem is solvable when FN is subjected to
faults that occur independently of each other with some small probability.

References

1. Çapuni, I.: A Fault-tolerant Turing Machine. PhD thesis, Boston University, Com-
monwealth avenue, Boston MA 02215 (2012)

2. Chen, M., Xin, D. and Woods, D.: Parallel computation using active self- assem-
bly. In: Soloveichik, D. and Yurke, B., (eds.) DNA Computing and Molecular Pro-
gramming. vol. 8141 of Lecture Notes in Computer Science, pp. 16–30, Springer
International Publishing (2013)

3. Gács, P.: Reliable computation with cellular automata. Journal of Computer Sys-
tem Science, 32(1), 15–78, Conference version at STOC’ 83 (1986)

4. Gács, P.: A new version of toom’s proof. Technical report, Boston University Com-
puter Science Department (1995)

5. Gács, P.: Reliable cellular automata with self-organization. Journal of Statistical
Physics, vol. 103(1/2), pp. 45–267, See also arXiv:math/0003117 [math.PR] and
the proceedings of STOC ’97 (2001)

6. Gács, P. and Reif, J.: A simple three-dimensional real-time cellular array. In Pro-
ceedings of the seventeenth annual ACM symposium on Theory of computing, pp.
388–395, ACM (1985)

7. Toom, A.L.: Stable and attractive trajectories in multicomponent systems. Ad-
vances in Probability, 6(1), 549–575 (1980)

8. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E. and Yin, P.: Active
self-assembly of algorithmic shapes and patterns in polyloga- rithmic time. In Pro-
ceedings of the 4th Conference on Innovations in Theoretical Computer Science,
ITCS ’13, pp. 353–354, New York, NY, USA, ACM (2013)


	Towards Indestructible Molecular Robots

