Experiments in Complexity of Probabilistic and
Ultrametric Automata

Kristine Cipola, Andris Pakulis, and Rusins Freivalds*

Institute of Mathematics and Computer Science, University of Latvia
Raina bulvaris 29, Riga, LV-1459, Latvia
Faculty of Computing, University of Latvia
Raina bulvaris 19, Riga, LV-1586, Latvia
kristine.cipola@gmail.com

Abstract. We try to compare the complexity of deterministic, nonde-
terministic, probabilistic and ultrametric finite automata for the same
language. We do not claim to have final upper and lower bounds. Rather
these results can be considered as experiments to find advantages of one
type of automata versus another type.

1 Introduction

Any deterministic finite automaton accepting the language
Lop1s = {1" | n # 2015}

has at least 2015 states. We started our research with a simple exercise: is there
a nondeterministic finite automaton accepting the language and using much less
states than 2015.

The automaton that comes to our mind starts its work with one nondeter-
ministic choice. In the first case the automaton uses 5 states to accept the input
word if its length is not a multiple of 5. In the second case the automaton uses
13 states to accept the input word if its length is not a multiple of 13. In the
third case the automaton uses 31 states to accept the input word if its length
is not a multiple of 31. Hence the automaton has 49 states. Unfortunately, this
automaton accepts not the language Log15 but rather the language

Map15 = {1 | 2015 does not divide n}.

We add two new cycles. One of the cycles has 47 states but after the 46-th
state there is another nondeterministic branching of the computation path. By
Sylvester’s theorem [5] this automaton accepts all input words whose length
exceeds 45 - 46 — 1 = 2070 and the automaton has 49+47=96 states.

However, it is possible to construct another nondeterministic automaton for
the same language with 28 states only. This automaton starts its work with

* Supported by the project 271/2012 from the Latvian Council of Science. Partially
supported by Latvian State Research programme NexIT project No.1.



Experiments in Complexity... 121

one nondeterministic choice. In the first case the automaton uses 2 states to
accept the input word if its length is not a multiple of 2. In the second case the
automaton uses 3 states to accept the input word if its length is not congruent
to 2 modulo 3. In the third case the automaton uses 5 states to accept the
input word if its length is not congruent to 0 modulo 5. In the fourth case the
automaton uses 7 states to accept the input word if its length is not congruent
to 6 modulo 7.In the third case the automaton uses 11 states to accept the input
word if its length is not congruent to 11 modulo 11. Hence the automaton has
284-47= 75 states.

It much more difficult to prove that there is no smaller nondeterministic finite
automaton accepting the language Log15. We used a computerized exhaustive
search. Probably, it is a difficult problem to establish precise number of states
s(IN) for nondeterministic finite automata accepting the languages

Ly ={1"|n#N).

A more easy but still nontrivial problem is to establish asymptotical estimates
for s(N).

Theorem 1. The number of states s(N) for nondeterministic finite automata

(log N)? )
loglog N /*

accepting the language Ly does not exceed O(

Proof. Following the traditional notation in number theory textbooks (e.g.
[2]) we denote the increasing sequence of all prime numbers by p;, p2, ps, ... (0 =
2,p2 = 3,p3 = 5,...) Chebyshev function ¥(z) is the sum of natural logarithms
of all prime numbers not exceeding x.

¥(z) = Dp<ylogp ~ .

Hence the product F(t) = p1 - p2 - ...p¢ is an exponent of ¢ - logt while the
sum S(t) = Xr<ipr equals

t? 3 (log F(t))?

S(t) = E(logt +loglogt — 5 + o(1)) = O(loglogF(t)).

2 Probabilistic Automata

To construct an efficient probabilistic finite automaton for the language Ly
we use distinct methods to process long and short input words. Of course, the
automaton cannot predict whether the current input word will be long or short.
If the input word is shorter than N x % then we need to find such a set of prime
modulos that most part of them show that the length of the input word differs
from N. If the input word is longer then we need to construct a randomized
procedure rejecting all the words. To combine these (seemingly contradictory
goals) we use an idea proposed by R. Freivalds [3].



122 K. Cipola et al.

Theorem 2. (R. Freivalds [3]) For arbitrary € > 0, there is a randomized
1-head off-line Turing machine recognizing palindromes with probability 1 — €
in time O(n.logn).

The method of the proof of Theorem 2 is used to ensure that all input words
strictly shorter than N are rejected. In parallel, after reading arbitrary symbol
from the input the probabilistic automaton goes to a special rejecting state with
a probability 5*5. This ensures that if the length of the input word exceeds
N x L then the input word is rejected with probability at least 1 — 2e.

€

Theorem 3. The number of states s(N) for minimal probabilistic finite
automata accepting the language Ly with a probability 1 — € does not exceed
O((log N)?loglog N)2.

3 Ultrametric Automata

The notion of p-adic numbers widely used in mathematics but not so much
in Computer Science. R. Freivalds [4] introduced a new type of automata and
algorithms, called ultrametric automata and ultrametric algorithms where p-adic
numbers are used to replace real numbers, called probabilities, as measures of
indeterminism. More detailed description of this notion can be found in [1].

In mathematics, a stochastic matrix is a matrix used to describe the tran-
sitions of a Markov chain. A right stochastic matriz is a square matrix each of
whose rows consists of nonnegative real numbers, with each row summing to 1.
A stochastic vector is a vector whose elements consist of nonnegative real num-
bers which sum to 1. The finite probabilistic automaton is defined as an extension
of a non-deterministic finite automaton (Q, X, d, qo, F'), with the initial state gg
replaced by a stochastic vector giving the probability of the automaton being in
a given initial state, and with stochastic matrices corresponding to each symbol
in the input alphabet describing the state transition probabilities. It is impor-
tant to note that if A is the stochastic matrix corresponding to the input symbol
a and B is the stochastic matrix corresponding to the input symbol b, then
the product AB describes the state transition probabilities when the automaton
reads the input word ab. Additionally, the probabilistic automaton has a thres-
hold X being a real number between 0 and 1. If the probabilistic automaton has
only one accepting state then the input word z is said to be accepted if after
reading x the probability of the accepting state has a probability exceeding A.
If there are several accepting states, the word z is said to be accepted the total
of probabilities of the accepting states exceeds A.

Ultrametric automata are defined exactly in the same way as probabilistic
automata, only the parameters called probabilities of transition from one state
to another one are real numbers between 0 and 1 in probabilistic automata, and
they are p-adic numbers called amplitudes in the ultrametric automata. Formulas
to calculate the amplitudes after one, two, three, - -- steps of computation are
exactly the same as the formulas to calculate the probabilities in the probabilistic
automata. Following the example of finite quantum automata, we demand that



Experiments in Complexity... 123

the input word x is followed by a special end-marker. At the beginning of the
work, the states of the automaton get initial amplitudes being p-adic numbers.
When reading the current symbol of the input word, the automaton changes the
amplitudes of all the states according to the transition matrix corresponding to
this input symbol. When the automaton reads the end-marker, the measurement
is performed, and the amplitudes of all the states are transformed into the p-
norms of these amplitudes. The norms are rational numbers and it is possible
to compare whether or not the norm exceeds the threshold A. If total of the
norms for all the accepting states of the automaton exceeds A, we say that the
automaton accepts the input word.

However, it is needed to note that if there is only one accepting state then the
possible probabilities of acceptance are discrete values 0, pt,p~1, p2,p~2,p3, - -.
Hence there is no natural counterpart of isolated cut-point or bounded error for
ultrametric machines.

Theorem 4. For arbitrary odd prime p the number of states s(N) for minimal
p-ultrametric finite automata accepting the language L with a probability 1 — €
does not exceed O((log N)?loglog N).

References

1. Adamsons, V., Jerins, K., Krislauks, R., Lapina, M., Pakulis, A. and Freivalds, R.:
Advantages of ultrametric counter automata. In Proceedings of SOFSEM 2015,
vol. 2 (to be published, 2015)

2. Bach, E. and Shallit, J.: Algorithmic Number Theory. MIT Press (1996)

3. Freivalds, R.: Fast computation by probabilistic Turing machines. In Teorija Al-
goritmov i Programm (Russian), v. 2, Latvian State University, Riga, pp. 201-205
(1975 )

4. Freivalds, R.: Ultrametric finite automata and Turing machines. Lecture Notes in
Computer Science, vol. 7907, 1-11 (2013)

5. Sylvester, J.J.: Question 7382. In Mathematical Questions, Educational Times,
vol. 41, p. 21 (1884)



