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Abstract. New superimposed codes based on finite projective planes
are proposed. These codes allow to construct efficient randomized query
algorithms for some functions.

1 Introduction

Linear codes is the simplest class of codes. The alphabet used is a fixed choice of
a finite field GF (q) = Fq with q elements. In most of applications a special case
of GF (2) = F2 is considered. These codes are binary codes. A generating matrix
G for a linear [n, k] code over Fq is a k− by−n matrix with entries in the finite
field Fq, whose rows are linearly independent. The linear code corresponding to
the matrix G consists of all the qk possible linear combinations of rows of G.
The requirement of linear independence is equivalent to saying that all the qk

linear combinations are distinct.
The superimposed codes also can be considered as linear codes, only the

linear operation "multiplication modulo 2" is substituted by the operation "dis-
junction".

Let X be an n-element set . For an integer k, 0 ≤ k ≤ n we denote by (Xk )
the collection of all the k-subsets of X, while 2X denotes the power set of X.
A family of subsets of X is a subset of 2X . It is called k-uniform if it is a subset
of (Xk ).

We call the family of sets F r-cover-free if F0 * F1 ∪ · · · ∪ Fr holds for all
pairwise distinct F0, F1, F2, · · · , Fr in F . Let us denote by f(n, k) the maximum
cardinality of an r-cover-free family F in (Xk ), | X |= n.

Definition 1. An r-cover-free family F in (Xk ), | X |= n is called a [r, k, n]-
superimposed code.

W. H. Kautz and R. C. Singleton [13] introduced the notion of superimposed
codes, proved some properties, demonstrated possible applications and noted
that relatively good superimposed codes can be obtained by taking random sub-
sets of {1, 2, · · · , n} as members Fi of the family F . In 1985 P. Erdös, P. Frankl
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and Z. Füredi [8] proved upper and lower bounds for f(n, k) and noted relation
of existence of superimposed codes with existence of Steiner systems with certain
parameters (projective planes also are Steiner systems). The bounds were later
improved by several authors and the notion of superimposed codes was gene-
ralized in [5–7, 12, 15, 17, 20] but very many important problems are still widely
open.

2 Projective Planes

A projective plane consists of a set of lines, a set of points, and a relation be-
tween points and lines called incidence, having the following properties:

1) Given any two distinct points, there is exactly one line incident with both of
them.
2) Given any two distinct lines, there is exactly one point incident with both of
them.
3) There are four points such that no line is incident with more than two of
them.

The second condition means that there are no parallel lines. The term "in-
cidence" is used to emphasize the symmetric nature of the relationship between
points and lines. Thus the expression "point p is incident with line l " is used
instead of either "p is on l " or "l passes through p ".

A finite projective plane of order n is formally defined as a set of n2 + n+ 1
points with the properties that:

1) Any two points determine a line,
2) Any two lines determine a point,
3) Every point has n+ 1 lines on it, and
4) Every line contains n+ 1 points.

The number n here is called the order of the projective plane. It is proved
that a finite projective plane can exist only when the order n is a power of a pri-
me. Existence of projective planes with certain parameters in many cases is an
open problem. (Properties of projective planes are described in [4].)

The projective plane of order 2, also known as the Fano plane, has 7 points,
7 lines and it is defined by the incidence matrix

l1 l2 l3 l4 l5 l6 l7

p1 1 0 0 0 1 0 1
p2 1 1 0 0 0 1 0
p3 0 1 1 0 0 0 1
p4 1 0 1 1 0 0 0
p5 0 1 0 1 1 0 0
p6 0 0 1 0 1 1 0
p7 0 0 0 1 0 1 1
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Definition 2. For arbitrary prime number q we define a collection Proj(q) of
points (p1, p2, · · · , pq2+q+1) and lines (l1, l2, · · · , lq2+q+1) where a relation point
pi is incident to line lj is defined by the following rule:
1) If i ∈ {1, 2, · · · , q + 1} then the point pi is incident to the lines l(i−1)q+2,
l(i−1)q+3, · · · , liq+1 and the line li is incident to the points p(i−1)q+2, p(i−1)q+3,
· · · , piq+1.
2) If i ∈ {q+2, q+3, · · · , q2 + q+1} and b i−(q+1)

q c = a and b j−(q+1)
q c = b then

the point pi is incident to the line lj iff

(
i− (q + 2)

q
− b i− (q + 2)

q
c) =

= (
j − (q + 2)

q
− bj − (q + 2)

q
c) + (

j − (q + 2)

q
− bj − (q + 2)

q
c)· (b i− (q + 2)

q
c).

(see an example for q = 5 in Table 1).

Table 1.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20 l21 l22 l23 l24 l25 l26 l27 l28 l29 l30 l31

p01 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p02 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p03 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p04 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
p05 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
p06 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

p07 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
p08 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
p09 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
p10 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
p11 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

p12 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
p13 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
p14 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
p15 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
p16 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

p17 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
p18 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
p19 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
p20 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
p21 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

p22 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
p23 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
p24 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
p25 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0
p26 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

p27 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
p28 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
p29 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0
p30 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
p31 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

Lemma 1. The collection Proj(q) is a projective plane.

Proof. By Definition 2. ut

In order to explore the properties of this projective plane we introduce au-
xiliary notions.

Definition 3. Elementary area (i1, 12)× (j1, j2) is a part of the incidence table
describing incidence of points pi1 , pi1+1, · · · , pi2 to lines lj1 , lj1+1, · · · , lj2 .
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We will consider only elementary areas where (i1, 12) is taken from the set
{(1, q+1), (q+2, 2q+1), (2q+2, 3q+1), · · · , (q2 +2, q2 + q+1)} and (j1, j2) is
taken from the set {(1, q+1), (q+2, 2q+1), (2q+2, 3q+1), · · · , (q2+2, q2+q+1)}.

The following 4 lemmas are immediately implied by Definition 2.

Lemma 2. The elementary area (1, q+1)× (1, q+1) is such that pa is incident
to lb iff either a = 1 or b = 1.

Lemma 3. The elementary area (i1, i2)× (1, q + 1) where

(i1, i2) ∈ {(q + 2, 2q + 1), (2q + 2, 3q + 1), · · · , (q2 + 2, q2 + q + 1)}

is such that pa is incident to lb iff b ∈ {(b+ 1)q + 2, · · · , (b+ 2)q + 1}.

Lemma 4. The elementary area (1, q + 1)× (j1, j2) where

(j1, j2) ∈ {(q + 2, 2q + 1), (2q + 2, 3q + 1), · · · , (q2 + 2, q2 + q + 1)}

is such that pa is incident to lb iff a ∈ {(a+ 1)q + 2, · · · , (a+ 2)q + 1}.

Lemma 5. The elementary area (i1, i2)× (j1, j2) where

(i1, i2) ∈ {(q + 2, 2q + 1), (2q + 2, 3q + 1), · · · , (q2 + 2, q2 + q + 1)}

and

(j1, j2) ∈ {(q + 2, 2q + 1), (2q + 2, 3q + 1), · · · , (q2 + 2, q2 + q + 1)}

is such that pa is incident to lb iff b ≡ a+ d( mod q) where d = i1−2
q ·

j1−2
q .

We demanded that the parameter q is a prime number. Hence the pro-
perty formulated in Lemma 5 shows that in this elementary area each value
of a corresponds to exactly one value of b. Moreover, Lemma 5 shows that the
characteristics d of an elementary area describes this elementary area in much
detail.

Lemma 6. For arbitrary (i1, i2) from the set {(q + 2, 2q + 1), (2q + 2, 3q +
1), · · · , (q2 + 2, q2 + q + 1)} all the elementary areas (i1, i2) × (q + 2, 2q + 1)
have characteristics d = 0 and the q− 1 elementary areas (i1, i2)× (j1, j2) where
(j1, j2) ∈ {(q + 2, 2q + 1), (2q + 2, 3q + 1), · · · , (q2 + 2, q2 + q + 1)} have q − 1
distinct values of the characteristics d ∈ {1, 2, · · · , q}.

Proof. By definition 2, the elementary areas (i1, i2)× (2q + 2, 3q + 1) where

(i1, i2) ∈ {(2q + 2, 3q + 1), (3q + 2, 4q + 1), · · · , (q2 + 2, q2 + q + 1)}

have characteristics d being 1, 2, · · · , q, respectively. It follows from Lemma 5
that the set of all characteristics for (i1, i2) × (kq + 2, (k + 1)q + 1) can be
obtained by multiplying all elements of 1, 2, · · · , q to k − 1. Since q is a prime
number, the set {1, 2, · · · , q} does not change by such a multiplication. ut

We need a much more strong property of Proj(q).
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Definition 4. By Sj we define the set of all points incident to the line lj.

To simplify our notation we sometimes will not distinguish between a line lj
and the set Sj containing all the points incident to lj .

Definition 5. By S we denote the collection of all the sets S1, S2, Sq2+q+1.

Definition 6. By Q we denote the set {1, 2, · · · , q2 + q + 1}.

Definition 7. By Rr we denote the set

{(u1, u2, · · · , ur) | (∀i)(i ∈ Q) and (∀i, j)(i, j ∈ Q and ui 6= uj)}

Definition 8. By S(u1,u2,··· ,ur) we denote the union of the sets
Su1 , Su2 , · · · , Sur .

Definition 9. By Uq,r we denote the collection

{S(u1,u2,··· ,ur) | (u1, u2, · · · , ur) ∈ Rr and (∀i)(Sui
∈ S)}

Below we will consider only collections Uq,r where r = q − 1.

Lemma 7. Given r ≤ q − 1, let {u1, u2, · · · , ur} and {v1, v2, · · · , vr} be two
distinct subsets of the set Q. Then S(v1,v2,··· ,vr) 6= S(v1,v2,··· ,vr).

Proof. Assume from the contrary that there exist two distinct r-tuples
(u1, u2, · · · , ur) and (v1, v2, · · · , vr) such that S(u1,u2,··· ,ur) = S(v1,v2,··· ,vr).

Remember that every set Sj is a line, every S(u1,u2,··· ,ur) is a union of lines
and the two sets {u1, u2, · · · , ur} and {v1, v2, · · · , vr} have the same cardina-
lity. Since the sets {u1, u2, · · · , ur} and {v1, v2, · · · , vr} are distinct, there exists
a number j ∈ Q such that j ∈ (u1, u2, · · · , ur) − (v1, v2, · · · , vr). Then
S(u1,u2,··· ,ur) contains all the points from {p(j−i)q+2, p(j−i)q+2, · · · , pjq+1}. The
line lj is the only line which contains at least two of these points. If j /∈
{v1, v2, · · · , vr} then each of these q points enters S(v1,v2,··· ,vr) via a different
line. Contradiction with the cardinality of the set {v1, v2, · · · , vr}. ut

Lemma 8. There are 2q·log q distinct sets S(u1,u2,··· ,uq−1) in Uq,q−1.

Proof. By Lemma 7, the number of distinct sets S(u1,u2,··· ,uq−1) is equal to the

cardinality of Rq−1. i.e. to
(q2+q+1)(q2+q)(q2+q−1)···(q2−1)

(q−1)(q−2)···1 . By Stirling formula,

this is at least equal q2qeq

qq = 2q·log q. ut
Comment. There are q2+ q+1 sets in the collection S. The number of distinct
sets S(u1,u2,··· ,uq−1) is quite impressive 2q·log q. However, Lemma becomes invalid
if we substitute r ≤ q − 1 by r = q + 1.

Theorem 1. For arbitrary prime q, the family S = {S1, S2, . . . , Sq2+q+1} is
a [q − 1, q, q2 + q + 1]-superimposed code.

Proof. By Lemmas 6 and 7. ut
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3 Decision Trees

We wish to use superimposed codes to prove advantages of probabilistic decision
trees over deterministic decision trees.

A deterministic decision tree is a rooted ordered binary tree T . Each internal
node of T is labeled with a variable xi and each leaf is labeled with a value 0 or
1. Given an input x ∈ {0, 1}n, the tree is evaluated as follows. Start at the root.
If this is a leaf then stop. Otherwise, query the variable xi that labels the root.
If xi = 0 then recursively evaluate the left subtree, if xi = 1, then recursively
evaluate the right subtree. The output of the tree is the value (0 or 1) of the leaf
that is reached eventually. Note that an input x deterministically determines the
leaf, and thus the output, that the procedure ends up in.

We say that a decision tree computes f if its output equals f(x), for all
x ∈ {0, 1}n. Clearly there are many different decision trees that compute the
same f . The complexity of such a tree is its depth, i.e., the number of queries
made on the worst-case input. We define D(f), the decision tree complexity of
f as the depth of an optimal (= minimal-depth) decision tree that computes f .

As in many other models of computation, we can add the power of rando-
mization to decision trees. We add coin flips as internal nodes to the tree. That
is, the tree may contain internal nodes labeled by a bias p ∈ {0, 1}, and when the
evaluation procedure reaches such a node, it will flip a coin with bias p and will
go to the left child on outcome “heads" and to the right child on “tails". Now
an input x no longer determines with certainty which leaf of the tree will be
reached, but instead induces a probability distribution over the set of all leaves.
Thus, the tree outputs 0 or 1 with a certain probability. The complexity of the
tree is the number of queries on the worst-case input and worst-case outcome of
the coin flips.

Definition 10. We say that a randomized decision tree computes f with bounded-
error if its output equals f(x) with probability exceeding 1

2 , for all x ∈ {0, 1}n.
R(f) denotes the complexity of the optimal randomized decision tree that com-
putes f with bounded error.

We introduce 2 functions for which we consider deterministic and randomized
decision trees. Let q ≥ 2 be a prime number. We denote q2 + q + 1 by Q. As in
Definition 2, the projective plane Proj(q) consists of points (p1, p2, · · · , pQ) and
lines (l1, l2, · · · , lQ).

The Boolean function FQ
1 (x1, x2, . . . , xQ) equals 1 if and only if there exists

a line li ∈ Proj(q) such that for every point pj ∈ li the value xj = 1.
The function FQ

2 (x1, x2, . . . , xQ) equals i if and only if there exists a line li ∈
Proj(q) such that for all xj = 1 if and only if j ∈ li. Otherwise
FQ
2 (x1, x2, . . . , xQ) = Q+ 1.

Theorem 2. (trivial) D(FQ
1 ) = Q and D(FQ

2 ) = Q.

Theorem 3. R(F 7
1 ) ≤ 3.
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Theorem 4. R(FQ
1 ) ≤ q + 1.

Theorem 5. R(FQ
2 ) ≤ q − 1.

R. Freivalds [11] introduced a new type of automata and algorithms, called
ultrametric automata and ultrametric algorithms where p-adic numbers are used
to replace real numbers, called probabilities, as measures of indeterminism. More
detailed description of this notion can be found in [1]. The properties of ultramet-
ric algorithms corresponding to distinct primes p may be surprisingly different.

Definition 11. We say that an p–ultrametric decision tree computes f with
bounded-error if for all x ∈ {0, 1}n its output equals f(x) with probability exceed-
ing 1

2 .
Up(f) denotes the complexity of the optimal p–ultrametric decision tree that com-
putes f with bounded error.

Theorem 6. For arbitrary odd prime number p the complexity Up(F
Q
1 ) ≤ q+1.

Theorem 7. For arbitrary odd prime number p the complexity Up(F
Q
2 ) ≤ q−1.
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