
Frequency Pushdown Automata

Ilmārs Pužulis and Rūsiņš Freivalds?

Institute of Mathematics and Computer Science, University of Latvia,
Raiņa bulvāris 29, Riga, LV-1459, Latvia

Faculty of Computing, University of Latvia
Raiņa bulvāris 19, Riga, LV-1586, Latvia

ilmars.puzulis@hotmail.com

Abstract. Frequency computation was introduced in [16]. Trakhten-
brot [17] proved the existence of a continuum of functions computable
by frequency Turing machines with frequency 1

2
. In contrast, every func-

tion computable by a frequency Turing machine with frequency exceeding
1
2
is recursive. Essentially similar results for finite automata and other

types of machines have been proved in [12] and [1]. We consider frequency
pushdown automata. They are specific types of automata because allo-
wing several pushdown stores would add too much computation power
but allowing only one pushdown store restricts the computation power.

1 Introduction

During a discussion of the paper [8] at the conference LATA 2013 in Bilbao,
Spain, E. Shamir asked whether the results on frequency Turing machines and
frequency finite automata hold for pushdown automata as well. The difficulty
of the question is in the fact that an (n, n)-Turing machine or an (n, n)-finite
automaton can be presented as a Cartesian product of n separate Turing ma-
chines or finite automata and this construction does not seem to increase the
power of the machine. However, an arbitrary Turing machine can be simulated
by an automaton with 3 pushdown tapes (and allowing some re-arrangement,
even with 2 pushdown tapes) [2]. Hence the definition of frequency pushdown
automata should avoid the use of several pushdown stores in a single automaton.

The notion of frequency computation was introduced in [16] as an attempt
to have a deterministic notion of computation with properties similar to pro-
babilistic algorithms. Let N = {0, 1, 2, . . .} denote the set of all natural numbers,
N+ = N \ {0}. Fix m,n ∈ N, 1 ≤ m ≤ n. The ith component of the m-tuple
(x1, · · · , xm) is denoted by (x1, . . . , xm)i.

A function f : N→ N is (m,n)-computable if there exists a recursive function
R : Nn → Nn such that for all n-tuples (x1, . . . , xn) ∈ Nn of mutually distinct
natural numbers we have:

|{|i | (R(x1, . . . , xn))i = f(xi) , 1 ≤ i ≤ n} ≥ m.
? Supported by the project 271/2012 from the Latvian Council of Science.Partially
supported by Latvian State Research programme NexIT project No. 1.

Frequency Pushdown Automata 149

Answering a problem by Myhill (see McNaughton [15]), Trakhtenbrot proved
in [17] that: 1) if 2m > n then every (m,n)-computable function is recursive,
and 2) if 2m = n, then f can be not recursive. Kinber in [11, 12] extended these
results by considering frequency enumeration of sets and proved that the class
of (m,n)-computable sets equals the class of recursive sets if and only if 2m > n.

The notion of frequency computation has been extended to other models of
computation. Frequency computation in polynomial time was discussed in full
detail in [10]. For resource bounded computations, the behavior of frequency
computability is completely different. For example, under any reasonable re-
source bound, whenever n′ − m′ > n − m there exist sets which are (m′, n′)-
computable, but not (m,n)-computable. However, scaling down to finite au-
tomata, the analogue of Trakhtenbrot’s result holds again: the class of languages
(m,n)-recognizable by deterministic frequency automata equals the class of reg-
ular languages if and only if 2m > n; conversely, for 2m ≤ n, the class of lan-
guages (m,n)-recognizable by deterministic frequency automata is uncountable
for a two-letter alphabet (cf. [1]).

When restricted to a one-letter alphabet, every (m,n)-recognizable language
is regular (cf. [11] and [1]).

Frequency computations became increasingly popular when relations between
frequency computation and computation with a small number of queries was
discovered [1, 4, 5, 7, 9, 13, 14].

2 Frequency Pushdown Automata

Let Σ be any finite alphabet, and let Σ∗ be the free monoid generated by Σ.
The binary alphabet B is denoted by B. Every subset L ⊆ Σ∗ is said to be
a language. The elements of Σ∗ are called strings; |x| denotes the length of
a string x ∈ Σ∗. By χL : Σ

∗ → {0, 1} we denote the characteristic function
of L.

A deterministic pushdown automaton (PDA) is a 7-tuple M =
(Q,Σ, Γ, δ, q0, Z, F) where Q is a finite set of states, Σ is a finite set which
is called the input alphabet, Γ is a finite set which is called the stack alphabet,
q0 ∈ Q is the start state, Z ∈ Γ is the initial stack symbol, and F ⊆ Q is
the set of accepting states. An element (p, a,A, q, α) ∈ δ is a transition of M .
It has the intended meaning that M , in state p ∈ Q, with a ∈ Σ ∪ {ε} on the
input and with A ∈ Γ as topmost stack symbol, may read a, change the state
to q, pop A, replacing it by pushing α ∈ Γ ∗. The (Σ ∪ {ε}) component of the
transition relation is used to formalize that the PDA can either read a letter
from the input, or proceed leaving the input untouched.

For n-frequency pushdown automata we modify the above definition allowing
n input words. However, we need to be aware that for the general case input
words can be of distinct lengths. Our definition closely models the definition of
n-frequency finite automata (see, e.g. [8]).

A deterministic n-frequency automaton (n-DFA) is a 7-tuple A =
[Q,Σ,#, δ, q0, τ, n], where n ∈ N, n ≥ 1, Q is a finite set of states, q0 is the

150 I. Pužulis and R. Freivalds

initial state, Σ is a finite alphabet and # is a symbol not in Σ. The mapping
δ : Q × (Σ ∪ {#})n → Q is the transition function; the function τ : Q → Bn is
the type of state which is used for outputs. The type is interpreted as an n-tuple
of answers αi: its i-th component records whether the i-th input word read from
the i-th input up to the current moment belongs to the language. We use the
notation τ(q, (x1#

`1 , . . . , xn#
`n)) to denote the type after reading the inputs

the words (x1#`1 , . . . , xn#
`n).

Next we formally describe the behavior of an n-DFA A. Let n ∈ N+, and let
x = (x1, . . . , xn) ∈ (Σ∗)n be an input vector. We define |x| = max{|xi| | 1 ≤ i ≤
n}, and q ◦ x = δ∗(q, (x1#

`1 , . . . , xn#
`n)), where δ∗ : Q × ((Σ ∪ {#})n)∗ is the

usual extension of δ on n-tuples of strings, and `i = |x| − |xi| for all 1 ≤ i ≤ n.
The output of A is defined to be the type τ(q0 ◦ x).

A language L ⊆ Σ∗ is said to be (m,n)-recognized by an n-DFA A if for each
n-tuple (x1, . . . , xn) ∈ (Σ∗)n of pairwise distinct strings the tuples τ(q0 ◦ x) and
(χL(x1), . . . , χL(xn)) coincide on at least m components. A language L ⊆ Σ∗ is
called (m,n)-recognizable if there is an n-DFA A that (m,n)-recognizes L.

To define deterministic n-frequency pushdown automata (with only one push-
down store) the transition function will be extended for n-tuples δ∗ : Q×Σn ×
(Γ ∪ {ε})→ Q× (Γ ∪ {ε}).

A deterministic n-frequency pushdown automaton (n-DFPA) is a 9-tuple
A = (Q,Σ,#, Γ, δ, q0, τ, Z, F), where # 6∈ Σ and (Q,Σ ∪{#}, Γ, δ, q0, τ, Z, F) is
a PDA.

Let n ∈ N+, and let x = (x1, . . . , xn) ∈ (Σ∗)n be an n-tuple. We define
|x| = max{|xi| | 1 ≤ i ≤ n}, and

q ◦ x = δ∗(q, (x1#
`1 , . . . , xn#

`n)),

where `i = |x| − |xi| for all 1 ≤ i ≤ n. Then the output of A is defined to be
the type τ(q0 ◦ x). We emphasize that the n-DFPA contains only one pushdown
tape which is used to process all n inputs.

A language L ⊆ Σ∗ is said to be (m,n)-recognized by an n-DFPAA if for each
n-tuple (x1, . . . , xn) ∈ (Σ∗)n of pairwise distinct strings the tuples τ(q0 ◦ x) and
(χL(x1), . . . , χL(xn)) coincide on at least m components. A language L ⊆ Σ∗ is
called (m,n)-recognizable if there is an n-DFPA A that (m,n)-recognizes L.

3 Definitions

By N = {0, 1, 2, . . . } we denote the set of nonnegative integers and B = {0, 1}.
[n] = {1, 2, . . . , n}. We use |X| to denote the cardinality of a set X.

Let A ⊆ N be a set. By cA : N→ B we denote the characteristic function of
A:

cA (x) =

{
1, if x ∈ A
0, if x /∈ A

We say that a function is recursive if there is an algorithm (Turing machine)
that computes the function. If cA is a total recursive function then we call the
set A recursive.

Frequency Pushdown Automata 151

Definition 1. A set A is (m,n)–computable iff there is a total recursive function
f which assigns to all distinct inputs x1, x2, . . . , xn a binary vector (y1, y2, . . . , yn)
such that at least m of the equations cA (x1) = y1, cA (x2) = y2, . . . , cA (xn) = yn
hold.

By a structure of a finite set K we call a set of K’s subsets S ⊆ 2K .
We assume that the elements of K are ordered under some fixed ordering

φ : K → [n] where n = |K|.

Definition 2. A set A is (S,K)–computable (or computable with a structure
S) iff there is a total recursive function f which assigns to all distinct inputs
x1, x2, . . . , xn a binary vector (y1, y2, . . . , yn) such that
∃B ∈ S ∀b ∈ B χA

(
xφ(b)

)
= yφ(b).

It can be seen that (m,n)–computing is a special case of (S,K)–computing
by taking S to be the set of all subsets of K of size m.

4 Fano Plane

In finite geometry, the Fano plane (named after Gino Fano) is the finite projective
plane of order 2, having the smallest possible number of points and lines. This
plane has 7 points and 7 lines with 3 points on every line and 3 lines through
every point. Every two points are on a unique line and every two lines intersect
in a unique point.

We consider the first example of what we call structured frequency algorithm.

Definition 3. A set A is Fano-computable iff there exists a recursive operator
R : N7 → {0, 1}7 such that, for all 7-tuples (x0, x1, · · · , x6) ∈ N7 of mutually
distinct natural numbers,

[(R(x0) = cA(x0) ∧R(x1) = cA(x1) ∧R(x3) = cA(x3))∨

∨(R(x1) = cA(x1) ∧R(x2) = cA(x2) ∧R(x4) = cA(x4))∨

∨(R(x2) = cA(x2) ∧R(x3) = cA(x3) ∧R(x5) = cA(x5))∨

∨(R(x3) = cA(x3) ∧R(x4) = cA(x4) ∧R(x6) = cA(x6))∨

(R(x4) = cA(x4) ∧R(x5) = cA(x5) ∧R(x0) = cA(x0))∨

∨(R(x5) = cA(x5) ∧R(x6) = cA(x6) ∧R(x1) = cA(x1))∨

∨(R(x6) = cA(x6) ∧R(x0) = cA(x0) ∧R(x2) = cA(x2))]

where R(xi) denotes the i-th component of R(x0, x1, · · · , x6).

Theorem 1. (K.Balodis,J.Iraids, R.Freivalds [3]) A set A is Fano-computable
iff it is recursive.

152 I. Pužulis and R. Freivalds

5 Results

Now consider the language M = {w2wrev | w ∈ B∗} which is clearly (1, 1)-
recognizable by a 2-DFPA.

Theorem 2. (C.Calude, R.Freivalds, F.Stephan [6])
The language M = {w2wrev | w ∈ B∗} is (1, 1)-recognizable, but not (2, 2)-
recognizable by a 2-DFPA.

Theorem 2 can be strengthened as follows:

Theorem 3. The language M = {w2wrev | w ∈ B∗} is (1, 1)-recognizable but
for all n it is not (n, n)-recognizable by a 2-DFPA.

Theorem 4. If a set A is Fano-computable by a 7–DFPA, then it is computable
by a 1–DFPA.

References

1. Austinat, H., Diekert, V., Hertrampf, U., Petersen, H.: Regular frequency compu-
tations. In Theoretical Computer Science, vol. 330, No. 1, pp. 15–20 (2005)

2. Barzdin, J. M.: On a class of Turing machines (Minsky machines). In Algebra
i Logika, vol. 1, No. 6, pp. 42–51 (1962)

3. Balodis, K., Iraids, J., Freivalds, R.: Structured Frequency Algorithms. Unpub-
lished manuscript (2014)

4. Balodis, K., Kucevalovs, I., Freivalds, R.: Frequency Prediction of Functions. In
Lecture Notes in Computer Science, vol. 7119, pp. 76–83 (2012)

5. Beigel, R., Gasarch, W.I., Kinber, E.B.: Frequency computation and bounded
queries. In Theoretical Computer Science, vol. 163, No. 1/2, pp. 177–192 (1996)

6. Calude, C.S., Freivalds, R., Stephan, F.: Deterministic Frequency Pushdown Au-
tomata. Unpublished manuscript (2014)

7. Degtev, A.N.: On (m,n)-computable sets. In: Moldavanskij, D.I. (ed.) Algebraic
Systems. Ivanovo Gos. Universitet, pp. 88–99 (1981)

8. Freivalds, R., Zeugmann, T., Pogosyan, G.R.: On the Size Complexity of Deter-
ministic Frequency Automata. In Lecture Notes in Computer Science, vol. 7810,
pp. 287–298 (2013)

9. Harizanova, V., Kummer, M., Owings, J.: Frequency computations and the car-
dinality theorem. In The Journal of Symbolic Logic, vol. 57, No. 2, pp. 682–687
(1992)

10. Hinrichs, M., Wechsung, G.: Time bounded frequency computations. In Informa-
tion and Computation, vol. 139, pp. 234–257 (1997)

11. Kinber, E.B.: Frequency calculations of general recursive predicates and frequency
enumeration of sets. In Soviet Mathematics Doklady, vol. 13, pp. 873–876 (1972)

12. Kinber, E.B.: Frequency computations in finite automata. Kibernetika (Russian),
No. 2, pp. 7–15, 1976; English translation in Cybernetics 12, 179–187 (1976)

13. Kinber, E.B., Smith, C.H., Velauthapillai, M., Wiehagen, R.: On Learning Multiple
Concepts in Parallel. In Journal of Computer and System Sciences, vol. 50, No. 1,
pp. 41–52 (1995)

Frequency Pushdown Automata 153

14. Kummer, M., Stephan, F.: Recursion Theoretic Properties of Frequency Compu-
tation and Bounded Queries. In Information and Computation, vol. 120, No. 1,
pp. 59–77 (1995)

15. McNaughton, R.: The theory of automata, a survey. In Advances in Computers,
vol. 2, pp. 379–421 (1961)

16. Rose, G.F.: An extended notion of computability. In Abstracts of International
Congress for Logic, Methodology and Philosophy of Science, p.14 (1960)

17. Trakhtenbrot, B.A.: On the frequency computation of functions. In Algebra i
Logika (Russian), vol. 2, pp. 25–32 (1964)

