
Implementing the Aho-Corasick Automata for
Phonetic Search

Ondřej Sýkora

Charles University in Prague, Faculty of Mathematics and Physics,
Malostranské náměst́ı 25, 110 00 Prague 1, Czech Republic

ondrasej@gmail.com

Abstract. In phonetic search, the goal is to find in a text all words
with the same pronunciation as the search phrase. The user writes the
word down using a different alphabet and transcription rules. Mrázová
et al. proposed a new method for phonetic search based on searching
for all possible transcriptions with Aho-Corasick automata [8]. Their
algorithm offers better precision than the previous existing algorithms for
phonetic search, but the size of the search automata grows exponentially
with the length of the search phrase. In this paper, we examine the
utilisation of the states of the automata created by this approach, and
we discuss a memory-efficient implementation of the automata exploiting
the fact that many states of the automaton are never visited during the
search phase. We demonstrate that this implementation is comparable in
search speed to the original automata, but it leads to significant memory
savings.

Introduction

In the current world, the amount of information grows at an ever increasing rate
and searching for information is one of the most common tasks. Specifying the
right query is a difficult task by itself and it is even more complicated when
the data is in a foreign language with different transcription rules or alphabet.
Phonetic search is an approach to string matching that finds not just the exact
search phrase, but it also finds all phrases that are pronounced in a similar way
in the language of the text.

Mrázová et al. [8] proposed a new approach to phonetic search that uses
transcription rules to create an Aho-Corasick automaton (AC-A) [1] that finds
all possible transcriptions of the search phrase. They showed that for Arabic and
German it offers better speed and precision than the earlier methods. However,
the number of possible transcriptions grows exponentially with the length of the
search phrase. In this paper we examine the number of states of the automata
that are visited during the search phase and show an efficient implementation of
the AC-A that avoids the exponential growth by constructing only those parts
of the automaton that are required by the searched text. We show that the
efficiency of the search phase is comparable to the original AC-A, but it exhibits
remarkably lower memory usage.



Implementing the Aho-Corasick... 155

Related Work

The first phonetic search algorithm Soundex was published by Russel [12] in 1918
to ease searching in indexes of surnames. It assigns a code to each name and there
is a match if two names have the same code. The codes are composed of the initial
letter of the name and of three numbers derived from the following consonants.
There are other algorithms similar to Soundex that use more complex coding
schemes, both for English [4,10,14] and other languages, such as German [6,7,11]
or Arabic [3].

The Soundex-based algorithms typically have very high recall, but low preci-
sion. Mrázová et al. [8] approach the problem by building an AC-A that searches
for all words that might be pronounced the same way as the search phrase. They
have tested their algorithm on Arabic and German and have shown that it pro-
vides better precision than the Soundex algorithms and that for this type of
search AC-A are more efficient than other string matching techniques.

Aho-Corasick automata provide strong guarantees on the worst-case time
complexity, but the practical efficiency depends significantly on effective utiliza-
tion of CPU caches and memory transfers [5,13]. The automata can also be im-
plemented effectively using special hardware architectures such as FPGAs [15].
Mrázová and Sýkora have compared the efficiency of a FPGA implementation
of the phonetic search algorithm [8] with an implementation running on an Intel
CPU. They found that the FPGA implementation can be faster, but the time
necessary to build and deploy the automaton outweighs the processing speed,
except for very large texts [9].

Complexity of Phonetic Search

The main idea of the approach of Mrázová et al. [8] is to use context-free pho-
netic transcription rules to create all possible transcriptions of the search phrase
entered by the user. An AC-A is then used to search for all these transcriptions
in the text. The rules map short strings in the user language to sets of possi-
bly empty strings in the text language. It is common that there are multiple
transcriptions for a single sequence of characters or that the rules are applied to
overlapping substrings of the search phrase.

Because the transcription rules are context-free, any combination of them can
be applied to the search phrase, provided they cover the whole search phrase and
do not overlap. As a result, the number of possible possible transcriptions grows
exponentially with the length of the search phrase. Table 1 shows the number of
possible transcriptions and states of the Aho-Corasick automaton matching all
these transcriptions for selected Arabic and German words.

While the number of possible transcriptions grows rapidly with the length
of the search phrase, most of these transcriptions do not exist as words in the
language of the text. To demonstrate this, we have constructed the automata
for selected Arabic and German words and measured how many times each state
was visited when processing a 250 MB sample of text extracted from the Arabic
and German Wikipedia. The results are summarized in Table 2.



156 O. Sýkora

Table 1. Selected Arabic and German words, their Czech transcriptions, number of
transcriptions created using the rules, and the number of states of the Aho-Corasick
automata

Arabic Phonetic Trans. States German Phonetic Trans. States

ÈA
�
¯ kála 33 88 Tier týr 55 97

�» A
�
K taxun 726 1580 Vater fátr 167 282

Qå�» kasrun 2152 4437 schmecken šmekn 601 641
	
àñ

�
J��
» kysatun 8547 17332 Speise špajze 1656 1040

Ð@Q
�
KAÓ matramun 45237 94714 Zeppelin cepelin 6867 6587

�
éºÖÞ� samakatun 270781 553810 Fraulein frojlajn 15541 10802
�
èQ» 	Q

�
K tazkyratun 1082157 2214458 Fahrenheit fárenhajt 107884 45514

Table 2. The average numbers of states of the Aho-Corasick automata created for
the selected Arabic and German words that were visited at least Visits times when
searching in a 250MB text sample

Visits Arabic German
1 337.4 (±48.22) 30.11 (±2.45)

10 190.47 (±24.21) 23.01 (±1.86)
100 112.31 (±12.42) 16.14 (±1.26)

1, 000 61.94 (±5.92) 11.15 (±0.84)
10, 000 31.17 (±2.64) 7.62 (±0.51)

100, 000 13.88 (±1.01) 5.28 (±0.4)
1, 000, 000 5.65 (±0.5) 3.21 (±0.22)

10, 000, 000 2.2 (±0.07) 1.17 (±0.07)
100, 000, 000 1.0 (±0.0) 1.0 (±0.0)

The experiment confirmed that most of the states are never visited. In par-
ticular, the automaton spends 99 % of time in ca 10 states. These numbers are
even more striking if you compare them with the numbers of states shown in
Table 1. The automaton construction would be significantly more effective if it
could avoid building the states and transitions that are never used. This can be
achieved multiple ways:

1. A dictionary can be used to restrict the generated transcriptions to existing
words. This is an effective approach, but it reduces the recall of the algorithm
and it can be used only for common words. Many words such as names of
places and people do not appear in any dictionary. In Arabic text, foreign
names can be written down using multiple different transcriptions.

2. The dictionary can be created from the searched text. Creating such a dic-
tionary requires a considerable amount of computing resources and it is not
possible if the text is not known in advance, e. g. in network monitoring.



Implementing the Aho-Corasick... 157

3. Alternatively, one may use the transcription rules to create a non-deterministic
finite automaton (NFA) from the search phrase. The automaton is first cre-
ated as a chain of states accepting exactly the search phrase. Then, edges
and sequences of states are added according to the transcription rules. An
example of such NFA is shown on Fig. 1. The NFA is very compact, but the
time complexity of the search is O(nl), where l is the number of states of
the NFA and n is the length of the text. Compared to the AC-A, the NFAs
are remarkably slower even for short search phrases.

0 1
r

2 3
a j

4
z

5
e

er ei, ai, ay, ey

aa, ah i, y s
ä, äh, ee,
eh, ö, öh

Fig. 1. An example of the NFA created from the transcription rules for the German
word Reise using the phonetic transcription rajze. The final state is denoted by the thick
border. Straight edges are for the characters of the phonetic transcription, rounded
edges are for transitions created from the rules. For simplicity, multiple transitions
between two states are represented by a single arrow with multiple labels.

Lazy Construction of Aho-Corasick Automata

We have shown that in phonetic search, the number of states visited at least once
during the search is very low compared to the total number of states. Instead
of determining which words appear in the text, our implementation adds states
to the automaton lazily when they are required by the text, similar to the lazy
evaluation of transitions described by Aho et al. [2, Ch. 3.7]. This is achieved
by merging the construction and search phases of the original Aho-Corasick
algorithm into a single loop driven by the searched text. In conformity with [1],
we will use the notation g for the goto function, f for the failure function, and
out for the list of words accepted by a state.

During the initialization, a minimal automaton containing only the initial
state and its direct descendants is created. The automaton reads one character
from the text at a time, and changes the current state using the goto or failure
functions g and f in the same way as the original Aho-Corasick algorithm. When
a state s is visited for the first time, it is expanded, i. e. its direct descendant
states are added to the automaton, and the functions f , g, and out are updated
accordingly. If the state f(s) was not expanded yet, it is expanded before out(s)
is updated. Instead of presenting the pseudo-code of the algorithm, we illustrate
its operation on Fig. 2. The figure shows how states are created and expanded
when searching for the words he, she and hers in the text usher.

To be able to expand states when needed, it is necessary to keep more infor-
mation about the states than in the original algorithm. Each state s needs to



158 O. Sýkora

0 1
s

he
hers
she

she

2

he
hers

h

(1)

0 1
s

3
h

he
hers
she

she she

2

he
hers

h

(2)

0 1
s

3 4
h e

he
hers
she

she she she, he

2

he
hers

5

he
hers

h

e

(3)

0 1
s

3 4
h e

6

he
hers
she

she she she, he

2

he
hers

5

he
hers

hers

h

e r

(4)

(5)

0 1
s

3 4
h e

6 7

he
hers
she

she she she, he

2

he
hers

5

he
hers

hers hers

h

e r s

Fig. 2. Operation of the automaton while searching for words he, she, hers in the string
usher. States are represented as circles. States with dotted border were not expanded
yet, the state with double border represents the current state. The words below each
state are the search phrases that can be accepted by a descendant of the state; words
accepted by the state are printed in bold. Transitions using the goto function are
represented as solid lines, failure function is represented by dashed lines. Failure edges
to the initial state were ommited for clarity.

store the set of search phrases accepted by the descendants of s. This set can
be represented as a set of states of the NFA for the search phrase as described
in Sect. 1. In case of phonetic search, the number of states of the NFA is linear
in the size of the search phrase, which makes this representation particularly
effective.

The correctness of the modified algorithm can be proved the same way as for
the original Aho-Corasick algorithm. Moreover, it can also be proved that the
modified algorithm has the same asymptotic time complexity.



Implementing the Aho-Corasick... 159

Experiments

To show the efficiency of the Lazy AC-A and compare it with searching with the
original AC-A, we have implemented the algorithm as a C++ program. All tests
were run on a laptop with 2.4 GHz Intel Core 2 Duo CPU and 2 GB of RAM,
running a 32-bit version of Ubuntu Linux, with code compiled using GCC 4.3.
The text used in the experiments was a selection of pages from static dumps
of Arabic and German Wikipedia [16]. For pre-processing, all HTML tags were
removed, and the documents were merged into a single 250MB file. All times
presented in this section include only the time to process the data. The times to
load the data and the automaton from the disk are not considered.

We have implemented the version of the algorithm that uses NFAs as a
compact representation of the set of search phrases. To further improve the speed
of processing of the text, whenever the algorithm uses the function f to do a
state transition, it adds this transition to the function g. For the implementation
of the original AC-A, we have chosen the faster deterministic version, where all
transitions are stored directly in the function g.

The first set of experiments was aimed at the raw speed of string match-
ing. We have used the algorithm with various German and Arabic words, with
transcription lengths ranging from four to fourteen characters. We have mea-
sured the time necessary to process a single character of the text. In case of
the original AC-A, we did not take into account the time necessary to build the
automaton. It shows that both for the Lazy AC-A and the original AC-A, the
times to perform a single state transition are almost the same, independent on
the length of the transcription, and they are almost independent on the language
used. The results are summarized in Table 3. It shows, that for both languages,
the unmodified AC-A’s are approximately 19 % faster than the Lazy AC-A.

Table 3. Time (in nanoseconds) necessary to process a single state transition on the
selected German and Arabic words

Language AC-A Lazy AC-A
Arabic 2.72 (±0.07) 3.34 (±0.09)
German 2.69 (±0.06) 3.32 (±0.10)

The amount of memory necessary to represent a single state only depends on
the alphabet of the text, but not on the search phrase or the searched text. To
assess the memory requirements of the modified algorithm, we have measured
the number of expanded and unexpanded states, and compared it to the number
of states of the corresponding AC-A. The results are summarized in Table 4.
While the number of states of the original AC-A grows exponentially with the
length of the phonetic transcription, the size of the NFA grows linearly, and it
remains reasonably small even for larger phrases, and also the growth of the
number of expanded and unexpanded states of the Lazy AC-A is relatively slow



160 O. Sýkora

Table 4. Average numbers of states of the original AC-A, of the NFA created from
the search phrase, of expanded states of the Lazy AC-A, and of unexpanded states of
the Lazy AC-A for the selected Arabic and German words with different lengths of the
phonetic transcription

Length AC-A States NFA States Expanded Unexpanded
Arabic German Arabic German Arabic German Arabic German

≤ 6 1424 304 56 17 302 53 414 48
7 14925 1372 74 28 404 58 711 68
8 33305 6734 81 26 384 48 688 59
9 263948 58185 99 29 612 49 1217 56
10 613325 11272 100 37 522 49 1122 58
11-14 1447974 150058 116 43 776 48 1405 46

and for German words it even stops at ca 60 states. We assume, that a similar
but higher upper bound also exists for the Arabic words.

Discussion

The modified algorithm retains the asymptotic complexity of the original AC-
A. On the other hand, while the original AC-A can guarantee that every state
transition will be done in a constant time, the modified version of the algorithm
does not have this property. The expansion of the failure function f in state s
may lead to expanding all states between the current state and the initial state.
This may have important consequences in applications like network monitoring,
where an attacker can send packets with keywords that would require expanding
new states in each step.

While the number of states created by the modified algorithm is usually far
lower than m, it is possible to create such set of search phrases and text, that all
m states will be created. Except for special cases (e. g. when there is just a single
search phrase), the memory requirements can be kept low by disposing states
that are not required at the moment, and re-creating them when they are needed
again. When the automaton is in state s, then all states s′ : depth(s′) > depth(s)
can be removed safely. Specially, when the automaton is in the initial state,
all states except the initial one can be removed. Naturally, this would have
a negative impact on the running time.

Conclusions

In this paper, we have shown a memory-effective implementation of the Aho-
Corasick algorithm. In the worst case the modified algorithm has asymptotically
the same time complexity as the original AC-A, but it only creates states that



Implementing the Aho-Corasick... 161

are visited by the automaton when processing a given text. This brings a great
advantage in applications like phonetic search, where the set of search phrases is
extremely large, but it can be represented as a relatively small non-deterministic
automaton, and most of the search phrases never appear in a real text. We have
shown experimentally that in phonetic search the speed of the modified algorithm
is comparable to the original AC-A even if the construction of the AC-A is not
taken into account, and in practice it successfully avoids the exponential growth
of the number of states.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic
search. Communications of the ACM 18(6), 333–340 (1975)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1986)

3. Al-Shamaa, K.: Arsoundex. http://www.ar-php.org, accessed: 2012-03-18
4. Gadd, T.N.: Phoenix: the algorithm. Program: Automated Library and Informa-

tion Systems 24(4), 363–369 (1990)
5. Holub, J.: Finite automata implementations considering cpu cache. Acta Polytech-

nica, 47(6) (2007)
6. Michael, J.: Doppelgänger gesucht: Ein Programm für kontextsensitive phonetische

Textumwandlung. c’T Magazin für Computer und Technik, vol. 25, p. 252 (1999)
7. Mokotoff, G.: Soundexing and genealogy. Avotaynu – Publisher of Works on Jewish

Genealogy, http://www.avotaynu.com/soundex.html
8. Mrázová, I., Mráz, F., Petř́ıček, M., Reitermanová, Z.: Phonetic search in foreign

texts. In Proceedings of ANNIE’08. pp. 533–540 (2008)
9. Mrázová, I., Sýkora, O.: When is phonetic search with FPGAs efficient? In Pro-

ceedings of ICSES’10, pp. 359–362, IEEE (2010)
10. Philips, L.: Hanging on the metaphone. Computer Language Magazine 7(12), 39

(1990)
11. Postel, H.J.: Die Kölner Phonetik. Ein Verfahren zur Identifizierung von Perso-

nennamen auf der Grundlage der Gestaltanalyse. IBM-Nachrichten 19, 925–931
(1969)

12. Russell, R.C.: U.S. patent No. 1, 261.16 (1918)
13. Scarpazza, D.P., Villa, O., Petrini, F.: High-speed string searching against large

dictionaries on the Cell/B.E. processor. In 22nd IEEE International Symposium
on Parallel and Distributed Processing, pp. 1–12 (2008)

14. Taft, R.L.: Name search techniques (1970)
15. Tan, L., Sherwood, T.: A high throughput string matching architecture for in-

trusion detection and prevention. In: Proceedings of ISCA’05. pp. 112–122, IEEE
Computer Society, Washington, DC, USA (2005)

16. Wikimedia Foundation: Wikipedia static html dumps.
http://static.wikipedia.org/


