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Abstract 
 
A Terrestrial LiDAR system or Terrestrial Laser Scanner (TLS) was used to detect changes in burnt landscapes. Since wildfires 
are a common occurrence in the Australian landscape, prescribed burns are routinely carried out by land management agencies 
and government departments. These prescribed burns reduce the fuel load which decreases the severity of subsequent unplanned 
wildfires. 
 
Recent advances in LiDAR have enabled the successful measurement of complex structures in the field with both high accuracy 
and precision. LiDAR remote sensing has been used for estimating a wide variety of forest metrics. However, airborne LiDAR in 
particular has been unsuited for measuring understorey vegetation. Modern ground-based LiDAR systems can overcome some of 
the shortcomings of airborne LiDAR systems (sub-centimetre resolution, canopy obscuration). 
 
In this study, four plots of 10m radius were chosen within a prescribed burn area in St. Andrews, Victoria which took place in 
April 2012. One plot was unburnt (control) while the other three plots were given different fire treatments to simulate different 
fire severities.  The TLS was operated from the centre of the plot and data was collected at a resolution of 10mm at a radius of 
10m. Laser scans were captured pre-burn, and post-burn in week two. Data analysis was carried out at different scales (voxel and 
plot) and at the vertical strata comprising near-surface and surface fuel layer within 1m from the ground. Within voxels, metrics 
used to compute change were changes in point density and maximum z value. At the plot scale, change in volume was computed. 
Preliminary results demonstrate the potential of TLS to detect changes at both fine and coarse scales. Metrics such as point density 
are misleading because of issues around occlusion. At the plot scale, changes in volume are a good indicator of fuel consumption 
at the near-surface and surface fuel layer and appear to be in agreement with the different fire treatments which were given to the 
plots. 
 
The benefit of using a TLS is the potential for quantifying the amount of fuel consumed by a prescribed burn. TLS data can 
provide a quantifiable measure of post-fire effects in the understorey strata and structure of a forest. This is in contrast to current 
practices which rely largely on visual assessments which have some level of subjectivity and lack repeatability. 
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Introduction 
 
Fires occur over the majority of the Australian landscape and in most vegetation types, making it one of the most fire-prone 
continents and countries on Earth (Gill, 1975). Over the past decade, a surge in the incidence and frequency of large, uncontrolled 
fires has occurred on all vegetated continents (Bowman et al., 2009, Golson, 1972) causing environmental damage, human 
suffering and economic loss (Davies et al., 2008, Lentile et al., 2006). 
 
To prevent the occurrence of catastrophic unplanned wildfires in Australia, state government departments and land management 
agencies have resorted to prescribed burning, a practice that is defined as the deliberate application of fire to forest fuels under 
specified conditions to attain well-defined management goals (Fernandes and Botelho, 2003). Prescribed burning ensures 
protection of forests, wildland resources and infrastructures at urban interface, thereby ensuring human safety (Fernandes and 
Botelho, 2003, Gill, 1999). 
 
Due to these increases in wildfire and prescribed burning activities, significant attention is being paid to them because of the wide 
range of ecological, economic, social and political values at stake (Lentile et al., 2006). Traditionally, both scientists and land 
managers have relied on remote sensing technologies, particularly satellite remote sensing to extend their knowledge and quantify 
fire effects on landscape (Pereira et al., 1997, Van Wagtendonk et al., 2004). Satellite data is useful for this purpose because it can 
be used to qualitatively and quantitatively evaluate burnt landscapes at various temporal and spatial scales, they are cost effective, 
cover inaccessible areas and capture data from parts of the electromagnetic spectrum (i.e. infrared, near-infrared and middle 
infrared) that permit investigation into the fire effects on landscape (Chen et al., 2008, Norton et al., 2009, Rogan and Yool, 
2001). 
 
Burn severity has been mapped based on spectral changes (e.g. Miller and Thode, 2007, Soverel et al., 2010), burn area 
(e.g.Martín et al., 2002, Silva et al., 2005) and physiological vegetation response to fire (e.g. Lentile et al., 2007, Solans Vila and 
Barbosa, 2009). However, the structural response of vegetation in response to fire is still largely unexplored. Indeed, Lentile et al. 
(2006) have pointed out the inability of 2-Dimensional (2-D) satellite imagery to infer structural parameters of vegetation which 
are known to influence burn severity. They have also recommended incorporating information from both two (satellite) and three-
Dimensional (3-D) datasets (e.g. LiDAR) to improve estimates of post-fire effects and pre-fire fuel conditions.  
 
LiDAR technology, especially Airborne LiDAR (ALS) is being increasingly used to study various forest structural parameters for 
the purpose of forest inventory (e.g. Huang et al., 2008, Moskal and Zheng, 2011, Thies and Spiecker, 2004, Watt et al., 2003). 
However, in the last few years, research into the applicability of ground-based LiDAR or Terrestrial Laser Scanner (TLS), a 
relatively new technique to measure forest metrics such as canopy height (e.g. Watt et al., 2003), tree diameter (e.g.Watt and 
Donoghue, 2005), LAI (e.g.Jupp et al., 2009), canopy gap fraction (e.g.Danson et al., 2007) and tree modelling (e.g.Teobaldelli et 
al., 2007) has been demonstrated by several researchers.  
 
Although ground-based LiDAR technology as stated above has been used to measure forest structure, its applicability to detect 
changes in burnt landscapes remains limited. Attempts at using Airborne LiDAR have been made in this regard. Heo et al. (2008) 
utilised both ALS and TLS to formulate a method of estimating forest fire loss. However, they used LiDAR to extract individual 
tree heights and not metrics to determine forest fire loss. Wulder et al. (2009) evaluated the utility of ALS to detect changes in 
vertical forest structural characteristics associated with fire. Some other  recent attempts have been made to quantify forest fuel 
load using ground-based LiDAR which are important components of fire behaviour (Loudermilk et al., 2007, Loudermilk et al., 
2009). Angelo et al. (2010) have also demonstrated the utility of discrete-return LiDAR in deriving vertical profiles in conjunction 
with advanced classification techniques to predict the time since fire status of the vegetation in an oak scrub ecosystem in Florida.  
 
Another study explored the potential of ALS and multispectral imagery to map conifer mortality and burn severity (White and 
Dietterick, 2012). Preliminary results indicated that characterising the vertical distribution of LiDAR returns before and after the 
burn was useful in determining the loss of the understorey strata. Rowell and Seielstad (2012) demonstrated the utility of a 
terrestrial LiDAR system to characterise grass, litter and shrub fuels in burned longleaf pine forests. A variety of height metrics 
were extracted for each grid cell including inflection point, maximum frequency value and ratio of plants above and below the 
inflection point. All these studies indicate that information regarding the vertical arrangement of fuel is important in understanding 
structural changes in response to fire.  
 
Structural changes obtained using LiDAR have the potential to inform land managers about the fuel load consumption due to the 
prescribed burn. Fire ecologists and botanists would be interested to know how the vegetation has responded structurally to the 
fire event. 
 
The primary objective of this paper is to demonstrate the potential of a ground-based LiDAR system to detect structural changes 
in burnt landscapes especially in the near-surface (grass) and surface fuel layer (litter) at both fine (voxel) and coarse (plot) scale 
using metrics derived from 3-D point cloud data. 



 
 

 
 

Methods 
 
Study area 
 
The study area School Road Reserve is located in St Andrews (Victoria), approximately 36km northeast of metropolitan 
Melbourne (figure 1). The forest type was typical of a dry sclerophyll forest with a grassy understory (figure 2). It was very open 
with the absence of mid-storey vegetation, with the average height of the canopy between 10-12m. The planned burn area was 
approximately 19ha and was carried out on 15th April 2012 to develop fuel reduced areas of sufficient width and continuity to 
reduce the spread of wildfire and exclude fire from the surrounding township and riparian zones. 
 
The canopy in the study area was dominated by eucalypt tree species comprising Eucalyptus goniocalyx (Long-leaf box), 
Eucalyptus macrorhyncha (Red Stringybark), Eucalyptus polyanthemos (Red Box) and Eucalyptus melliodora (Yellow Box). The 
grasses mainly comprised Poa sieberiana (Grey tussock-grass). 
 
 

                               
 
                    

                      Figure 1: Location of the study area St Andrews in Victoria, Australia. 
 
 

 

                     
 

                           Figure 2: presentative of a typical Victorian dry sclerophyll forest with a grassy understorey. 
 



 
 

 
 

                           
                         

                          Figure 3: Vertical stratification of Victorian dry sclerophyll forests based on the vertical strata                  
                        they belong to (From DSE, 2010). 

 
The four strata of Fuels in Victorian forests comprise canopy (trees), and elevated (shrubs), near-surface (grasses) and surface 
(litter) fuel layers (DSE, 2010). These are shown in Figure 3. 
 
Within the prescribed burn boundary in the study area, four circular plots of 10m radius were randomly selected. Three plots were 
given different fire treatments while one plot acted as a control and was left unburnt. All plots shared similar species composition 
and arrangement.  
 
 
 
Ground LiDAR  
 
Instrumentation 
 
The Trimble CX ground LiDAR system uses a 660nm wavelength (red) laser with a scanning rate of up to 54,000 points per 
second. The maximum field of view is 3000 in the vertical and 3600 in the horizontal plane. It can register laser returns from as 
little as 0.5m away and out to a distance of 80m (at 90% target reflectivity). The Trimble CX collects: (1) x, y, z coordinate values 
with respect to the position of the laser sensor; (2) intensity values of the return; and (3) true colour (RGB-red, green blue) values 
for each point obtained from an integrated and calibrated digital camera within the instrument. The Trimble CX ground LiDAR 
system specifications are summarised in table 1 below. 
 

Table 1. Manufacturer specifications of the ground LiDAR instrument (Trimble CX) used in this study 
 

Specification Type Specification Value 
Calibrated range 80m to 90% reflective surface, 50m to 18% reflective surface 
Scan rate 54,000 points per second 
Output angle accuracy 0.0020=35µrad (horizontal and vertical) 
Time of one vertical scan 20ms 
Vertical scanning angle 3000 
Horizontal scanning angle 3600 
Luminance resolution 16 bits 
Spot size 8mm @ 25m; 13mm @ 50m 
Measuring principle Combination of time-of-flight and phase-based measuring 
Laser type Semiconductor laser 
Laser wavelength 660nm (red) 
Beam divergence 0.2mrad 
Weight 11.8kg 
Dimensions (LxWxH) 12x52x35.5cm 
Power consumption 50W 
Power supply 24V DC 



 
 

 
 

Data acquisition 
 
TLS data was acquired both pre- and two weeks post-burn in March and April 2012 respectively. The scanner was mounted on a 
tripod and was placed at the centre of each plot and scans were obtained in a single scan mode. The scanning resolution was set at 
10mm at10m radius. To ensure inter-comparison between scans from the same plot pre- and post-burn, the scan station was set 
over a known point using a video-based azimuth. Each hemispherical scan took approximately 45 minutes to complete. 
 
Data processing 
 
Initially, data processing involved converting the collected laser data from binary to ASCII format. This raw data included a seven 
column text file containing the x, y, z coordinates, laser return intensity values and RGB values for each of the sampled return 
points. Data was pre-processed by first applying a vector shift to ensure no negative values existed in the x, y and z coordinates 
for any of the sampled return points in either of the scans. A positive shift of 1000m in x and y axes and 100m in z axis were 
applied for this purpose. Next, data representative of the experimental plots were clipped from the raw 3-D point cloud. Following 
this, voxels (three dimensional pixels) 0.5x0.5x1.0m in size were generated for further analysis. Voxels were generated by 
determining the minimum-z value within them. All those points within 1m from this minimum-z value were considered as being 
part of that particular voxel. This was done to ensure components of near-surface and surface fuel layers are adequately identified 
and represented for analysis as the terrain of the study area was not flat. 
 
Structural changes beyond 1m from the ground were not looked in for in this research because no significant structural changes 
were observed in the canopy. The changes observed in the canopy in response to the prescribed burn event were scorching of the 
leaves and when the post-burn scan was acquired (2 weeks from the burn event) leaf drop had not started occurring. 
The voxels within 5m from the ground-LiDAR setup were analysed separately from those more than 5m away. This was done 
because the decay in the ground-LiDAR signal affected the accuracy of the metrics used to measure change. Only those voxels 
were considered for further analysis which contained at least ten points in both the pre- and post-burn scans. Also, if in either of 
the scans, the number of points recorded in a voxel were zero, those voxels were also excluded from analysis. These voxels were 
excluded because of being highly noisy or being occluded by elements closer to the scanner. Occlusion is encountered while 
collecting laser scans in a single scan mode. 
 
Different metrics were computed to understand changes in the two scans pre- and post-burn at the voxel scale, while at the plot 
scale only changes in volume were determined (Table 2). The metrics computed at the voxel scale included changes in point 
density and maximum z value. These metrics were considered because it was believed that they would provide information on the 
changes in structure and height of vegetation in response to the burn event. The metric maximum z value computed at the scale of 
a voxel use the height factor (z-value) which is thought to be sensitive to structural changes after the burn. This is because the z-
value corresponds to the height of the 3-D point return. After the burn, because of the absence of vegetation, the z-value will be 
affected the most. These metrics are described in Table 2 indicating the scale at which they were applied and the formula used to 
compute each of those metrics. Change refers to the difference between the two LiDAR scans i.e. pre- and post-burn for those 
metrics. It was hypothesised that point density following the burn would decrease within the voxels because of the absence of 
grasses and other vegetation. It was expected that the maximum-z value within voxels would be higher before the burn because of 
the presence of vegetation. 
 
The volume metric was computed using the ‘Volume Calculation Tool’ within the Trimble LiDAR processing software, 
RealWorks Survey Advanced (version 6.4). This particular tool allows calculation of the volume between a point cloud and a 
plane (RealWorks, 2009). The arbitrary plane was selected as being normal to the Z-axis. It was then offset by 5m and kept 
constant so that the volume was calculated from the same distance each time. This metric was computed for the entire plot.  
The volume metric derived for the two surface fuel layers was also expected to decrease following the burn due to the fire 
consuming grasses and litter close to the surface of the earth. As described in the formulae listed in table 2, Percentage Change (% 
change) for all the metrics were normalised with the pre-burn measures. 
 
The mean and Standard Deviation (SD) was calculated from all the voxels within 5m and more than 5m away from the ground-
LiDAR setup. To interpret results from the volumetric analysis, only the difference between volumes was computed and 
expressed as a % change as compared to pre-burn measures. 
 

Table 2: Normalised metrics used to detect structural changes in the burned landscape using TLS data. 

 
 
 

Metric Scale Definition Formula 
Point 
density 

Voxel Change in the 
number of points per 
unit volume of the 
voxel 

Point density = 𝑃𝑜𝑖𝑛𝑡 𝐶𝑜𝑢𝑛𝑡
𝑉𝑜𝑥𝑒𝑙 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

 
 

% Change = (𝑃𝑜𝑖𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑃𝑟𝑒𝑏𝑢𝑟𝑛−𝑃𝑜𝑖𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑃𝑜𝑠𝑡𝑏𝑢𝑟𝑛
𝑃𝑜𝑖𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑃𝑟𝑒𝑏𝑢𝑟𝑛

) × 100 



 
 

 
 

Maximum-z 
value 

Voxel Change in the 
maximum height 
value recorded in a 
voxel 

 
% Change = (𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑍 𝑣𝑎𝑙𝑢𝑒𝑃𝑟𝑒𝑏𝑢𝑟𝑛−𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑍 𝑣𝑎𝑙𝑢𝑒𝑃𝑜𝑠𝑡𝑏𝑢𝑟𝑛

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑍 𝑣𝑎𝑙𝑢𝑒𝑃𝑟𝑒𝑏𝑢𝑟𝑛
) × 100 

Volume Plot Change in the surface 
volume comprising 
near-surface & 
surface fuel layers 

 
 

% Change = (𝑉𝑜𝑙𝑢𝑚𝑒𝑃𝑟𝑒𝑏𝑢𝑟𝑛−𝑉𝑜𝑙𝑢𝑚𝑒𝑃𝑜𝑠𝑡𝑏𝑢𝑟𝑛
𝑉𝑜𝑙𝑢𝑚𝑒𝑃𝑟𝑒𝑏𝑢𝑟𝑛

) × 100 

 
Results 
 
Mean and SD values for the percentage change in point density and maximum-z value calculated from the voxels within 5m and 
more than 5m away from the ground-LiDAR setup are shown in figures 4 and 5 respectively. Results obtained from the changes in 
volume in the near-surface and surface fuel layer are shown in figure 6. Plot 2 (P2) was the control (unburnt). 
 
The percentage change in point density after the burn observed is minimal for the control plot when voxels both within and more 
than 5m away from the TLS setup are considered. The associated SD values are also significantly lower as compared to the plots 
which received different fire treatments. In these plots, large and overlapping SD values are observed. The mean percentage 
change in point density does not seem to follow a trend in these burnt plots apart from the fact that it has increased after the burn. 
When the metric maximum-z value is considered, the mean and SD value for control tends to be very small when they are 
computed from voxels within 5m from the ground-LiDAR setup. When the voxels from more than 5m from the ground-LiDAR 
setup are considered, an increase in the mean value is observed with a significant increase in the SD value. For the other plots 
which were burnt, very high and overlapping SD values are observed in both the cases (within and more than 5m from the TLS 
setup). Although the percentage change in maximum-z value observed for the plots burnt is higher relative to the control (P2), the 
observed change is very small and is in the order of ~0.2%. 
 
The percentage change in volume was the least in P2 which was unburnt. It recorded a 1% change as compared to a maximum of 
5.86% change in P4. P1 and P3 showed similar changes in volume with a % change in volume of about 2.5%. 
 
Discussion 
 
As the results have indicated, the mean percentage change in point density between burnt and unburnt plots is statistically 
insignificant with large and overlapping SD values. It was expected that the point density would decrease following the burn due 
to the vegetation in the near-surface fuel layer and litter in the surface fuel layer being consumed by the fire, but the results seem 
to suggest otherwise. As evident from the graph presented in figure 4, the point density has increased in all the plots that received 
different fire treatments although the magnitude of change does not seem to suggest any trends. 
 
One possible explanation for this is that since ground and non-ground (vegetation, coarse woody debris) points were not 
separated, the corresponding change in point density is not seen as significant between burnt and unburnt plots. The pre-burn point 
density which was contributed by the presence of vegetation remained somewhat unchanged or even increased because the change 
in the point density due to the vegetation being burnt was compensated for by the point returns from the exposed ground. 
 
It is thus believed that the changes in point density would give a more meaningful result once ground points are separated from 
non-ground points. This is also probably the reason for the lower SD values for P2 as compared to the burnt plots since nothing 
significantly changed in the landscape with the possible exception of branches, twigs and leaves falling from the trees. 
Additionally, histograms of changes in point density at different heights within 1m from the ground in voxels is expected to 
provide more information on where the point density has changed in the vertical column and by how much. This approach will 
enable computing absolute change in the surface and near-surface fuel layer because of the fire. A similar metric was derived in a 
study by White and Dietterick (2012). They derived change in canopy cover in response to a fire event by calculating the ratio of 
LiDAR returns falling above 1m, divided by the total number of returns for that voxel. It is expected that point density would be 
higher much closer to the ground in voxels which were burnt as compared to unburnt voxels. This is to be expected because after 
the vegetation has been burned, the underlying ground surface will be exposed leading to an increase in the point density. 
 
Another approach would be to separate the ground and non-ground points based on generating a Digital Elevation Model (DEM) 
from the acquired ground-LiDAR data. Once this is achieved it would enable computing absolute change in near-surface and 
surface fuel layers in response to the burn event. 
  



 
 

 
 

 
 
 

Figure 4: Percentage change in point density pre- and post-burn for voxels within and more than 5m away from the TLS setup. 
The blue and red bars represent the standard deviation values. 

 

 
 
 

Figure 5: Percentage change in maximum-z value pre- and post-burn for voxels within and more than 5m away from the TLS 
setup. The blue and red bars represent the standard deviation values. 

 

 
 
 

Figure 6: Percentage change in volume pre-and post-burn at the plot scale. Plot 2 is the control which remained unburnt). 
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The relative change observed in maximum-z value is minimal and the relatively large and overlapping SD values between burnt 
and unburnt plots makes this change insignificant as observed in figure 4. The overall observed change is very small because of 
the vector shift which was applied while pre-processing 3-D point cloud data. The vector shift is essential and needs to be applied 
to ensure none of the points in the x, y and z axes possess a negative value. The change in maximum-z value in voxels pre- and 
post-burn is very small (less than 1cm) and the percentage change is calculated relative to an inflated height datum (the pre-burn 
maximum-z value of at least 95m). This is the reason why the percentage change in maximum-z value between burnt and unburnt 
plots is not that significant. However, what is noteworthy is that despite the inflated height datum against which this metric was 
computed, TLS is sensitive enough to pick subtle changes in the landscape. 
 
The results of the % change in volume in the plots after the burn are not that significant. Volumes of fuel consumed should vary 
depending on the types of fire treatments given to the plots. A maximum change in volume within 1m from the ground was 
recorded for P4 at 5.86%. However, this change in volume is quite large as compared to a 1% change in the unburned plot. It is 
believe that once the DEM is obtained, it will also enable investigation into the volume of fuel consumed in the near-surface and 
surface fuel layer as a result of the prescribed burn event. It is expected that this analysis would improve measures of change in 
fuel volumes after the ground- and non-ground points have been separated. 
 
Although a few studies have been carried out in the past which have looked at applying LiDAR (both ALS and TLS) in burnt 
landscapes, most of them have looked at determining vertical vegetation profiles and canopy heights to model forest loss due to 
fire (e.g.Angelo et al., 2010, Heo et al., 2008, Wulder et al., 2009). The research findings presented here are quite different as 
compared to these studies. However, the study conducted by Rowell and Seielstad (2012) is quite similar in terms of the 
experimental setup and data acquisition using a TLS. However one major difference is with the metrics discussed which are quite 
different from the ones considered in the research presented here. It is proposed to investigate the utility of these metrics in the 
context of this study. 
 
Further data analysis needs to be carried out which would involve computing histograms of point density at different heights 
within the voxels to quantify absolute change in the near-surface and surface layer due to the burn. Generating a DEM from the 
obtained LiDAR data would enable separation of non-ground points from ground-points which could further enhance analysis and 
interpretation of some of the metrics discussed in this paper. It would also enable computing much more accurate estimates of 
volumes of fuels consumed in plots which were given different fire treatments. 
 
It is also believed that a few more metrics taking the z-value into consideration will also need to be explored. Few metrics 
proposed are changes in average z value and range of z value. Change in average z value would be defined as the change in the 
average height value recorded from heights of all the point returns within a voxel. Change in range of z value would be defined as 
the change in the difference between maximum and minimum height recorded in a voxel. It is believed that issues around inflated 
height datum as reported in this paper will be negated by using the range of z value metric. 
 
Conclusion 
 
The primary objective of this paper was to report on how a ground-based LiDAR system may be used to detect changes in burned 
landscapes in the near-surface and surface fuel layer at both fine (voxel) and coarse (plot) scale using metrics derived from the 3-
D point cloud data. Results from this research demonstrate the potential of a ground-LiDAR system to detect changes in burnt 
landscapes at both the fine and coarse scales. At the voxel scale, % change in range of z values best discriminated between burned 
and unburned landscapes (up to 40%). The metric, % change in average-z value was the best at discriminating the plots which 
were given different fire treatments while the range metric best differentiated between burned and unburned landscapes. At the 
plot scale, volume estimates seemed to suggest subtle differences between plots with different fire treatments. Although results 
reported in this research indicate very small changes between burned and unburned landscape, it does demonstrate the sensitivity 
of a TLS to detect those very subtle structural changes in the vegetation in response to the prescribed burn event. That said, in the 
event of catastrophic wildfires, the ability of a TLS to detect and quantify the changes will be much more significant. 
 
Future work is needed to investigate comparisons of TLS metrics with traditional field estimates of fuel hazard and fire severity. 
This would also enable better interpretation of the derived metrics. Fuel hazard and burn severity assessment take into 
consideration vegetation and leaf-litter cover before and after the burn and provide a qualitative assessment of change because of 
the burn event. These field assessments are routinely carried out by land managers and fire management authorities in Victoria. It 
is felt that TLS data will also help better analyse and interpret the trends observed in the metrics discussed in this paper. Since in 
this paper, an attempt was made at demonstrating the applicability of a TLS to detect changes in burned landscapes at a local 
scale, it is felt that new methods and techniques will need to be developed which would enable its application at a landscape scale. 
Land managers will have to work with metrics beyond the scale of a voxel. 
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