
Bounds for Overlapping Interval Join on MapReduce

Foto Afrati
∗

National Technical University
of Athens, Greece

afrati@softlab.ece.ntua.gr

Shlomi Dolev
†

and
Shantanu Sharma

Ben-Gurion University of the
Negev, Israel

{dolev,sharmas}@cs.bgu.ac.il

Jeffrey D. Ullman
Stanford University

USA
ullman@cs.stanford.edu

ABSTRACT
We consider the problem of 2-way interval join, where we want to
find all pairs of overlapping intervals, i.e., intervals that share at
least one point in common. We present lower and upper bounds
on the replication rate for this problem when it is implemented in
MapReduce. We study three cases, where intervals in the input
are: (i) unit-length and equally-spaced, (ii) variable-length and
equally-spaced, and (iii) equally-spaced with specific distribution
of the various lengths. Our algorithms offer intuition as how to
build algorithms for other cases, especially when we have some
statistical knowledge about the distribution of the lengths of the
intervals. E.g., if mostly large intervals interact with small intervals
and not within themselves, then we believe our techniques can be
extended to achieve better replication rate.

1. INTRODUCTION
MapReduce [3] is a programming model used for parallel
processing of large-scale data. A mapper is an application of a
(user-defined) map function to a single input and provides outputs
in the form of 〈key , value〉 pairs. A reducer is an application of
a (user-defined) reduce function to a single key and its associated
list of values. The reducer capacity — an important parameter —
is an upper bound on the sum of the total number of inputs that are
assigned to the reducer. We denote the capacity of a reducer by q,
and all the reducers have an identical capacity. Interval join using
MapReduce was introduced by Chawda et al. [2].
Example: Employees involved in the phases of a project.
We show an example to illustrate temporal relations (a relation
that stores data involving timestamps), intervals, and the

∗Supported by the project Handling Uncertainty in Data Intensive
Applications, co-financed by the European Union (European Social
Fund) and Greek national funds, through the Operational Program
“Education and Lifelong Learning,” under the program THALES
†Supported by the Rita Altura Trust Chair in Computer Sciences,
Lynne and William Frankel Center for Computer Sciences, Israel
Science Foundation (grant 428/11), the Israeli Internet Association,
and the Ministry of Science and Technology, Infrastructure
Research in the Field of Advanced Computing and Cyber Security.

c©2015, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015,
Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of
this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0

𝐸𝑚𝑝𝐼𝑑 𝑁𝑎𝑚𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑒1 U 1-Apr –

1-June

𝑒2 V 1-May –

1-July

𝑒3 W 1-Apr –

1-July

𝑒4 X 1-Mar –

1-June

𝑒5 Y 1-Mar –

1-Aug

𝑃ℎ𝑎𝑠𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Requirement

Analysis

(RA)

1-Mar –

1-May

Design (D) 1-Apr –

1-June

Coding (C) 1-May –

1-Aug

1-Mar 1-Apr 1-May 1-June 1-July 1-Aug

RA

D

C

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5

𝑃𝑟𝑜𝑗𝑒𝑐𝑡

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

Figure 1: Two temporal relations (Project(Phase,Duration) and
Employee(EmpId ,Name,Duration)) and their representation
on a time diagram.

need for interval join of overlapping intervals. Consider
two (temporal) relations (i) Project(Phase,Duration) that
includes several phases of a project with their durations, and
(ii) Employee(EmpId ,Name,Duration) that shows data of
employees according to their involvement in the project’s phases
and their durations; see Figure 1. Here, the duration of a phase or
the duration of an employee’s involvement in a phase is given by an
interval. It is interesting to find all the employee that are involved
in a phase of the project. Formally, a query: find the name of all
employees who worked in a phase of the project; requires us to join
the relations to find all overlapping intervals of the relations. For
example, the answer to the query includes employees U with id e1,
W with id e3, X with id e4, and Y with id e5 are involved in RA
phase the project.
Problem Statement. We consider the problem of interval join of
overlapping intervals, where two relations X and Y are given. Each
relation contains binary tuples that represent intervals, i.e., each
tuple corresponds to an interval and contains the starting point and
ending point of this interval. Each pair of intervals 〈xi, yj〉, where
xi ∈ X and yj ∈ Y , ∀i, j, such that intervals xi and yj share at
least one common time, corresponds to an output.

A MapReduce job can be described by a mapping schema.
A mapping schema, for this problem, assigns each interval to
a number of reducers (via the formation of key-value pairs) so
that (i) for each output (i.e., pair of overlapping intervals), there
exists a reducer that receives the corresponding pair of overlapping
intervals that participate in the computation of this output and (ii)
each reducer has a capacity (denoted by q hereon) that constraints
the total number of intervals assigned to this reducer. The
replication rate of a mapping schema is the average number of
key-value pairs for each interval and is a significant performance
parameter in a MapReduce job. We analyze here lower and upper
bounds on the replication rate for the problem of overlapping
intervals.
Our Contribution. We provide lower and almost matching

upper bounds for three cases: (i) unit-length and equally-spaced
(Section 3), (ii) variable-length and equally-spaced, and (iii)
equally-spaced with specific distribution of the various lengths
(Section 4.1). In the third case, we assume that one set contains
only small intervals and the other set only large intervals. We
offer an algorithmic simple technique that takes advantage of this
knowledge to build an algorithm that improves the replication rate
of the second case above.
Related Work. Several types of join operations and a detailed
review of join algorithms for temporal relations are given in [4].
MapReduce-based 2-way and multiway interval join algorithms
of overlapping intervals without regarding the reducer capacity
are presented in [2]. However, the analysis of a lower bound on
replication of individual intervals is not presented; neither is an
analysis of the replication rate of the algorithms offered therein.

2. THE SETTING
A (time) interval, i, is represented by a pair of times [T i

s , T
i
e], T i

s <
T i
e , where T i

s and T i
e show the starting-point and the ending-point

of the interval i, respectively. T i
s - T i

e is the length of the interval i.
Two intervals, say interval i and interval j are called overlapping
intervals if the intersection of both the interval is nonempty.
Mapping Schema. A mapping schema is an assignment of
overlapping intervals to some given reducers under the following
two constraints: (i) a reducer is assigned only q intervals, and (ii)
for each output, we must assign the corresponding intervals to at
least one reducer in common.
Replication rate, r: The replication rate [1] is the average number
of key-value pairs created for an interval.

3. UNIT-LENGTH AND
EQUALLY-SPACED INTERVALS

Two relations X and Y , each of n unit-length intervals are given.
We assume that all the intervals have their starting-points in a
closed interval [0, k], i.e., there is no interval that starts before 0
or after k. Thus, the space between every two successive intervals
is k

n
< 1� k. In other words, the first interval starts at time 0, the

second interval starts at time k
n

, the third interval starts at time 2k
n

,
and the last nth interval starts at time k − k

n
; see Figure 2.

The output we want to produce is a set of all pairs of intervals
such that one interval overlaps with the other interval in the pair.
The problem is not really interesting if all these intervals exist on
the input. The real assumption is that some fraction of them exist,
and the reducer capacity q is selected so that the expected number
of inputs that actually arrive at a given reducer is within the desired
limits, e.g., no more than what can be processed in main memory.
In addition, the case of unit-length and equally-spaced interval is
not realistic, but is explored because it gives us an idea of what
optimal algorithms for more general and more realistic cases would
look like.

A solution to the problem of interval join of overlapping
unit-length and equally-spaced intervals is a mapping schema that
assigns each interval of the relation X with all its overlapping
intervals of the relation Y to at least one reducer in common,
without exceeding q. Since every two consecutive intervals have
an equal space (k

n
), an interval xi ∈ X overlaps with at least

2b1/ k
n
c + 1 = 2bn

k
c + 1 intervals of Y , where at least

⌊
n
k

⌋
intervals of the relation Y have their ending-points between the
starting-point and the ending-point of xi, at least

⌊
n
k

⌋
intervals of

the relation Y have their starting-points between the starting-point
and the ending-point of xi, and an interval yi ∈ Y that have
identical end-points as xi (this inequality does not true for the

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2 2.25

X

Y

Figure 2: An example of unit-length and equally-spaced intervals,
where n = 9 and k = 2.25.

intervals that have starting-points before 1 and after k − 1). In
this section, we will show a lower bound on the replication rate
for interval join of overlapping unit-length and equally-spaced
intervals. After that, we provide an algorithm, its correctness, and
an upper bound on the replication rate obtained by the algorithm.

Theorem 1 (Minimum replication rate) For two relations, X
and Y , of unit-length and equally-spaced intervals, the minimum
replication of an interval, for joining each interval of the relation
X with all its overlapping intervals of the relation Y , is (i) at
least 2 when 2n > q ≥ 2

⌊
n
k

⌋
+ 2, and (ii) at least 2

q

⌊
n
k

⌋
when

2 < q < 2
⌊
n
k

⌋
+ 2, where each relation holds n intervals, q is the

reducer capacity, and k denotes that the starting points of intervals
are in [0, k].

PROOF. First, we consider the case of 2n > q ≥ 2
⌊
n
k

⌋
+ 2.

When q ≥ 2n, a single reducer is enough to hold all the intervals
of both the relations, and hence, the reducer is able to provide
all output pairs (of interval join of overlapping intervals). When
2
⌊
n
k

⌋
+ 1 < q < 2n, a single reducer may hold an interval i ∈ X

and all its 2
⌊
n
k

⌋
+ 1 corresponding overlapping intervals of the

relation Y , and such a reducer is enough to provide all-pairs of
the interval i with its overlapping intervals. However, at the same
time, there must be at least a single interval, say interval j, that is
assigned to the same reducer where the interval i is assigned, but
the interval j is not assigned with all its corresponding overlapping
intervals. Hence, the interval j must be assigned to at least one
more reducer to be coupled with all its 2

⌊
n
k

⌋
+ 1 overlapping

intervals. Therefore, the minimum replication of an interval is at
least 2.

Now, we consider the case of 2 < q < 2
⌊
n
k

⌋
+ 2. Consider

an interval i. Since the interval i has at least 2
⌊
n
k

⌋
+1 overlapping

intervals, all these (2
⌊
n
k

⌋
+ 2) intervals cannot be assigned to a

single reducer. The interval i can share a reducer with at most q−1
(< 2

⌊
n
k

⌋
+ 1) intervals (of the relation Y). In order to assign the

interval i with all the remaining overlapping intervals, it is required
to assign subsets of the 2

⌊
n
k

⌋
+1 intervals, each subset with at most

q−1 intervals. Such an assignment results in at least 2
⌊
n
k

⌋
+1/q−1

subsets of 2
⌊
n
k

⌋
+1 overlapping intervals. Thus, the interval i must

be sent to at least 2
⌊
n
k

⌋
+ 1/q − 1 > 2

q

⌊
n
k

⌋
reducers.

Algorithm 1. We propose an algorithm for interval join of
overlapping intervals, where two relations X and Y (each is of n
intervals of unit-length and equally-spaced) are inputs. Recall that
it is expected that not all possible intervals are present.

We divide the time-range from 0 to k into equal-sized partition
of length w = q−c

3dn/ke , where c =
⌈
n
k

⌉
+ 2. Consider that

by partitioning of the time-range, we have P partitions. We now
arrange P reducers, one for each partition. We consider a partition
pi, 1 ≤ i ≤ P , and assign all the intervals of the relation X
that exist in the partition pi to the ith reducer. In addition, we
assign all the intervals of the relation Y that have their starting or
ending-point in the partition pi to the ith reducer.
Explaining pseudocode of Algorithm 1. A mapper takes an
interval xi ∈ X (line 2) and produces 〈key , value〉 pairs (line 4).
The key represents a partition where the interval xi exists and the

Cases Solutions Theorems Replication rate
The lower bounds

Unit-length and
equally-spaced intervals

1 2 or 2
q

⌊
n
k

⌋
Variable-length and
equally-spaced intervals

3 2 or 2
q

⌊ lmin
s

⌋
The upper bounds

Unit-length and
equally-spaced intervals

Algorithm 1 5 3
qT−S

S
2

Variable length and
equally-spaced (big-small)
intervals

Algorithm 2 5 3
qT−S

S
2

Variable length
(different-length) and
equally-spaced intervals

Algorithms 3 and 4 5 3
qT−S

S
2

Table 1: The bounds for interval joins of overlapping intervals.

Algorithm 1: 2-way interval join algorithm for overlapping
intervals of unit-length and equally-spaced intervals.
Inputs: X and Y : two relations, each is of n intervals.
Variables: k: A point on the timeline after that no interval can
have a starting-point; w: The length of a partition w = q−c

3dn/ke ,
where c =

⌈
n
k

⌉
+ 2; P : The total number of partitions and

reducers.
1 Partition the time-range into P partitions, each of length w
2 Function Map_for_X (xi ∈ X) begin
3 z ← count_partitions(xi)
4 for j ← 1 to z do emit〈j, xi〉 ;

5 Function Map_for_Y (yi ∈ Y) begin
6 sp← starting_points(yi), ep← ending_points(yi)
7 emit〈sp, yi〉, emit〈ep, yi〉
8 Function reduce(〈key , list_of _values[]〉) begin
9 for j ← 1 to P do

10 Reducer i is having
〈i, list_of _values[xa, xb, . . . , ya, yb, . . .]〉

11 Perform interval join over overlapping intervals

12 Function count_partitions(xi) begin
c← Count the total number of partitions that xi crosses
return c

total number of 〈key , value〉 pairs for the interval xi depends on
the total number of partitions that the interval xi crosses, by calling
function count_partitions() (lines 3 and 12). Also, a mapper
processes an interval yi ∈ Y (line 5) and produces at most two
〈key , value〉 pairs (line 7), where the first pair and the second pair
are corresponding to a partition where yi has the starting-point and
the ending-point, respectively (line 6). The value represents the
interval xi or yi itself. In the reduce phase, a reducer i fetches all
the intervals of the relations X and Y that have a key i (line 10)
and provides the final outputs, line 11.

Theorem 2 (Algorithm correctness) Let c =
⌈
n
k

⌉
+2 and let q =

3w
⌈
n
k

⌉
+c, Algorithm 1 assigns each pair of overlapping intervals

to at least one reducer in common, where each relation, X and
Y , holds n intervals, q is the reducer capacity, k denotes that the
starting points of intervals are in [0, k], and w is the length of a
partition.

PROOF. Since every two successive intervals have k
n

spacing,
an interval i ∈ X can overlap with at most 2

⌈
n
k

⌉
intervals of the

relation Y . First, we consider w < 1; in a partition, p of length
w, an interval i can overlap with at most 2w

⌈
n
k

⌉
intervals of the

relation Y . Note that there are at most w
⌈
n
k

⌉
intervals (of the

relation X) that have their starting-points after the starting-point

of the interval i in the partition p, and we called these intervals
post-intervals of the interval i. Also, there are at most c =

⌈
n
k

⌉
intervals (of the relation X) that have either their ending-points
in the partition p or cross the partition p; we call these intervals
pre-intervals of the interval i.

Thus, for w < 1, q = 3
⌈
n
k

⌉
+ c, we can assign the interval

i, post-intervals of i that lie in the partition p, and pre-intervals of
i that lie in partition p at a single reducer. Such an assignment
occupies w

⌈
n
k

⌉
+ c − 1 capacity of the reducer. The remaining

capacity, 2w
⌈
n
k

⌉
+ 1, of the reducer is used to assign all 2w

⌈
n
k

⌉
overlapping intervals of the interval i and an interval, i′ ∈ Y
that have an identical starting-point as the interval i. (Note that
i′ is an overlapping interval for some of the pre-intervals and the
post-intervals of i.) Thus, the interval i is assigned to a reducer with
all its 2w

⌈
n
k

⌉
overlapping intervals of the relation Y . Further, the

interval i will also be paired with all its remaining 2
⌈
n
k

⌉
− 2w

⌈
n
k

⌉
overlapping intervals at some reducers.

Now, we consider w ≥ 1. In this case, for a partition p,
there must be an interval i ∈ X that can be assigned to a reducer
with all its 2

⌈
n
k

⌉
overlapping intervals of the relation Y . Also,

there are at most
⌈
n
k

⌉
post-intervals and c =

⌈
n
k

⌉
pre-intervals

(of the interval i) that lie in the partition p. Thus, we can assign
interval i, post-intervals of i, and pre-intervals of i at a single
reducer. In addition, an interval, i′ ∈ Y such that i and i′ have an
identical starting-point, is also assigned to the reducer. Therefore,
the interval i is paired with all 2

⌈
n
k

⌉
overlapping intervals (of the

relation Y) at the reducer.

4. VARIABLE-LENGTH AND
EQUALLY-SPACED INTERVALS

Two relations X and Y , each of n intervals, are given, where
all intervals can have non-identical length but equally-spaced.
We assume that the first interval starts at time 0, and the space
between every two successive intervals is s < 1; see Figure 3,
where a relation X has 6 intervals, and a relation Y has also 6
intervals. A solution to the problem of interval join of overlapping
variable-length and equally-spaced intervals is a mapping schema
such that each pair of overlapping intervals, one from each of
the relations, is sent to at least one reducer in common without
exceeding q.

We consider two types of intervals, as follows: (i) big and
small intervals: one of the relation, say X , is holding most of the
intervals of length l and the other relation, say Y , is holding most
of the intervals of length l′ � l; we call intervals of the relations
X and Y as small intervals and big intervals, respectively; and (ii)
different-length intervals: all the intervals of both the relations are
of different-length (we will consider the second case in Appendix).
In this section, we will provide lower bounds on the replication
rate for both types of intervals. We then provide algorithms for
interval join of overlapping intervals and show a upper bound on the
replication rate. Throughout this section, we will use the following
notations: lmax : the maximum length of an interval, lmin : the
minimum length of an interval, and w: length of a partition.

4.1 Big and small intervals
In this section, we consider a special case of variable-length and
equally-spaced intervals, where all of the intervals of two relations
X and Y have length lmin and lmax , respectively, such that lmin �
lmax ; see Figure 3. We call the intervals of the relations X and Y
as small intervals and big intervals, respectively.

Since every two successive intervals have an equal space, s, an
interval xi ∈ X of length lmin can overlap with at least 2

⌊
lmin
s

⌋
+1

intervals of the relation Y , where at least
⌊
lmin
s

⌋
intervals of the

0 0.7 1.4 2.1 2.8 3.5 4.2

X

Y

Figure 3: An example of big and small length but equally-spaced
intervals, where n = 6 and s = 0.7.

relation Y have their ending-points between the starting and the
ending-points of xi, at least

⌊
lmin
s

⌋
intervals of the relation Y have

their starting-points between the starting and the ending-points of
xi, and an interval yi ∈ Y has an identical starting-point as xi.
In addition, an interval xi ∈ X of length lmax can overlap with
at most 2

⌊
lmax
s

⌋
+ 1 intervals of the relation Y , where at most⌊

lmax
s

⌋
intervals of the relation Y have the ending-points between

the starting and the ending-points of xi and at most
⌊
lmax
s

⌋
intervals

of the relation Y have the starting-points between the starting and
the ending-points of xi, and an interval yi ∈ Y has an identical
starting-point as xi.

Theorem 3 (Minimum replication rate) For a relation X of n
small and equally-spaced intervals and a relation Y of n big and
equally-spaced intervals, the minimum replication of an interval,
for joining each interval of the relation X with all its overlapping
intervals of the relation Y , is (i) at least 2 when 2n > q ≥ 2

⌊
lmin
s

⌋
,

and (ii) at least 2
q

⌊
lmin
s

⌋
when 2 < q < 2

⌊
lmin
s

⌋
, where q is the

reducer capacity, s is the spacing between every two successive
intervals, and lmin is the length of the smallest interval.

PROOF. First we consider the case of 2n > q ≥ 2
⌊
lmin
s

⌋
+ 2.

When q ≥ 2n, all the 2n intervals of the relations X and Y
can be assigned to a single reducer, which is able to provide all
output pairs. When 2

⌊
lmin
s

⌋
+ 2 < q < 2n, a single reducer

cannot hold all the 2n intervals of the relations X and Y . Hence,
at least a single interval, say j, that is not assigned with all its
2
⌊
lmin
s

⌋
+ 1 overlapping intervals must be assigned to another

reducer. Therefore, the minimum replication of an interval is at
least 2.

Now, we consider the case of 2 < q < 2
⌊
lmin
s

⌋
+ 2. Consider

an interval i of length lmin . Since the interval i has at least
2
⌊
lmin
s

⌋
+1 overlapping intervals, all these (2

⌊
lmin
s

⌋
+2) intervals

cannot be assigned to a single reducer. The interval i can share
a reducer with at most q − 1 intervals of the relation Y . Hence,
in order to assign the interval i with all the remaining overlapping
intervals, it is required to assign subsets of overlapping intervals of
the relation Y such that each subset holds at most q − 1 intervals.
Thus, the interval i must be sent to at least 2

⌊
lmin
s

⌋
+ 1/q − 1 >

2
q

⌊
lmin
s

⌋
reducers.

Algorithm 2. Algorithm 2 for interval join of overlapping intervals
of a relation X of small and equally-spaced intervals and a relation
Y of big and equally-spaced intervals works in a similar fashion
as Algorithm 1 performs the join operation. However, Algorithm
2 creates P partitions of the time-range (from 0 to ns), each of
length of length w = q−c

3dlmin/se
, where c =

⌈
lmin
s

⌉
+ 2. Note

that in Algorithm 2, small intervals are assigned to several reducers
corresponding to their partitions that they cross, and large intervals
are assigned to only two reducers corresponding to their stating and
ending points’ partitions. The correctness of Algorithm 2 proves
that each pair of overlapping intervals is assigned to at least one
reducer in common, where q = 3w

⌈
lmin
s

⌉
+c, where c =

⌈
lmin
s

⌉
+

2.

4.2 An upper bound for the general case
In this section, we show an algorithm and an upper bound on the
replication rate for the problem of interval join of variable-length

but equally-spaced intervals. We use the following notations: T :
the length of time in which all intervals exist, i.e., all intervals
begin at some time greater than or equal to 0 and end by time T ;
n: the number of intervals in each of the two relations, X and Y ,
S: the total length of all the intervals in one relation; and w: the
length of time corresponding to one reducer, i.e., we divide T into
T
w

equal-length segments, each of length w.
Algorithm 3. Algorithm 3 works in a manner similar to Algorithms
1 and 2 do. But this algorithm does more than Algorithms 1 and
2. It finds all intervals that intersect, regardless of whether they
overlap, are superimposed, or any other relation. We divide the
time-range into T

w
equal-sized partitions and arrange T

w
reducers,

one for each partition. After that, we follow the same procedure as
followed in Algorithms 1 and 2.

Theorem 4 (Algorithm correctness) Algorithm 3 assigns each
pair of overlapping intervals to at least one reducer in common,
where q = 3nw+S

T
, each of the two relations, X and Y , holds n

intervals, q is the reducer capacity, S is the total length of all the
intervals in one relation, w is the length of a partition, and T is the
length of time in which all intervals exist.

PROOF. Following the algorithm, each of the n intervals of the
relation Y is sent to at most two reducers. Since there are T

w

reducers, a reducer receives 2nw
T

inputs from Y in average. Since
the length of all the intervals of the relation X is S, the average
length of intervals is S

n
. Following the algorithm, an interval of X

is sent to 1+ S
nw

reducers. Since there are T
w

reducers, the reducer
receives (1 + S

nw
)nw

T
inputs from X in average. Thus, a reducer

receives at most 2nw
T

+ nw
t
(1 + S

nw
) = 3nw+S

T
inputs, which is

equal to the given reducer capacity.

Theorem 5 (Replication rate) For q = 3nw+S
T

and two relations,
X and Y , of variable-length but equally-spaced, the replication
rate of an interval, for joining each interval of the relation X with
all its overlapping intervals of the relation Y is 3

qT−S
S
2

.

5. REFERENCES
[1] F. N. Afrati and et al. Upper and lower bounds on the cost of a

map-reduce computation. PVLDB, 6(4):277–288, 2013.
[2] B. Chawda and et al. Processing interval joins on map-reduce.

In EDBT, pages 463–474, 2014.
[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In OSDI, pages 137–150, 2004.
[4] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Join

operations in temporal databases. VLDB J., 14(1):2–29, 2005.

APPENDIX
We consider a case of different-length intervals, i.e., all the n
intervals of each relation, X and Y , can have different-length. For
a relation X and a relation Y , each is of n different-length but
equally-spaced intervals, the minimum replication of an interval,
for joining each interval of the relation X with all its overlapping
intervals of the relation Y, is same as given in Theorem 3.
Algorithm 4. We propose an algorithm for interval join of
overlapping different-length and equally-spaced intervals, which
belong to two relations X and Y , each is of n intervals. Algorithm
4 works identically to Algorithms 1, 2, and 3. However, Algorithm
4 is different from Algorithms 1, 2 and 3, when it divides the
time-range from 0 to ns into P partitions, each of length w =

q−c
3dlmax/se , where c =

⌈
lmax
s

⌉
+2. The algorithm correctness shows

that Algorithm 4 assigns each pair of overlapping intervals to at
least one reducer in common, where q = 3w

⌈
lmax
s

⌉
+ c, where

c =
⌈
lmax
s

⌉
+ 2.

	Introduction
	The Setting
	Unit-Length and Equally-Spaced Intervals
	Variable-Length and Equally-Spaced Intervals
	Big and small intervals
	An upper bound for the general case

	References

