Lower Bounds on the Communication of XPath queries in
MapReduce’

Foto Afrati
National Technical University
of Athens, Greece

ABSTRACT

We present two algorithms, each depending on a different
data fragmentation of the XML tree. They both compute
XPath queries in MapReduce, by first computing subqueries
and then combining their results. We compute the replica-
tion rate of each algorithm and show it is less than 2.

1. INTRODUCTION

In this paper, we study how to use MapReduce to compute
XPath queries on large XML files. We focus on optimizing
the communication cost. It is known that the sequential
complexity of evaluating XPath queries on XML trees falls
into lower complexity classes with high parallelizable prob-
lems [3]. The tree structure of both the data and the query
facilitate the low sequential complexity. However, when it
comes to using a distributed computational environment to
evaluate such queries, and especially when using the MapRe-
duce framework, rigorous work that optimizes the significant
performance measures is missing. In starting such an inves-
tigation, first we note that, unlike relational databases, XML
files have a hierarchical structure that makes distribution to
compute-nodes special, in that chunks of data in HDF'S are
already structured. This structure can be used already in
the mappers to compute partial answers to the query [9, 10,
6, 7, 5]. Another approach (which is not discussed in this
work) would be to view the data as a collection of one binary
relation and a set of unary relations which are distributed to
the compute-nodes (mappers) randomly, thus the tree struc-
ture of the data cannot be used. This approach however does
not seem to have an obvious advantage — although it may
be worth being investigated rigoursly in order to figure out
its limits.

Communication cost is the size of data transferred among
the compute-nodes during a MapReduce job and it affects
performance. Communication cost per input is the replica-

*This research was supported by the project “Handling Un-
certainty in Data Intensive Applications”, co-financed by the
European Union (European Social Fund - ESF) and Greek
national funds, through the Operational Program "Educa-
tion and Lifelong Learning”, under the research funding pro-
gram THALES.

(©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

Matthew Damigos
lonian University, Greece

Manolis Gergatsoulis
lonian University, Greece

tion rate [4] (one node counts as one input).

In this paper, we give lower bounds on the replication rate
for XPath queries on XML trees, taking into account a limit
on the size of each compute-node. The size of a compute-
node is the number of XML tree nodes stored. The lower
bounds we derive for each round are smaller than 2. Actu-
ally we give proof of the validity of these lower bounds, by
providing an algorithm that achieves this replication rate.

The algorithms presented here use more than one rounds
of MapReduce. In the first round, the data are distributed
to the compute nodes and subqueries are computed. The
next round(s) combine the partial results of the subqueries
to compute the final result. For each of the algorithms
we assume a different fragmentation of the XML tree. We
do not discuss how to implement this fragmentation, which
would be necessary for these algorithms to derive also upper
bounds on the replication rate.

In particular we present two algorithms, one in Sec. 3, where
we do the assumption that a path from the root to any leaf
of the XML tree fits in one compute-node, so descendant
edges of the query are accommodated. The other algorithm
(Sec. 4) accommodates descendant edges in the next rounds
after partial descendant-free subqueries are evaluated.

2. PRELIMINARIES
2.1 XML trees and XPath Queries

Consider a directed, rooted, labeled tree ¢, where its labels
come from an infinite set ©. We denote N (¢) and £(t) the set
of nodes and edges, respectively, of ¢, and we write label(n)
to denote the label of a node n of t. The number d of
edges of the unique path through which n is reachable from
root of ¢ is said to be the depth of n. We define children
and descendants of a node if there is an edge or a path,
respectively.

We consider two types of trees, those that represent XML
documents and those that represent XPath queries. An
XML document is represented by a tree (also called XML
tree) having labels from ¥ on its nodes. XPath queries are
different from XML trees in three aspects. First, the labels of
a query come from the set XU {x}, where * is the “wildcard”
symbol. Second, a query P has two types of edges: £,(P)
is the set of child edges (represented by a single line) and
&,/(P) is the set of descendant edges (represented by a dou-
ble line). Third, a non-Boolean query P has an output node,

denoted by out(P), and is represented by a circled node. A
Boolean XPath query does not have any output node. With-
out loss of generality, we will only consider Boolean queries
here. A subquery of @ is a single XPath query having a
subset of both the nodes and the edges of (). Furthermore,
given an XML tree ¢t and a node n of ¢, we say that the tree
rooted at m is a subtree of t. A subquery is Boolean or has
the same output as the query if the output node is in the
subquery.

The result of applying a query @ on an XML tree ¢ is based
on a set of mappings from the nodes of @ to the nodes
of t, called embeddings. An embedding from @ to t is a
mapping e : N(Q) — N (t) with the following properties:
(1) Root preserving: e(root(Q)) = root(t), (2) Label pre-
serving: For all nodes n € N(Q), either label(n) = * or
label(n) = label(e(n)), (3) Child preserving: For all edges
(n1,n2) € £,(Q), we have that (e(n1), e(n2)) € £(t), and
(4) Descendant preserving: For all edges (n1,n2) € £/,,(Q),
the node e(nz2) is a proper descendant of the node e(n1).

The result Q(t), now, of applying a non-Boolean query Q
on a tree t is formally defined as follows:

Q(t) = {e(out(Q))|e is an embedding from Q tot)}.

If Q is a Boolean query then the result Q(¢) is “true”, only
if there is an embedding from @ to t. A partial embedding
of the query is an embedding of a subtree of the query on
the data tree.

According to Dewey encoding system [1], a unique identifier
of the form xo.x1.72..... x4 can be assigned to each node n
of an XML tree. These labels help to decide whether one
node is descendant of another (if and only if the Dewey label
of the latter is a prefix of the Dewey label of the former), or
what is the distance between nodes on the XML tree.

2.2 MapReduce

We will assume that the reader is familiar with MapReduce
(details can be found in [2]). However, we need to explain
our setting. Typically, each MapReduce job has a map phase
and a reduce phase. If we have a sequence of such jobs, then
the reducers of the first job send their data to the map-
pers of the second job, etc. However, the reducers of the
first job may act also as mappers of the second job (if it
is convenient for the problem at hand) and thus, distribute
the data themselves to the reducers of the second job. This
is the approach we take here. Hence, we will talk about
compute-nodes, instead of distinguishing between mappers
and reducers. There is another unconventionality we adopt.
Since we use the algorithms we present to argue for lower
bounds on the replication rate, we assume that the mappers
of the first job have the ability to send any subtree of the
XML to the first reducers. This is not totally unrealistic,
since many experiments on XML data do a similar fragmen-
tation as ours, because it is a natural way to obtain XML
data from HDFS.

3. XML TREE OF SHORT DEPTH

In this section, we consider XML trees where the root-to-
leafs paths fit into main memory of compute-nodes; i.e., the
size of each compute-node is larger than the depth of the
XML tree.

3.1 Data Fragmentation

The fragmentation of the XML tree is done so that in each
compute-node we include one subtree of the data tree. Each
subtree is rooted in some data node u and all its leaves are
leaves of the data tree. We also include the path from the
root of the XML tree to u. As we will prove later, including
this path adds little extra cost to the replication rate — while,
apparently, prunes more nodes.

3.2 Computing and Combining Subqueries
We name the nodes of the query tree by n;,i = 1,2,....
E.g., in Figure 1, the tree on the left is an XPath query with
23 nodes.

DEFINITION 1. If there is a partial embedding from the
query to the XML tree that maps node n; of the query to
node u of the data tree such that all the descendants of n;
participate (are mapped on some data node) in the partial
embedding, then we say that node u is a n;-node.

Note that the same node can be both a m;-node and n;-
node, for distinct ¢ and j. Thus, by considering partial em-
beddings, we say that we create adorned nodes, where the
adornment is a nonempty set of nodes from the query tree.
Hence, if n; is in the adornment set of a data node m; then
m; is a n;-node.

After distributing the data, each compute-node calculates
partial embeddings of the query and finds mazimal n;-nodes,
for all 4, i.e., the parent of a maximal n;-node is not a n;-
node where n; is the parent of n; on the query tree.

We only distribute to the compute-nodes of second round a)
the adorned nodes which have at least one maximal adorn-
ment in their adornment set and b) all their ancestors (re-
member they are in the same compute-node). If we can
afford to send all such data nodes to one compute-node,
then we begin to adorn more nodes as follows: If a node u
with a non maximal adornment n; has children, each child
with adornment n;;, for all the n;;,j = 1,2,... children of
the query node n;, then we maximally adorn v with n;. We
terminate this procedure when we find no more nodes to
maximally adorn.

If we decide to apply multiple rounds to combine the partial
results from the first round, then use the following observa-
tion:

o We call a node candidate ni-node if some of its children
are adorned accordingly maximally.

e If a data node u is a candidate m;-node then all its
maximally adorned children must meet in the same
compute-node in the next round (otherwise “progress”
is not made).

The above multi-round distribution is feasible because we
do in each compute-node a special kind of deduplication, so
that it never emits two siblings with the same adornment.
Now, in the following subsection we calculate the replication
rate that results from the kind of data fragmentation we

do. This calculation applies to both the data fragmentation
method in this section and to each of the next necessary
rounds that combine the subqueries, since in all cases we
distribute similarly structured data (only less, when non-
adorned nodes are not distributed).

3.3 Analysis of replication rate

We examine the replication rate of the phase where we dis-
tribute the data to the compute-nodes. We analyze in detail
two special cases in this section.

3.3.1 Two level XML tree with high degree

Here, we assume that the XML tree has a root with mg
children and each child ¢; of the root has gm; children itself,
where ¢ is the size of a compute-node. These are all leaves
of the XML tree. Thus the XML tree T has n = 1 + mo +
qE;"O m; nodes in total. For convenience in the calculations
below, we assume that each compute-node has size q + 2.

Each compute-node is identified by a number from 1 to M =
>7"%m;. We send each child of the root ¢; to m; compute-
nodes and each leaf to one compute-node. We send the root
to all the compute-nodes. The total number of compute-
nodes we use is X7"%m;.

In particular child ¢; is sent to a number of compute-nodes
with identifiers (here ¢ can be thought of as the second dot
in the Dewey label):

i—1
z+ ¥, my, z=1,2,...,my

Each leaf [; is sent only to one compute-node. The commu-
nication cost is:

C=31""m; + E7"m; + ¢X7"m;

The first term corresponds to the root, the second term to
the children of the root and the final term to the leaves. The
replication rate is r = C'/n. Since mo < X7"m;, it is easy
to prove that r <1+ %.

3.3.2 XML tree being a full binary tree

Here, we assume the XML tree is a full binary tree with n
nodes. Since we have assumed that the size ¢ of a compute-
node is larger than the length of the path from the root to
a leaf, we have here that ¢ > logn. Again for convenience
in the calculations, we assume that the compute-node size
is ¢ + logn — log ¢ with ¢ > logn.

In this case, each compute-node gets a whole subtree (with
its leaves being all leaves of the XML tree) of size q. Thus
the depth of this subtree is log ¢. The nodes in the XML tree
that are closer to the root than logn — log g are replicated
a number of times. In particular, the nodes at distance
logn —logg—1 (i =1,...,logn — logg — 1) from the root
are replicated 2° times. Thus communication for each level
(distance from root) is:

210g n—logg—1 % 21 — 210g n—logq _ E
q

Hence the total communication cost is:

n n
n——)+ — X (logn —loggq
(q) , (log 24)

The first term counts for the nodes that are replicated once.
By dividing the above by n, replication rate is

1 1
1——-)+ — X (logn —logq
(q) 7 ()

This is approximately logn/q. Since the assumption is that
a path from the root to any leaf of the XML tree fits in one
compute-node, logn < q.

3.3.3 General Remarks

In order to calculate the replication rate in the general case
we combine the intuition from the two cases we analyzed
in detail. The calculation is based on the following remark
for the case where all roots (call them primary roots) in the
data tree that define compute-nodes are in the same level
(as in the cases we studied in detail, e.g., full binary tree).
We believe that this remark can be extended for the general
case too.

e The total communication cost for all nodes at any level
is the same.

In order to prove this remark, we consider a node in the data
tree that is a parent of some primary root. This node adds
as much to the communication cost as add all its children,
because it is sent to exactly all compute-nodes its children
are sent (and no two children are sent to the same compute-
node).

4. TALL XML TREES

Here we assume that a root-leaf path may not fit in one
compute-node but a neigborhood of radius dg in the XML
tree can fit, where dg is the maximum acceptable depth of
a descendant-free (to be defined shortly) subquery.

4.1 Data fragmentation

Consider an XML tree ¢ of depth d;. Since there are root-to-
leaf paths that cannot fit into main memory of the compute-
nodes, we aim to split the root-to-leaf paths. Considering a
positive number m (which will depend on compute-node size
q), we construct a set of fragments for each ¢ = 1,..., [fn—’}
which contains each tree node whose depth is included in
the range [(i — 1)%,i% + dg]. Furthermore, notice that
every two adjacent fragments overlap. In particular, the i*"
fragment contains the top dg nodes from the set i+ 1, where
i=1,..., f(‘jn—f)-\ This overlap ensures that each subquery
given by the decomposition described in next section can be
completely answered in some fragment.

4.2 Computing and Combining Subqueries

DEFINITION 2. Let Q be a query tree and £,,(Q) be the
set of descendant edges of Q. Then the descendant-free sub-
queries of Q) are the queries obtained by eliminating the de-
scendant edges from Q. We denote the set of the descendant-
free subqueries of a query Q as C(Q).

It is easy to see that for each descendant edge d = (n1,n2)
in £,,(Q), there is a pair of queries Q1, Q2 in Cq such that
n2 is the root node of QY2 while n; is a leaf node of Q1.

Here we need some more definitions. A node n of a subquery
Q' in C(Q), such that there exists a descendant edge (n,m)

—~
QO
S

]
2 n H K .
! / \
3 ; \
/ /\ /\ E ; :
S ' \ S
n5 n6 7 ng 9 ; .1 @ n7 .. n8 ©9./
! 8 ¢ A Q4 et T Q9
\ inlo nli o e L e \
nl0 nll nl2 n13 nis4 nis ' ol ni2 o ., (Qs?,'n14.”,' nis
4 Doy S v S 4
\ ;o [P I :
‘. onle S S A Soh !
. A ; *..n19 n20.° IS
nié nl7 n18n19 n20 n21 n22 n23 AN \n17 nig e g 2L 22 n23

Figure 1: A query @ and its descendant-free subqueries Q1, Q2, @3, Q4, @5, and Qs.

in Q, is called a border node of Q'. The set of border nodes
of Q" is denoted by N, ,(Q"). A descendant-free subquery Q’
that does not contain border nodes is a leaf subquery while a
subquery that contains a border node is said to be a non-leaf
subquery.

Ezxample 1. A query tree @ and the set of descendant-free
trees C(Q) = {Q1, Q2, Qs3, Q4, Qs, Qs}, obtained by its
decomposition appear in Figure 1. The set of border nodes
of Q is N//(Q) = {n1,n2,n6,n9}. Qs, Qs4, Qs and Qg are

leaf subqueries while 1 and Q)2 are non-leaf subqueries.

DEFINITION 3. Let t be an XML tree, Q be a query and
C(Q) = {Q1, Q2}. Assume that N(Q1) = qo and q¢1
root(Q2). Let e1 be an embedding from Q1 to t such that
qgo maps on data node u and ez be an embedding from Q2
to t such that g1 maps on data node v. Suppose that v is a
descendant of u. The composition of e1 and ez, denoted as
e1 0 es, is a mapping e from N(Q) to t such that for each
n € N(Q1) then e(n) = e1(n), otherwise e(n) = ez2(n).

FEvaluation Strategy 1. The query evaluation strategy con-
sists in the following three steps:

1. Decompose the query @ into a set of descendant-free
subqueries C(Q).

2. Evaluate separately each subquery in C(Q).

3. Combine appropriately (pairwise as per Definition 3)
the embeddings of the queries in C(Q) to find the em-
beddings of Q.

To combine appropriately the embeddings of the subqueries
in C(Q) we can follow either a multi-round approach or a
single-round approach. In the it" round of the multi-round
approach, we construct one compute-node for each image u
of the i*" border node (proceeding bottom-up in that we first
consider border nodes that have descendant edges to roots of
trees without border nodes). We send to this compute-node
all the descendants of u (Dewey label is used here). The
trade-off between the two approaches is that the amount of
pairs received by a compute-node may exceed the size of
the compute-node; while following multi-round approach we
perform iterative pruning of the intermediate pairs and we
reduce the amount of the pairs sent to each compute-node
in each round.

4.3 Replication rate analysis

The replication rate is less than 2 during the data fragmenta-
tion, since some of the data are replicated only once and the
rest only twice. For the replication rate during the other
rounds, we assume again deduplication (in a similar sense
as in the first algorithm) in the first round. Thus, each
compute-node emits only one (of each nj-nodes set) descen-
dant of a specific data node. The Dewey labels are used to
recognize that. Hence we can assume again that all “rele-
vant” descendants of a specific data node fit in one compute-
node.

5. REFERENCES

[1] S. Abiteboul, I. Manolescu, P. Rigaux, M.-C. Rousset,
and P. Senellart. Web Data Management. Cambridge
University Press, 2011.
J. Leskovec, A. Rajaraman, and J.D. Ullman. Mining
of massive datasets. Cambridge University Press, 2014.
G. Gottlob, C. Koch, and R. Pichler The Complexity
of XPath Query Evaluation. PODS, 179-190, 2003.
F. N. Afrati, A. D. Sarma, S. Salihoglu, J. D. Ullman.
Upper and Lower Bounds on the Cost of a Map-Reduce
Computation. PVLDB, 6(4):277-288, 2013
N. Bidoit, D. Colazzo, N. Malla, F. Ulliana, M. Nolé,
and C. Sartiani. Processing xml queries and updates
on map/reduce clusters. In EDBT, pages 745-748,
2013.

G. Cong, W. Fan, A. Kementsietsidis, J. Li, and

X. Liu. Partial evaluation for distributed XPath query
processing and beyond. ACM Trans. Database Syst.,
37(4):32:1-32:43, Dec. 2012.

M. Damigos, M. Gergatsoulis, and S. Plitsos.
Distributed processing of xpath queries using
mapreduce. In ADBIS (2), pages 69-77, 2013.

J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107-113, Jan. 2008.

S. Khatchadourian, M. P. Consens, and J. Siméon.
Having a chuql at xml on the cloud. In AMW, 2011.
L. Lewandowski. Using Map and Reduce for Querying
Distributed XML Data. MSc. Thesis, 2012.
http://www.inf .uni-konstanz.de/gk/pubsys/
publishedFiles/Lewandowskil2.pdf.

2]
3]

[4]

[5

6

[7]

8]

[9]

(10]

