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ABSTRACT
In several parts of query optimization, like join enumeration
or physical operator selection, there is always the question of
how much optimization is needed and how large the perfor-
mance benefits are. In particular, a decision for either global
optimization (e.g., during query optimization) or local opti-
mization (during query execution) has to be taken. In this
way, heterogeneity in the hardware environment is adding
a further optimization aspect while it is yet unknown, how
much optimization is actually required for that aspect. Gen-
erally, several papers have shown that heterogeneous hard-
ware environments can be used e�ciently by applying opera-
tor placement for OLAP queries. However, whether it is bet-
ter to apply this placement in a local or global optimization
strategy is still an open question. To tackle this challenge,
we examine both strategies for a column-store database sys-
tem in this paper. Aside from describing local and global
placement in detail, we conduct an exhaustive evaluation to
draw some conclusions. For the global placement strategy,
we also propose a novel approach to address the challenge
of an exploding search space together with discussing well-
known solutions for improving cardinality estimation.

1. INTRODUCTION
Column-store database systems have been established over

the last years and have demonstrated that they massively
benefit from high main memory capabilities and multi-core
CPUs. As shown in several papers [1, 7, 10, 13], using such
database principle, the speedup of query performance—in
particular for OLAP scenarios—compared to classical row-
based architectures is immense. Aside from high main mem-
ory capabilities and multi-core CPUs, hardware systems are
more and more changing towards heterogeneity. That means,
a multi-core CPU with large main memory is packed into
one single hardware box together with one or more addi-
tional non-traditional computing units, e.g., graphic cards,
Intel Xeon Phis, or FPGA cores. This heterogeneity trend is
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going to accelerate and database systems have to exploit this
heterogeneity to fulfill increasing performance requirements
from available and upcoming applications.

A significant number of research activities has already
ported traditional database operators to di↵erent comput-
ing units like GPU [5, 4], FPGA [11], or many core proces-
sors [12]. To tackle the heterogeneity aspect, these ported
operators are useful, whereas these operators were always
executed on the corresponding computing unit, hoping to
reduce the overall execution time. However, to e�ciently
utilize heterogeneous hardware environments and to reduce
the overall query runtime in such environments, it is cru-
cial to assign database operators to the appropriate comput-
ing unit for each query separately. This placement assign-
ment has several influencing factors like execution behavior,
data characteristics, and properties of available computing
units [8].

In order to determine placement assignments, various de-
cision models have been proposed, e.g. HOP [8] and HyPE
[3]. These decision models use information about computing
units together with monitored values of previous executions
to calculate the estimated execution time in a cost func-
tion for each computing unit. A more static approach using
instruction counts and execution cycles is also possible to
estimate the runtime [5, 6]. Using one of these placement
models, the resulting estimation can be deployed to assign
an operator to the computing unit with the smallest esti-
mated costs. The mentioned work in this field has proven or
provide a high potential for heterogeneous execution. Never-
theless, it is yet unknown, how much optimization is actually
required for this placement assignment.

Placement Strategies
In our previous work [8], we identified two strategies for
column-store DBMS to support these operator-level place-
ment assignments based on runtime estimations. Both strate-
gies are shown in Figure 1 in the context of query optimiza-
tion and execution. Both strategies have in common that,
after an SQL query is translated into a query execution plan
(QEP), a placement decision is made for each operator. In
this paper, we assume the operators to be executed at a time
with fully materialized intermediate results.

The first placement strategy (local placement optimiza-
tion) conducts an estimation and placement step directly
before the execution of each operator and the placement is
done for each operator separately. Therefore, the estima-
tion can work on the most recent information about data
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Figure 1: Heterogeneous operator placement strate-
gies.

sizes, allowing an exact estimation of data transfers and ex-
ecution. Additionally, only one operator is placed at the
time, leaving a small search space of the amount of avail-
able compute units. However, this approach might be too
greedy since the rest of the QEP is not considered in this
local decision. In particular, data sharing between operators
is hardly considered.

On the contrary, the second strategy (global placement
optimization) decides the placement for all operators of a
QEP before execution. In this case, global placement is done
by considering all dependencies of the QEP. This approach
yields a high potential for better performance compared to
the local placement optimization, because data sharing be-
tween operators is explicitly encouraged to avoid costly data
transfers. However, there is a price for optimizing the whole
query for heterogeneous execution. The two main challenges
are the huge search space of possible placements and the
problem of uncertain or unknown intermediate result sizes.

Contribution
To tackle the issue of how much optimization is required
for the heterogeneity aspect, we examine both placement
strategies for a column-store database system in detail in
this paper. Our main contributions are as follows:

• First, we briefly describe the local placement optimiza-
tion strategy and present advantages and limitations
of this approach (Section 2).

• Second, we introduce the global placement strategy
with additional optimizations to tackle the mentioned
challenges (Section 3).

• Third, we conduct an exhaustive evaluation to com-
pare local and global placement optimization in an
OpenCL based database system (Section 4).

• Finally, we summarize our findings in a property table
illustrating the advantages and disadvantages of both
approaches.

.
To the best of our knowledge, no one evaluated di↵er-

ent query optimization strategies for heterogeneous envi-
ronments in the past. However, di↵erent optimization ap-
proaches were mentioned in previous work: local query op-
timization was used by Breß et al. [2] and Karnagel et al [9]
within an OpenCL based column store database system. He
et al. [5] computed all possible solutions for separate sub-
plans below a given number of operators and combined the
result for the full plan dividing the search space into much
smaller problems. However, this is only applicable for tree
like query plans and might introduce a significant overhead
for large queries.
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Figure 2: Local placement strategy.

2. LOCAL PLACEMENT STRATEGY
The strategy to integrate operator placement at the exe-

cution time of each operator, local optimization, is the most
intuitive approach. Placement is decided right before the op-
erator’s execution, after previously executed operators have
already finished. The input and output data is kept in the
computing unit’s memory until it will be needed on another
computing unit. For local optimization, there are three ques-
tions that have to be considered:

1. How big is the input data?

2. Where is the input data placed at the moment?

3. How does the operator perform on the di↵erent com-
puting units?

The approach is illustrated in Figure 2. The operators
O1 and O2 produce the results x and y. These are stored
on the computing units where the operators were executed,
here illustrated with di↵erent colors. Placement and data
size of each input for operator O3 is considered to calculate
the transfer costs, if transfer is needed, for the hypothetical
execution on each computing unit. The exact data input
size is known for base columns as well as intermediate re-
sults, since previous operators have already finished their
execution. For base columns, the data placement is either
in main memory, or already on a compute unit’s memory, if
an other operator needed the column before. For interme-
diate results, the data is most likely stored on a computing
unit’s memory, where the result producing operator was ex-
ecuted. There is the possibility, that data was evicted from
the computing unit’s memory, if other operators needed ad-
ditional memory space. However, this should be traceable
and the actual memory location should be considered. The
third question with respect to the estimated runtime should
be answered by one of the prediction models presented in
the introduction. Having the transfer time and the opera-
tor’s execution time estimates, a decision can be made by
picking the computing units with the minimal sum of all
input transfers costs and execution time. This is the best
decision from a local optimization point of view. The search
space for this decision is limited to the number of computing
units. The decision procedure is repeated for each operator
in the order of execution. The result transfer is not consid-
ered for the producing plan operator since the data might
be reused by the next operator on the same computing unit.
If the result transfer is needed, it is added to the costs of
the consuming operator instead of the producing one.

The strong advantage of the local placement strategy is
its simplicity and easy implementation. The search space
corresponds to the number of computing units per decision
with one decision per plan operator. Additionally, this ap-
proach works on runtime information about data sizes and
their placement. Furthermore, the decision is only local by



Op Runtime Placement Strategy
CU1 CU2 local global

1 1.2s 0.1s CU2+tr = 1.1s CU1 = 1.2s
2 0.1s 1.2s CU1+tr = 1.1s CU1 = 0.1s

Total: 2.2s 1.3s

Table 1: Local vs. global placement strategy. Data
transfer (if needed) takes always 1s (tr). The initial
data is stored on CU1. The operators are executed
according to their ordering.

trying to find the ideal execution unit for one single opera-
tor. This might not be optimal for the full plan, sacrificing
performance through unnecessary data transfers.

3. GLOBAL PLACEMENT STRATEGY
Applying placement at compile time means making the

placement decision globally during query optimization. This
leads to new possibilities as well as new challenges. An ex-
ample is shown in Table 1 to highlight the performance po-
tential. The example includes two operators with estimated
execution times for two computing units (CU1, CU2). The
initial data resides on computing unit CU1 and every data
transfer, if necessary, takes 1 second. The presented local
strategy would choose CU2 for the first operator, since the
run-time plus transfer-time is less than the execution time
on CU1. In the second step, it chooses CU1 for the same
reason. The total execution time is 2.2 seconds including
transfers. For the global strategy, however, the total exe-
cution time is only 1.3 seconds since the placement can be
globally optimized before execution. Besides the high po-
tential, there are also additional challenges to consider. The
two major challenges are (i) the exploding search space of
global optimization and (ii) the unknown or uncertain data
cardinalities of intermediate results.

3.1 Challenges
Data cardinalities are usually known for base relations

but intermediate results are unknown and can only be es-
timated in the optimization step. However, the exact data
cardinalities are crucial for calculating a good heterogeneous
placement including correct transfer costs. Since this is a
well-known problem in database research, we rely on other
research results to provide realistic estimations for the in-
termediate result sizes.

To the best of our knowledge, the exploding search space
for global placement optimization in heterogeneous hard-
ware environment was not in focus of prior research. For a
global optimization, every possible placement option has to
be considered in order to find the best placement for the full
plan. Being #cu the number of computing units and #op

the number of database operators, then #cu

#op describes
the search space for this query plan. For example, a highly
heterogeneous system with 10 computing units, executing a
query with 100 operators would lead to 10100 possibilities,
which is more than all possible 2-way join combinations for
50 joins! To avoid a much larger search space, we assume
that, (i) the query execution plan is a DAG (directed acyclic
graph) as usual in column-store database system and (ii)
the DAG is fixed throughout our heterogeneous placement.
That means, the heterogeneous placement do not have any
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Figure 3: Global placement strategy.

influence on the structure of the DAG. There are approaches
to cope with such a large search space in join enumeration.
However, the general conditions are di↵erent for our hetero-
geneous placement approach. We identified three properties
that define the large search space in heterogeneous execu-
tion.

1. The search space does not correlate with the actual
runtime. This means, that a query with a large search
space can be based on small relations and therefore
can execute in a short time. In general, the runtime
is highly dependent on the underlying data character-
istics, whereas the e↵ort to evaluate the search space
stays the same.

2. The search space and the execution time scales with
the number of operators.

3. With increasing number of computing units, the query
execution time (ideally) reduces, since new computing
units might be better suited for some tasks. However,
the search space grows exponentially.

The first and the second issue are similar to join enumer-
ation problem, while the third point is unique to hetero-
geneous execution. However, looking at the first point, a
database system that needs to do the join enumeration for,
e.g., 50 joins will reserve a fair amount of time for optimiz-
ing the order. In our case, dependent on the data sizes, the
queries could execute in sub-seconds, leaving only a fraction
of that time for e�cient optimization.

3.2 Greedy-based Approach
To solve the presented challenges for global optimization,

we choose a greedy-based search algorithm together with two
approaches for further optimization. We rely on a greedy-
based algorithm for several reasons. As mentioned earlier,
the search space is too large for a complete search. Opti-
mizing smaller sub-trees is not possible, since we focus on
column stores having execution plans as DAGs instead of
trees. This means the results of an operator can be used by
multiple other operators, making it impossible to define iso-
lated sub-trees. Moreover, a greedy approach makes small
changes to improve the placement without considering every
possibility.

For our greedy implementation, we start with a pre-set
placement decision for every operator. This initial place-
ment could assign the operators randomly to the computing
units. Then, we iterate over each operator and evaluate
the possible placement decisions locally for this operator.
If the algorithm finds a better placement for this operator,
we change the decision in the initial placement. The main
di↵erence to the local approach is that we already have a



Op input Runtime Di↵erent Placements
transfer CU1 CU2 I II III IV V

1 1s 1s 5s 1 2 1 1 1
2 1s 1s 0.1s 1 2 2 1 2
3 5s 5s 0.1s 1 2 1 2 2
4 0.5s 1s 5s 1 2 1 1 1

Total(inc. transfers): 8 11.2 13.1 8.6 3.7

Table 2: Placement cost example. The initial data
is on CU1. If needed, the shown input transfer costs
apply. The operators execute in order.

placement decision for the following operators, leading to
a more informed decision concerning possible data sharing.
Figure 3 illustrates this di↵erence. Additional to Operator 1
and 2, the cost function knows the placement of the opera-
tors 4 to 6 and the data sizes a, b, and c, therefore being able
to calculate inward and outward transfers. Including both
kinds of transfers as well as estimates of execution times
of each compute unit is leading to a more informed deci-
sion than in a runtime-based local optimization. After an
optimization iteration over all operators, the changes made
on one operator’s placement, could influence placement of
the previous ones as well. Therefore, the algorithm has to
iterate over the operators as long as improvements can be
found. When no single placement change of an operator im-
proves the global estimation time, then the algorithm found
a (local) optimum.

The above described greedy approach is fast and improves
a pre-set starting placement iteratively. However, it is still
a greedy approach, which finds a good but possibly not the
best placement for the full plan. One reason for not finding
the optimal placement is the occurrence of operator groups,
that should be placed together. It could be possible that
some operators are most beneficially placed together on one
computing unit, so that data transfers between them are
avoided. However, the best computing unit for the group
might not be the best for the single computing unit, so an
approach which can only change one placement at the time
might not find the best solution. The problem is illustrated
in Table 2. Dependent operators, transfer costs, and run-
times are shown. Varying input transfer times correspond
to intermediate data sizes, e.g., Operator 2 could be a join
with large result, so operator 3 has a high input transfer
time. Local optimization would choose the pure CU1 place-
ment (I). For global optimization, the result highly depends
on the starting placement. If the starting placement is (I),
then (III) and (IV) would be evaluated (besides others) but
(I) would be chosen as placement with the minimal costs.
With a starting placement of (IV) and assuming the algo-
rithm starts from the top, our global strategy would also
evaluate (V) and find it to be the best possible placement.

It is unknown how big these operator groups could be, so
it would be a lot of e↵ort to test all groups of two opera-
tors, three operators and so on. A more practical idea would
be to change the pre-set starting placement and do multi-
ple greedy runs. For example when testing random starting
placements, there would be the possibility that some oper-
ators of a group are already assigned to the right comput-
ing unit, pulling the other operators as well. For that, the
overall result could be improved by testing many di↵erent

starting placements and picking the best plan placement ac-
cording to our execution time estimation. Therefore, we im-
plemented the greedy approach in a hardware-independent
OpenCL version, that can test many di↵erent starting place-
ments in parallel. This also addresses issue 3 from the pre-
vious section. With more computing units, the search space
grows but there is also more computing power to evaluate
more starting placements for a possibly better solution.

Search Space Reduction

In the previous part, we described our greedy approach and
the problem of being dependent on the starting placement.
We need to evaluate many di↵erent (random) placements,
in order to find a good solution. This scales with the search
space, meaning that we should test more starting placements
with a higher search-space (e.g., for more plan operators).
Since we can only evaluate a defined number of placements,
we need to reduce the search space to improve the probabil-
ity of finding a good placement.

We propose to reduce the search space by assigning oper-
ators fixed to one computing unit, if the greedy algorithm
would pick this computing unit in every possible scenario.
For example, Operator 1 and 4 in Table 2 will always be
placed on CU1 even if all other operators are on CU2. We
call these strong placements, where one computing unit is su-
perior in the execution of one operator to an extent that the
worst case data transfers are negligible. Since every greedy
run for any starting placement would pick these placements,
we do not have to consider them in the greedy algorithm
as well as in selecting the starting placement. For Table 2,
this would mean fixing the placement for Operator 1 and 4,
reducing the search space for the other placement decisions
from 24 = 16 to 22 = 4. Depending on the computing units
and operators, this approach can reduce the search space
significantly, even to the point of fixing the placement for
the full plan.

The strong placements can be calculated by iterating over
the plan once for each computing unit and evaluate if a single
operator would be placed on another computing unit, even
if all other operators are on the initial one. For example,
a plan is initially set to CU1. Each operator is tested if
a placement on CU2, CU3, and so on, is beneficial for the
overall runtime while having all other operators on CU1.
This has to be done for each computing unit. If, for example,
one operator is always placed on the same computing unit,
then this operator can be fixed to this computing unit as
a strong placement. Calculating these strong placements
introduces only a small overhead by having the potential to
reduce the search space significantly.

Majority Voting

After determining the strong placements, the remaining open
operator placements can be assigned randomly to the com-
puting units as starting placements for the greedy approach.
Here, we deploy the greedy algorithm for many starting
placements in parallel, ideally even in parallel on di↵erent
computing units. As a result, we get the improved place-
ment from the greedy approach and the estimated costs of
the full plan. According to the costs, we can choose the best
placement for execution.

As an additional step, we look at the output placements
and collect statistics on the operator placements. The statis-
tics can be used to find tendencies of the placements. For



System I System II

Vendor AMD AMD Intel Nvidia
Name A10-5800K HD7660D i7-3960X K20C
Type CPU GPU CPU GPU

Cores 4 384 6 (12 HT) 2496
Freq.(MHz) 3800 800 3300 706

Table 3: Heterogeneous test systems: AMD APU
(CPU and integrated GPU) and a combination of
Intel CPU and Nvidia GPU. The systems comput-
ing units are arranged to be balanced in their com-
putational power.

example, if we run 1000 random greedy searches, 200 would
pick CU1 for operator 1 and 800 would pick CU2 for the
same operator, then we know that CU2 is probably more
suited. Using the statistics for all operators, we apply a
kind of majority voting by combining one common place-
ment from all random runs. This placement is itself eval-
uated concerning runtime estimation as well as used for a
starting placement for another single greedy evaluation.

With the majority voting approach, it is possible to com-
bine many good placements to an even better one, which
was not found by the greedy algorithm using the random
starting placements. However, if the result of the majority
voting is not as good as some other placements, the best
placement is taken from the random runs.

3.3 Summary
Our approach for global optimization includes an informed

greedy algorithm, search space reduction through strong
placements, and the majority voting of random starting place-
ments. Therefore, we are able to globally optimize a full
QEP. Besides the advantage of global optimization, our global
optimization has also limitations. The presented approach
is still a greedy strategy which might only find a good so-
lution but not the optimal one. Additionally a small over-
head is added to query execution for optimization and re-
optimization of the placements.

4. EVALUATION
To evaluate our local and global optimizing approaches,

we implemented both in an established database system.
For this, we chose Ocelot [7], an OpenCL based extension
to the in-memory column store MonetDB [1]. To add het-
erogeneous hardware support to MonetDB, Heimel et al.
implemented this hardware-oblivious extension that allows
operators to be executed on most accelerators using the
hardware abstraction language OpenCL. Most of the ma-
jor CPU, GPU, and accelerator manufactures o↵er OpenCL
support for their hardware. When we started, Ocelot did
not include dynamic placement of plan operators but rather
manual placement of whole queries. However, recent work
was also done in this field by Breß et al. [2].

To support our two approaches, we added our self-learning
decision model [8], which includes several benchmarks to
evaluate data transfer bandwidths. We also included two
placement decision units: (i) in the execution engine of the
database and (ii) in the plan optimizer.

For the evaluation, we use the slightly altered TPC-H
benchmark from Heimel et al. [7]. The benchmark queries
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Figure 4: Reducing the search space by assigning
strong placements fixed to one computing unit.

are altered to avoid string operations, which are not sup-
ported by the Ocelot operators, yet. This is also the reason
why some queries were not used for our evaluation. All in
all, we tested our approaches on a set of 14 queries from
TPC-H.

We evaluated our approaches with two di↵erent hardware
setups. The two systems are presented in detail in Table 3.
Both test systems run with Ubuntu Linux. The first test
system is based on an AMD APU with an on-die integrated
GPU, which, however, does not support zero copy in our
current Linux configuration. That means that data has to
be transferred in order to be used by the GPU. The second
test system includes an Intel CPU and a Nvidia discrete
GPU. Here, memory also has to be transferred to the GPU,
since it is attached by PCIe 2.0 and employs a separate GPU
processor and GPU memory.

Please note, that heterogeneous placement is needed for
any heterogeneous environment in order to utilize all com-
puting units. Depending on the abilities of each comput-
ing unit and the computational balance between them, a
query can be spread over all computing units or alterna-
tively use only that computing unit, which fits best. So we
expect for the placement decision, to be at least as good as
the fastest computing unit for a query. Finding this fastest
computing unit is also a benefit of using a dynamic place-
ment approach. In most cases, it is also possible to improve
the fastest single-computing-unit result by applying place-
ment decisions on operator level. To show the e↵ect of the
placement decisions, we execute one operator at one time
(operator-at-the-time execution model). We do not execute
operators in parallel if they are placed on di↵erent comput-
ing units. Perceived speedups are purely achieved through
the placement decisions.

4.1 Search Space Reduction
First, we want to show the e↵ectiveness of our optimiza-

tions for the proposed global optimization approach. This
is done on System I with the TPC-H benchmark using scale
factor 5. First, we reduce the search space by finding strong
placements. For TPC-H Query 1 for example, our prototype
database system produces a plan with 43 operators, that can
be executed on di↵erent computing units. For the system
with 2 computing units, this results in a search space of:

243 = 8, 796, 093, 022, 208 possibilites

With our greedy approach, we do not need to search this
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Figure 5: Performance results for TPC-H queries on test system I with SF 5.
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Figure 6: Performance results for TPC-H queries on test system II with SF 10.

high number of possibilities. However, since the algorithm is
very dependent on the starting placement, the probability to
pick a good starting placement by chance is very low. When
we apply our search space reduction, we are able to assign 26
operators to computing units, that would always be placed
this way in any greedy search. Removing these operators
from the search, reduces the actual searching time as well
as the search space for picking random starting placements.
The search space for the 17 remaining operators is:

217 = 131, 072 posibilities

This is still too high to evaluate all possibilities in a fraction
of the actual query execution, but it is much more likely
to pick a good starting placement for the greedy search.
The results for all our TPC-H queries is shown in Figure 4.
Please note, that these results could be di↵erent for other
data sizes (e.g., other scale factors) or in other hardware en-
vironments. For example, with a highly superior computing
unit, most operators will be assigned as strong placements,
while a perfectly balanced environment will have less strong
placements.

Please note, that all operators that can be successfully
fixed by our global optimization are also chosen in the lo-
cal optimization, meaning that queries with many strong
placements will not di↵er much between local and global
placement decisions.

4.2 Greedy Search Performance
After reducing the search space by fixing strong place-

ments, the goal is to evaluate as many starting placements
as possible. For that we use our greedy algorithm in dif-

ferent implementations. The actual runtime of one greedy
search is highly dependent on the amount of operators in
the query plan. Not only one iteration over many opera-
tors takes longer, but one single change of an operator re-
sults in additional iterations over all operators, to evaluate
if this change influence other decisions. The unfixed portion
of operators in Figure 4 defines the variable search space.
For Test System I, we have seen the naive, single threaded,
search performance to be between 5 greedy runs per ms for
query 19 (32 variable operators) up to 200 greedy runs per
ms for query 6 (5 variable operators). Using OpenCL for the
greedy search, we gain a speedup of up to 6x when execution
on the CPU. This is to be expected for a 4 core system, since
OpenCL also applies vectorization and code optimizations.
For the GPU, a speedup of up to 3x can be seen, which indi-
cates in this case that the CPU is more suited for the task.
However, all computing units should be used in parallel to
evaluate starting placements.

For the final evaluation, we decided to run 100 greedy
searches, which takes in the worst case (Query 19) about 4
ms, when using the OpenCL implementation on the CPU.
After the first searches, we get the estimated query runtime
from the search results. Depending on this runtime, we can
decide to do more greedy searches, if the query runtime is
high, or to stop the search and start executing the plan,
if the query runtime is low. A reevaluation is done every
100 search runs, since the estimated query runtime could
improve during optimization. As a general rule, we propose
spending about 1% of the total query runtime on optimizing
the heterogeneous placement.
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Figure 7: Placement performance comparison with varying transfer costs. The transfer bandwidths are taken
from System I and multiplied with a transfer cost multiplier.

4.3 Evaluation Results
We compare our two optimization approaches on our set

of TPC-H queries by running the queries first on the single
computing units and afterwards, we use the gathered knowl-
edge of the operator runtimes to execute the query heteroge-
neously with local or global optimization. For every query,
the initial data is stored in the main memory, meaning that
initially no data is cached on the computing units’ memories.
The results for the first test system are shown in Figure 5.
As shown, for some queries the CPU is clearly better and for
other queries the GPU is more suited. Heterogeneity-aware
operator placement can improve the execution in most cases.
In detail, global optimization is always better or equal in per-
formance compared to local optimization. However, the dif-
ference is not significant. Further investigations have shown
that global optimization finds sometimes the same or only
a slightly di↵erent plan than local optimization. For the
shown results, we used only about 1% of the query execu-
tion time for the global optimization. Testing with a higher
percentage of optimization did not lead to better results.
This shows, that our current global approach is suitable to
find a good and possibly the best placement for the given
query plan, however, the di↵erence to local decisions is not
as significant as having high impact on performance.

On the second test system, the results look similar. Here,
the GPU is mostly better for full query execution. Local
and global optimization show equally good or better results
than the GPU. In some cases however, the local approach is
slightly better than global optimization, which is caused by
the optimization overhead. On the other side, for Query 1,
local optimization is actually slower than the single GPU
version, which is caused by its rather uninformed decision
process. The local decision involves data transfers to a com-
puting unit and the operators’ execution. This makes sense
from the execution-time perspective, however, from a global
view, additional data transfers could be avoided by consid-
ering output transfers.

4.4 Evaluation with Changing Transfer Costs
To investigate e↵ects caused by unnecessary data trans-

fers in more detail, we conduct further experiments with
theoretical data transfer properties. As a base line, we use
System I, with the measured transfer bandwidth for each

computing unit. Then, we introduce a multiplier (M) for
the transfer costs, which allows us to adjust the theoret-
ical transfer costs from zero (M = 0) to any multiple of
the original transfer costs. The results are shown in Fig-
ure 7 for TPC-H Query 1 and 19. We can clearly see, that
the estimated CPU-only performance is independent of the
multiplier since no data needs to be transferred. For the
GPU-only version, the initial data transfers of base columns
and the final result transfers cause a linear scaling with the
transfer costs. For no transfer costs (M = 0) local and
global optimization always produce the same result, since
both approaches solely decide the placement on the opera-
tor execution time and data sharing yields no benefit. With
increasing transfer costs, the results di↵er because local op-
timization only considers input transfers and execution for
an operator while global optimization considers execution,
input and output transfer.

In Q1 (Figure 7(a)) the gap between the two strategies
becomes large for 0.7 < M < 8. The reason is one operator
that is much faster on the GPU than on the CPU. As long
as the input transfer costs are smaller than the execution
speedup, the operator is placed on the GPU. However, out-
put transfers are much higher and reduce the overall perfor-
mance to be less than the CPU-only execution. For M > 8
the input transfers are too expensive and all operators are
placed on the CPU. The global optimization is always better
than or equal to the best single-computing-unit execution,
being more reliable than local optimization. The e↵ects for
Q19 (Figure 7(b)) are similar, however, with a smaller gap
between local and global optimization. For the remaining
queries, the gaps were even smaller up to the point that, for
some queries, local and global optimization chose the same
placement for all values of M .

5. CONCLUSION
In this work, we have evaluated two operator placement

strategies for heterogeneous hardware environments. The
first, local placement optimization at execution time, is easy
to integrate but limited on its optimization potential. The
second, global placement optimization at compile time, in-
troduces a large implementation e↵ort, with the ability to
find a more optimal plan. In this paper, we explained how
to implement both strategies, including optimizations to re-



Property Local Strategy Global Strategy

1. Search space + small - huge
2. Computational overhead + little - some (can be defined)
3. Cardinalities + precisely known - need to be estimated
4. Implementation + simple - high implementation e↵ort
5. Decision - local (not fully informed) + global (informed)
6. Plan structure - fixed + could be changed
7. Worst-case placement - worse than single CU + best single CU

Table 4: Advantages and disadvantages of local and global placement strategy.

duce the search space and additional evaluations on the
outcome of random placements. By applying our imple-
mentations and optimizations in an OpenCL-based database
system within two test systems, we demonstrated that the
global approach achieves better or similar performance than
the local approach. However, the speedup is mostly not
significant. Additionally, in our evaluation with theoreti-
cal transfer costs, we illustrated the e↵ects of these costs
and the worst-case performance we can expect from both
strategies. While global optimization will always find a plan
better than or similar to single-computing-unit execution,
local optimization might choose a plan worse than the single-
computing-unit execution.

Table 4 summarizes the advantages and disadvantages of
both placement strategies. In this paper we presented ways
to weaken the disadvantages of global optimization in Point
1 and 2. However, even with our approaches, global op-
timization achieves mostly a similar performance as local
optimization on our test systems. On the other side, in our
hypothetical tests, global optimization shows a reliably good
performance compared to local optimization. Additionally,
with global optimization, the placement decision could in-
fluence the physical and logical query plan structure. While
this is not the focus of our paper, we would like to mention
that changing the plan structure would only be possible with
a global approach, where the structure might not be fixed,
yet.

In the end, it depends on the use case which strategy is
more suitable. From an implementation point of view, local
optimization is easier and faster to implement. However,
global optimization is more reliable to find a good operator
placement as well as enabling plan changes. Especially the
last point will be part of our future work.

6. ACKNOWLEDGMENTS
This work is partly funded by the German Research Foun-

dation (DFG) within the Cluster of Excellence “Center for
Advancing Electronics Dresden”and by the European Union
together with the Free State of Saxony through the ESF
young researcher group “IMData” 100098198. Parts of the
evaluation hardware were generously provided by Dresden
CUDA Center of Excellence.

7. REFERENCES
[1] P. A. Boncz, M. L. Kersten, and S. Manegold.

Breaking the memory wall in monetdb. Commun.
ACM, 51(12):77–85, Dec. 2008.

[2] S. Breß, M. Heimel, M. Saecker, B. Kocher, V. Markl,
and G. Saake. Ocelot/hype: Optimized data

processing on heterogeneous hardware. PVLDB,
7(13):1609–1612, 2014.

[3] S. Breß and G. Saake. Why it is time for a hype: A
hybrid query processing engine for e�cient gpu
coprocessing in dbms. Proc. VLDB Endow.,
6(12):1398–1403, Aug. 2013.

[4] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. SIGMOD ’04, pages
215–226, New York, NY, USA, 2004. ACM.

[5] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4):21:1–21:39, Dec. 2009.

[6] J. He, M. Lu, and B. He. Revisiting co-processing for
hash joins on the coupled cpu-gpu architecture.
PVLDB, 6(10):889–900, 2013.

[7] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. PVLDB, 6(9):709–720,
2013.

[8] T. Karnagel, D. Habich, B. Schlegel, and W. Lehner.
Heterogeneity-aware operator placement in
column-store dbms. Datenbank-Spektrum, 2014.

[9] T. Karnagel, M. Hille, M. Ludwig, D. Habich,
W. Lehner, M. Heimel, and V. Markl. Demonstrating
e�cient query processing in heterogeneous
environments. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 693–696, New York, NY,
USA, 2014. ACM.

[10] S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing database architecture for the new
bottleneck: Memory access. The VLDB Journal,
9(3):231–246, Dec. 2000.

[11] R. Mueller, J. Teubner, and G. Alonso. Streams on
wires: a query compiler for fpgas. Proc. VLDB
Endow., 2(1):229–240, Aug. 2009.

[12] B. Schlegel, T. Karnagel, T. Kiefer, and W. Lehner.
Scalable frequent itemset mining on many-core
processors. In Proceedings of the Ninth International
Workshop on Data Management on New Hardware,
DaMoN ’13, pages 3:1–3:8, New York, NY, USA, 2013.
ACM.

[13] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: a column-oriented dbms. VLDB
’05, pages 553–564, 2005.


	Introduction
	Local Placement Strategy
	Global Placement Strategy
	Challenges
	Greedy-based Approach
	Summary

	Evaluation
	Search Space Reduction
	Greedy Search Performance
	Evaluation Results
	Evaluation with Changing Transfer Costs

	Conclusion
	Acknowledgments
	References

