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ABSTRACT
Energy efficiency by means of reduction in wasteful energy
consumption is a growing policy priority for many coun-
tries. Innovative systems should be designed to continuously
monitor a smart city environment and provide all stake-
holders the tools to improve energy efficiency. This paper
presents the EDEN platform, designed to collect and ana-
lyze thermal energy consumption of residential and public
building heating systems. EDEN is being deployed in a ma-
jor Italian city and collects energy consumption measure-
ments through an extensive smart metering grid involving
thousands of buildings. EDEN also collects and analyzes
indoor climate conditions, and user feedbacks, such as their
thermal comfort perception, by means of an ad-hoc social
network. Collected data are further enriched with temporal
and spatial information at different abstraction levels and
meteorological data available as an open source data set.
Several technical Key Performance Indicators (KPIs) have
been defined to inform users on their building thermal en-
ergy consumption, while user-friendly KPIs present energy
savings or over-consumptions in an informative fashion.

1. INTRODUCTION
In the last few years, the interest in urban data computing

is continuously growing both in the industrial and research
domains, as well as in the Public Administration. Industries
are attracted by the business opportunities arising from the
design, implementation, and exploitation of novel technolo-
gies and applications to effectively support all the crucial
aspects of Smart Cities management. Researchers, instead,
are interested in the challenging issues coming from the ap-
plication of innovative data management and mining tech-
niques to new and more complex fields. Innovative systems
should be designed to continuously monitor a smart city
environment and suggest new ways to improve the quality
of life within an urban environment, for both citizens and
the Public Administration. A complete overview of the key
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challenges of urban computing from the computer scientists
perspective is presented in [25]. Among the large variety
of applications available in the context of smart cities, this
paper focuses on energy consumption, and specifically on
thermal energy consumption in buildings during the win-
ter period. The goal is to improve energy infrastructures
and reduce energy consumption, and the associated costs,
by suggesting energy-saving strategies to users and by pro-
viding better information to the different people involved in
the energy management roles.

Energy efficiency is a growing policy priority for many
countries around the world, as governments seek to reduce
wasteful energy consumption and encourage the use of re-
newable sources. The International Energy Agency (IEA)
has estimated that in terms of primary energy consump-
tion, buildings represent roughly 40% of total final energy
consumption in most countries. The amount of this energy
used for heating and cooling systems is about 60% in the
residential sector and 45% in the service one [12].

Important research activities have been carried out to use
database management systems and exploratory data min-
ing techniques in the field of storage and analysis of en-
ergy data to evaluate the efficiency of buildings. The pro-
liferation of sensor networks for monitoring indoor and out-
door environmental parameters [16, 19] has brought to the
facility managers huge archives of measures with tempo-
ral and spatial references. Research contributions on these
large data volumes have been carried out for: (i) support-
ing data visualization and warning notification [17, 20, 24];
(ii) efficient storing and retrieval operations based on NoSQL
databases [19, 23]; (iii) discovering anomalous behaviors us-
ing clustering algorithms [6, 24], Support Vector Machines
(SVM) [9] and outlier detection [21]; (iv) characterizing con-
sumption profiles among different users [2, 9, 20]; identify-
ing the main factors that increase energy consumption (e.g.,
floors and room orientation [10], location [9, 14]).

In this paper we describe the Energy Data ENgagment
platform, EDEN, designed to monitor and analyze thermal
energy consumption of heating systems for enhancing user
energy awareness. EDEN collects data from smart meters
deployed in thousands of buildings in Turin, a major Ital-
ian city. EDEN also collects and analyzes indoor climate
conditions by means of temperature sensors installed in a
subset of the monitored buildings. Thermal comfort per-
ception and user feedbacks on indoor climate conditions are
also collected by means of an ad-hoc social network. Col-
lected data are further enriched with temporal and spatial



information at different abstraction levels, and meteorolog-
ical data available as an open source data set. Several tech-
nical and user-friendly Key Performance Indicators (KPIs)
are defined within EDEN targeting different users. A tech-
nical KPI informs users on their building thermal energy
consumptions, while a user-friendly KPI explains monetary
savings or overconsumption by converting its value into the
price of commonly purchased goods. EDEN is designed, de-
veloped and experimented within the context of a publicly-
funded research project, including both academic and in-
dustrial partners that contribute to make it a live platform,
with actual deployment and real data.
This paper is organized as follows. Section 2 discusses

our vision towards enhancing energy awareness through the
Energy Data ENgagment platform. Section 3 describes the
main building blocks of the proposed system. For some
blocks, we describe our first implementation to show both
the feasibility and high potential of the proposed approach.
Section 4 reports a preliminary analysis of thermal energy
consumption for 2 school buildings and 6 residential build-
ings located in Turin. Section 5 draws conclusions and
presents future developments of this work.

2. PLATFORM OVERVIEW
Figure 1 shows the overall architecture of the EDEN sys-

tem. In this study we focus on an instance of EDEN tai-
lored to an indoor heating monitoring system. However, the
EDEN architecture can be easily tailored to different in-
door monitoring contexts, such as electric cooling, and out-
door monitoring applications as well. It includes three main
components, named Data Platform, Publication Platform,
and Social Platform, briefly described below and detailed in
the following sections.
EDEN is designed for the collection, storage, modeling,

and analysis of a large amount of heterogeneous data to
provide different levels of relevant knowledge. The aim is
to make people aware of their energy and thermal consump-
tions, as well as encouraging them to pursue energy sav-
ing strategies. Collected data include energy consumption
logs provided by thermal smart meters and indoor climate
conditions monitored through indoor temperature sensors.
In addition, data on the user thermal comfort perception
of indoor climate conditions and user feedbacks are gath-
ered through an ad-hoc social network. Heterogeneity in
terms of formats, timings and sampling periods, and sources
presented a challenge to the designers, also considering the
changes over time of this factors, determined by contexts
(e.g., smart meters update) or design improvements. To
this aim, EDEN exploits a non-relational schema-free data
warehouse, which allows coping with frequent changes in
data formats without technological issues. This component
will be detailed in Section 3.3.
Energy consumption data are collected by means of a large

number of smart meters (4,000 as of December 2014) de-
ployed in Turin (Italy) by IREN [13] to monitor thermal
energy for district heating. IREN is a multi-utility com-
pany listed on the Italian Stock Exchange and operates in
the sectors of electricity, thermal energy for district heating,
gas, management of integrated water services as well as the
collection and disposal of waste.
Data on energy consumption and on monitored indoor

climate conditions, collected through sensors and smart me-
ters, are stored in the Data Platform component. These

data are enriched with spatial and temporal information at
different granularity levels as well as with various meteo-
rological conditions. The enriched dataset is stored in a
datawarehouse and is managed by the Publication Platform
component. Specifically, an informative dashboard is gen-
erated based on a selection of Key Performance Indicators
(KPIs) to produce useful feedbacks to the different users
and suggests ready-to-implement energy efficient actions or
strategies. Mainly, the following two classes of KPIs have
been proposed. (i) Technical KPIs allow informing users on
the thermal energy consumption of their building, but also
comparing the consumption between buildings in the same
neighborhood, also in different time periods. Comparison
can be performed under similar meteorological conditions.
(ii) Informative and user-friendly KPIs present the results
of the analysis on energy savings and overconsumption in an
informative fashion, using simple and easily understandable
comparisons according to the user profile. For example, let
us consider the energy consumption of a secondary school,
and suppose that we would like to improve students’ energy
awareness. An informative and user-friendly KPI can pro-
vide the school energy savings in terms of energy needed for
heating the gym for a given number of days. Alternatively, it
can explain the possible monetary savings in terms of com-
monly purchased goods (e.g. average number of pizzas that
could have been purchased by saving on energy consump-
tion).

The Social Platform component is a digital and social
platform which will be developed as a social network where
users can share their feedbacks and their perceptions of in-
door thermal comfort (e.g. too hot, too cold, or comfort-
able). Furthermore, it provides visibility of both technical
and informative KPIs. The aim is ehnancing energy aware-
ness and stimulate sustainable behaviors to optimize energy
consumption.

The EDEN platform also includes the knowledge extrac-
tion block for discovering interesting associations among ther-
mal energy consumptions, indoor climate conditions, mete-
orological conditions, and user perception of indoor thermal
comfort in the form of association rules [1]. Association rules
represent a powerful exploratory data mining approach able
to discover interesting and hidden correlations in the data.

Finally, a subset of interesting and open data (e.g., KPI
values) will be published in the Smart Data Platform to im-
prove both individual and collective energy awareness. The
Smart Data Platform exploited in EDEN is the Yucca Smart
Data Net [18] developed by the Piedmont Region (Italy).

3. PLATFORM COMPONENTS
In this section we describe the main components of the

proposed EDEN platform, which are currently under devel-
opment.

3.1 Data platform
Remote measurements of energy consumption are collected

by IREN [13], an Italian energy-provider company, by means
of gateway boxes installed in monitored buildings. Each
gateway includes a GPRS modem with an embedded pro-
grammable ARM CPU. An ad-hoc software has been de-
veloped to execute the following activities: sensor manage-
ment, GPRS communication, remote software update, data
collection scheduling, and collected data sending to a remote
server.



Figure 1: The EDEN system architecture.

Each gateway has in charge the management of all the
sensors deployed in its building. Thermal energy is mea-
sured under different aspects, such as instantaneous power,
cumulative energy consumption, water flow and correspond-
ing temperatures. Furthermore, gateways also collect indoor
temperature and the status of the heating system.
A cloud architecture is used for storing and processing all

the monitored data. As of December 2014, there are about 4
thousands monitored buildings, each generating about 2,000
data frames per day. Thus, EDEN needs to manage a grow-
ing base of at least 8 million data frames per day. The gate-
ways send the data frame to the cloud architecture, where a
firewall first authenticates the data sender and then assigns
each data frame to one of four dispatchers to guarantee the
system reliability. Each dispatcher delivers the frame to a
cluster of computers including different processing servers
where data are stored in an HDFS distributed file system.
The dispatcher is able to recognize if the process server has
stored the frame correctly and in that case it sends the ACK
to the gateway which can send the next data frame.
Each processing server elaborates the received data and

stores the result in an Oracle database. The logical model of
the database includes the following three tables: (i)The Build-
ing table contains the main features characterizing each build-
ing such as address and volume; (ii) the Sensor table stores
the list of sensors located in each building and the main char-
acteristics for each sensor (e.g., unit of measure, description,
sensor type and model, etc.); (ii) the History table stores the
collected measurements for all sensors. On average, every 5
minutes a data frame is received from each building. Then,
corresponding data are stored in many records, with one
record for each measurement value.
To efficiently perform the management of a large vol-

ume of collected data, different strategies have been adopted
(e.g., data sharding, distributed map-reduces, and data repli-
cation).

3.2 Data integration and enrichment
Data collected through the smart meters are aggregated

and enriched with additional contextual information acquired
from external open data sources. More specifically, to ana-
lyze the temporal distribution of thermal energy consump-

tion, the following time granularities are considered: day,
month, 2-month, 3-month, 6-month time periods. Moreover,
each day is classified as holiday or not, and the measure-
ment time is aggregated into the corresponding daily time
slot (morning, afternoon, evening, or night).

In Italy, heating systems are operated only from October
15th to April 14th, hence times periods outside this range
were not considered. In addition, since the heating systems
under monitoring within EDEN are operated at fixed time
slots, each aggregation (morning, afternoon, evening) in-
cludes only the time slots when the system is actually on
(e.g., morning from 6:00a.m. to 11:59a.m, afternoon from
12:00p.m to 6:59p.m., evening from 7:00p.m to 10:00p.m.).

To analyze the spatial distribution of thermal energy con-
sumption, different space granularities are also considered
beyond the building addresses. In addition, each address
is mapped to the corresponding geographical coordinates
(longitude and latitude degrees), neighborhood and city dis-
trict including that neighborhood. While the address is an
information recorded for the monitored building, the geo-
graphical coordinates and both the neighborhood and dis-
trict names corresponding to the address are added as ad-
ditional contextual features to the repository. We exploited
the Google Maps APIs [11] for geocoding street addresses.
Furthermore, topological information about neighborhood
names and districts are integrated in the repository as well.
The latter have been retrieved from [22]. Topologies are used
to graphically analyze the most significant spatial trends in
thermal energy consumption data and were encoded in Geo-
JSON, which is a standard format for encoding a variety of
geographic data structures.

The above data were also enriched with meteorological in-
formation collected from the web. Specifically, historical me-
teorological data were taken from the Weather Underground
web service, which gathers data from Personal Weather Sta-
tions (PWS) registered by users. For the city of Turin more
than twenty PWS are distributed throughout the territory
and about 4 of them are directly located inside the area con-
sidered in this study. The decision to use data from PWS is
motivated by the fact that they reflect with high accuracy
the real conditions registered in their neighborhood, as op-
posed to other services that provide estimated values with
respect to a wider area. Although the measurement fre-
quency can be easily set by the user for each PWS (and can
vary over time), the average value for the ones we consid-
ered was about 5 minutes. Data were collected for the period
going from October 2012 to April 2013. More specifically,
each measurement includes the air temperature (expressed
in degree Celsius), the relative humidity (percentage), the
precipitation level (mm), the wind speed (km/h) and the
sea level atmospheric pressure (hPa). The date and time of
each measurement is also included.

3.3 Data warehouse
While the data collection from smart meters exploits an

Oracle database, due to the fixed and constant nature of
those measurements, enriched data is much more variable
and heterogeneous, and its analysis requires a different tech-
nological solution. To this aim, enriched data are modeled
into a document-oriented distributed data warehouse pro-
viding rich queries, full indexing, data replication, horizontal
scalability and a flexible aggregation framework, including
a distributed map-reduce engine. The current database em-



Figure 2: The EDEN data warehouse design.

powering EDEN analytics inside the Publication Platform
is MongoDB [7], and to our purpose it is actually exploited
as a data warehouse: periodically, sensor-collected data and
social-platform data are enriched, integrated and loaded into
a MongoDB collection.
Following best practices in data warehouse design, data

are de-normalized and redundant information is added to
each record (document) to speedup read performance by
avoiding join operations (which are not sopported by Mon-
goDB), and resulting in fast querying and KPI computa-
tion. The model design aims at providing a human-readable
document format, hence the choice of long, self-descriptive
field names, with sub-documents for each separate aspect
of the record, from user feedbacks to geo-location, through
smart meter measurements and other contextual informa-
tions. Such structured choice helps in coping with hetero-
geneity, but presents a main drawback in disk space usage:
each field name is re-written within each document, together
with all the redundant information that enrich the measure-
ment. However, the low cost of disk space nowadays makes it
an acceptable issue, also considering that no image or video
data are currently included.
In Figure 2 the data warehouse conceptual model is pre-

sented: the fact table consists of a main measure, the energy
consumption in a 5-minute time period, and some additional
metadata coming from indoor sensors, outdoor PWSs, and
the social data platform collecting customer feedbacks. Two
hierarchies are defined: a time-related hierarchy and a place-
related one. The former provides many different blends of
time spans, from minutes to months and years. The lat-
ter starts from the physical sensors inside each monitored
building and builds up to the whole city, with the building
volume and the geolocation coordinates as related features
included in the document.
Some metadata, in particular weather data and customer

feedbacks, may require some additional pre-processing dur-
ing the data loading phase because of different time spans:
e.g., a customer feedback given at a certain point in time
may be considered valid for a longer period than the specific
5-minute of a single data warehouse document, and weather
data may be unavailable for a specific point in space. The
solution adopted in EDEN supposes that customer feedback

in terms of indoor environment comfort has a temporal va-
lidity of 30 minutes, which is distributed from 15 minutes
before the feedback is provided and 15 minutes after. Hence,
a customer reporting a very cold indoor environment at mid-
night, is associated with 5-minute documents from 23:45 (in-
cluded) to 00:15 (excluded). Weather data associated with
a specific building and address are computed as a distance-
based weighted mean of the values provided by the three
nearest PWSs. The weight is inversely proportional to the
distance from the PWS to the building location, hence three
equally distant PWSs would have the same weight in deter-
mining the outdoor values of a given building.

In the following, a sample MongoDB document from the
designed data warehouse is provided. Subdocuments have
been extensively used to group similar fields together. Some
fields deem special attention:

• The customer feedback fields that identify too cold,
too hot and comfortable indoor environments are the
count of the collected feedbacks in the 30-minute time
span as previously described.

• The customer comments are a list of text strings pro-
vided as status description on the social data platform;
this allows us to exploit text mining techniques to as-
sociate keywords to measurement values, by building
upon the text search features of MongoDB. This is-
sues will be addressed as a future development of the
current implementation.

• The billing period spans over two different years: October-
November is the first 2-month (billing and operational)
period and so the December-January 2-month period
spans two calendar years, hence the choice to be ver-
bose and use values such as ‘2-2014-2015‘.

{

_id: ObjectId(...),

energy_consumption: 0.12,

indoor: {

temperature: 21.2

},

outdoor: {

temperature: 15.6,

relative_humidity: 70.0,

wind_speed: 5.0

},

feedback: {

cold: 2,

comfortable: 12,

hot: 1,

comments: ["nice sunny winter day",...]

},

place: {

sensor: {id: 123456, model:"..."},

gateway: {id: 234567, model:"..."},

building: {

id: 345678,

volume: 1234,

type: "med"

},

address: {

full: "corso Castelfidardo 39, 10129, ...",

street_name: "Castelfidardo",

street_number: "39",



coordinates: [7.6600778, 45.0632518],

...

},

neighborhood: "Crocetta",

city_district: "Circoscrizione I",

city: "Torino"

},

time: {

UTC_timestamp: 1419266446.0,

day: {

time: "16:40:46",

minute: 40,

hour: 16,

slot: "afternoon"

},

date: {

full: "2014-12-22",

day: 22,

day_of_year: 356,

holiday: "N"

}

month: "12-2014",

month_of_year: 12,

2month: "2-2014-2015",

3month: "1-2014-2015",

4month: "1-2014-2015",

billing_year: "2014-2015"

}

}

Finally, the data model design addresses horizontal scala-
bility and replication choices.
Horizontal scalability is obtained by exploiting data shard-

ing, i.e., storing documents across multiple distributed ma-
chines by dividing the collection and distributing its data
over multiple servers, or shards. As the size of the data in-
creases, EDEN only needs to add more machines to scale
and support the demand of a higher number of read and
write operations. Each shard processes fewer operations as
the cluster grows, and the amount of data that each server
needs to store is reduced.
MongoDB provides automatic sharding and the key design

choice is the attribute whose values partition the collection
documents, i.e., the shard key. In EDEN the sharding is
performed using a hash-based partitioning on the value of
the building ID field. The shard key choice is motivated
by KPIs that are typically computed by grouping measure-
ments per building, and the number of buildings grows with
the expansion of the EDEN framework, hence it is a natural
scaling indicator. Hash-based partitioning has been chosen
over the range-based partitioning approach to ensure that
data are evenly distributed across the machines in the clus-
ter, since no range queries are performed on the building
ID.
Replication is obtained by exploiting MongoDB replica

sets to provide redundancy and high availability. With mul-
tiple copies of data on different servers, replication avoids
data loss from a single server failure. Currently, in EDEN
each replica set consists of a primary server, a secondary
server and an arbiter. All writes go to the primary server,
while the secondary server can be exploited to increase the
read capacity at the cost of possible inconsistency. However,
this is not an issue in EDEN since KPIs for the dashboards
can wait to be updated after the secondary has caught up

the updates from the primary, which usually happens within
seconds.

3.4 KPIs definition
The EDEN system performs the KPI analysis tailored to

different users to gain insights on the integrated data. In
Business Intelligence, the analysis of Key Performance Indi-
cators (KPIs) is an established methodology [15]. KPIs help
organizations define and measure progress towards organi-
zational goals by monitoring the most significant achieve-
ments. In our context, KPIs are quantitative indicators of
thermal energy consumptions. To apply KPI analyses to
data coming from a real scenario, we defined technical KPIs
and informative and user-friendly KPIs. The aim of KPI
generation is to produce useful feedbacks to enhance energy
awareness for different types of users. We identified four dif-
ferent operational roles representing users of the EDEN sys-
tem: (i) the Energy Manager is responsible for the energy
services provided. He/She needs to access summary and
high-level information in order to grasp the overall picture
of the energy situation of the city district under observation.
He/She requires dashboards showing KPIs at a higher level
of granularity (e.g., city district). (ii) The Energy Analyst
is an expert in energy consumption. He/She is interested
in analyzing the complete streams of collected data to ob-
serve and understand the observed phenomenon, analyze the
different components and identify possible causes. He/She
needs to inspect a significant volume of data to understand
the anomaly. (iii) The Consumer represents the building
condos administrators or the public administration (as in
the case of public schools), whose interest is to assess the
efficiency of the heating system, as well as to get a feeling
of virtuous behaviors that should/could lead to energy sav-
ings while maintaining the desired level of indoor confort.
He/She only needs to visualize a few indicators, possibly
presented in a clear and intuitive way. (iv) The Users living
in the building are interested in mantaining indoor wellness
and understand how their behaviors affect energy consump-
tion and they can achieve a significant reduction of their
energy expenditure. Presented data should be informative
and, at the same time, easy to understand.

For users living in the building we define two user-friendly
KPIs that measure virtuous behaviors (i.e. energy savings)
in terms of (i) energy needed for heating the given building
for a given number of days, or (ii) kilograms of bread or
number of pizzas that can be purchased with the savings.

The technical KPIs aims at evaluating the energy con-
sumption at different levels: from the single building to
the neighborhood, and from hours and days to months. In
EDEN four technical KPIs have been identified.

• Building KPI. Average energy consumption indicator
of the building per unit of volume, i.e., total energy
consumption of the building divided by the building
total volume. This KPI can be also normalized ac-
cording to the degree days and to the known indoor
temperature.

• Neighborhood KPI. Average energy consumption in-
dicator of the buildings in the same neighborhood per
unit of volume.

• Building-type KPI. Average energy consumption indi-
cator of the buildings of the same type and in the same
neighborhood per unit of volume.



• Climate KPI. Average energy consumption indicator of
the buildings of the same type and in the same neigh-
borhood per unit of volume, considering only energy
consumption during specific outdoor conditions (tem-
perature range).

These KPIs are computed on different time scales, in partic-
ular: hourly, for each daily time slots, daily, monthly, and
on N-month periods.
Rich queries, indexing and map-reduces are the data ware-

house features exploited to compute KPIs. Specifically, fields
frequently used by KPI queries such as building IDs are in-
dexed, and map reduces are exploited to perform KPI com-
putation. Let consider a simple KPI such as the first of
the list, and for the sake of simplicity, suppose the tempo-
ral scope and normalizations are removed (their implications
will be discussed later). The equivalent SQL query to ex-
tract the Building KPI would be as follows.

select sum(energy_consumption)/building_volume

from fact_table, dimension_table1, ...

where <join fact and dimension tables>

group by building_id, building_volume

In EDEN such KPI is computed by exploiting map, re-
duce and finalize functions of MongoDB, as follows. The
map function determines the key and value pairs emitted by
each processed document: the key is similar to the group by
SQL clause, and in this case it corresponds to the building
ID, whereas the value is a more complex object, since to
compute an average we need to carry over both operands,
the consumption sum and the building volume. Hence, we
put these two values into the value object returned (emitted)
by the map function.

function() {

key = this.place.building.id;

value = {

ec: this.energy_consumption,

vol: this.place.building.volume

};

emit(key, value);

}

The reduce function receives a list of values from the map
functions having the same key, hence we have a list of objects
containing the energy consumption (ec) and the building
volume (vol), and we need to sum all the ec values of the
list. The building volume is the same for all values, since
they refer to the same building (the building id is the map
reduce key).

function(key, values) {

reduced_value = {

ec: 0,

vol: values[0].vol,

};

for (var i=0; i<values.length; i++) {

reduced_value.ec += values[i].ec;

}

return reduced_value;

}

After the reduce phase we have a list of value objects,
one for each building id (key), containing the total energy

consumption and the building volume. The finalize function
adds to each object in this list the average value, which is
the final result and corresponds to the desired KPI.

function (key, value) {

value.ec_vol = value.ec/value.vol;

return value;

};

The provided example is computed over the whole collec-
tion and return total cumulative results since the beginning
of the data collection. The temporal scope can be intro-
duced by exploiting two approaches: (i) a specific query
filtering undesired time periods can be passed to the map
reduce MongoDB command, thus limiting the computation
to a specific time span, or (ii) a more complex key can be
used involving compound building ID and time periods. The
latter is particularly useful to save pre-aggregated results in
a collection similarly to materialized views. For instance
a simple compound map-reduce key such as the concate-
nation of the building ID and the date (YYYY-MM-DD)
of the measurement would automatically provide day-level
aggregations and would require a small change in the map
function only. In EDEN then, monthly KPIs are computed
directly by querying the daily KPIs collections, hence build-
ing a tree of map-reduces that are fed by lower-level lesser-
aggregated results and feed higher-level map-reduces in the
tree.

Current advantages of the map-reduce KPI approach in-
clude a natively distributed computation, that allows hor-
izontal scaling and load balancing among the nodes of the
MongoDB cluster. We are currently analyzing further im-
provements on the EDEN KPI computation framework that
include incremental map-reduces, which are an obvious ap-
proach due to the nature of the data loading, and the ex-
ploitation of the MongoDB aggregation framework. Fur-
thermore, the ability to add new fields to the documents
allow us to easily implement new KPI computations as they
are required, even if the database does not natively support
join operations. Indeed, the actual join is performed as a
preprocessing step during the data enriching phase.

Finally, MongoDB also provides native support for geospa-
tial querying, that is exploited in EDEN to compute KPIs
involving the neighborhood besides the administrative bound-
aries. For instance, to query all the measurements associated
with buildings within a given distance from a specific point
in space, the following snippet of code can be added to an
existent query.

{

’address.coordinates’: {

$geoWithin: {

$center: [ [7.6600778, 45.0632518], 0.01]

}

}

}

This limits the results to the measurements in a radius of
approximately 0.01 degrees (roughly 1 km) from the point
at the given longitude and latitude coordinates.

3.5 Smart data platform



Figure 3: Residential buildings: Daily energy con-
sumption per unit of volume (Wh/m3) .

The EDEN system will publish a subset of collected data
and results of the analysis in the Yucca Smart Data Platform
(SDP) [18]. Specifically, a portion of the data showed to
users through the informative dashboard, a subset of user’s
feedbacks and indoor thermal comfort perception data, and
interesting knowledge items extracted from the enriched data
collection. The Yucca SDP is a Big Data store developed and
maintained by CSI Piemonte [8]. Based on the Open Data
paradigm, it gives individuals and organizations the oppor-
tunity to publicly share their data under a license that allows
anyone to freely use them. It enables the interconnection
of geographically distributed applications, social networks,
objects and systems. The Yucca SDP supports different
protocols to receive and send data, such as HTTP, MQTT,
RTSP, WebSocket and OData REST APIs. It also provides
some basic functionalities of data enrichment, aggregation,
filtering, pattern matching and windowing.

4. EXPERIMENTAL RESULTS
We performed a preliminary analysis of energy consump-

tion on a real dataset using the EDEN platform. We con-
sidered 2 school buildings and 6 residential buildings, all lo-
cated in two neighboring districts in Turin, within a circular
area of 1 km of radius. Values were measured roughly every
5 minutes. The full time period depends on the availabil-
ity of measurements for each building. For the residential
buildings, measures are available from 2012 to 2014. To con-
sider a complete winter period we analyzed the period from
October 15th, 2012 to April 14th, 2013. For the first school
(named school A), instead, the time period is from Novem-
ber 28th, 2013 to April 30th, 2014. For the second school
(named school B), it is from October 1st, 2012 to March
14th, 2013.
Firstly, the daily energy consumption per unit of vol-

ume (Wh/m3) has been computed for each residential build-
ing, together with the daily average consumption among all
buildings. Figure 3 shows the average consumption profile,
and the profiles of an expensive building and an efficient one.
Since the time periods available for the two school build-

ings are different, also in duration, a further processing has
been performed to compare their energy efficiency: the con-

sumption has been normalized with respect to the total de-
gree days measured for the same time length. This measure
represents the different external temperatures that influence
the daily energetic demand for heating. We computed the
total degree days as the sum of all the positive differences
between a reference indoor temperature (i.e., 20 ◦Celsius)
and the average daily temperature taken from the ARPA
weather archives [3]. Results are reported in Table 1. As
shown in Table 1, the daily energy consumption in school
B is much greater than in school A, with a difference of
about 254 kWh. However, a higher value of average degree
days can also be observed (12.37 ◦C of school B versus 10.97
◦C of school A). The last row in Table 1 shows the energy
consumption per unit of volume divided by the total degree
days. The total consumption normalized with respect to
the degree days is still higher, but the difference is much
smaller. In fact, if we had 1690 degree days for school B
(like in school A), the total energy consumption per unit of
volume unit would have been only 31.04 Wh/(m3×◦C) ×
1690 ◦C= 52458 Wh/m3, rather than 63336 Wh/m3, which
is much closer to the 50373 Wh/m3 of school A.

5. CONCLUSIONS AND FUTURE WORKS
This paper presented a preliminary implementation of the

EDEN platform to enhance energy awareness. As of Decem-
ber 2014, IREN has installed thousands of thermal smart
meters in buildings in Turin, a major Italian city. EDEN
components and design choices that led to the Data Platform
and the Publication Platform have been discussed, with the
aim of efficiently collect and analyze data on energy con-
sumption. The Data Platform collects all the monitored
data, while the Publication Platform includes pre-processed
data enriched with spatial and temporal information at dif-
ferent abstraction levels, as well as meteorological data avail-
able in open source datasets. We also designed and imple-
mented different technical and user-friendly KPIs to provide
informative dashboards targeting different users.

We are currently implementing an ad-hoc social platform
where users are proactively engaged in the act of generating
data related to their perception of thermal comfort, as well
as useful feedbacks on thermal energy consumption of the
buildings where they live or work. The social platform will
also show to users both technical and user-friendly KPIs
on energy consumptions (savings or overconsumption) in an
informative fashion.

Since the collected data easily scale towards very large
datasets, the problem of discovering interesting and hidden
correlations for these huge data collections becomes chal-
lenging. We are currently designing an innovative scalable
algorithmtailored to enriched data managed by EDEN to
efficiently perform the association rule mining on a huge en-
ergy consumption dataset [5, 4].
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School A School B

Volume [m3] 4480 4480
Time period 11/28/2013 – 04/30/2014 10/01/2012 – 14/03/2013

Total energy consumption per unit of volume [Whm3] 50,373 63,336
Daily energy consumption [Wh] 1,465,390 1,719,658

Daily consumption per unit of volume [Wh/m3] 327.10 383.85
Average degree days [ ◦C] 10.97 12.37

Total degree days (in the given time period) [◦C] 1690 2040.4

Total normalized consumption [Wh/(m3×◦C)] 29.81 31.04

Table 1: School buildings: Energy consumption normalized per unit of volume and degree days

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and Swami. Mining

association rules between sets of items in large
databases. In ACM SIGMOD 1993, pages 207–216,
1993.

[2] O. Ardakanian, N. Koochakzadeh, R. P. Singh,
L. Golab, and S. Keshav. Computing electricity
consumption profiles from household smart meter
data. In EDBT/ICDT Workshops’14, pages 140–147,
2014.

[3] ARPA. Piedmont Region. Regional Agency for the
Protection of the Environment. Available at
http://www.arpa.piemonte.it/english-version Last
access: December 2014.

[4] E. Baralis, T. Cerquitelli, S. Chiusano, and A. Grand.
P-mine: Parallel itemset mining on large datasets. In
Workshops Proceedings of the 29th IEEE International
Conference on Data Engineering, pages 266–271, 2013.

[5] E. Baralis, T. Cerquitelli, S. Chiusano, and A. Grand.
Scalable out-of-core itemset mining. Inf. Sci.,
293:146–162, 2015.

[6] E. Baralis, T. Cerquitelli, and V. D’Elia. Modeling a
sensor network by means of clustering. In 18th
International Workshop on Database and Expert
Systems Applications, pages 177–181, 2007.

[7] K. Chodorow and M. Dirolf. MongoDB: the definitive
guide. O’Reilly Media, 2010.

[8] CSI website. http://www.csipiemonte.it/. Last access
on December 2014.

[9] S. Depuru, L. Wang, V. Devabhaktuni, and
P. Nelapati. A hybrid neural network model and
encoding technique for enhanced classification of
energy consumption data. In Power and Energy
Society General Meeting, pages 1–8, 2011.
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