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ABSTRACT
Complex Event Recognition (CER) applications exhibit var-
ious types of uncertainty, ranging from incomplete and er-
roneous data streams to imperfect complex event patterns.
We review CER techniques that handle, to some extent,
uncertainty. We examine both automata-based techniques,
which are the most often, and logic-based ones, which are
less frequently used. A number of limitations are identified
with respect to the employed languages, their probabilistic
models and their performance, as compared to the purely
deterministic cases.

1. INTRODUCTION
Systems for Complex Event Recognition (CER) accept

as input a stream of time-stamped simple, derived events
(SDE)s. A SDE (‘low-level event’) is the result of applying a
computational derivation process to some other event, such
as an event coming from a sensor. Using SDEs as input,
CER systems identify complex events (CE)s of interest—
collections of events that satisfy some pattern. The ‘def-
inition’ of a CE (‘high-level event’) imposes temporal and,
possibly, atemporal constraints on its subevents, i.e. SDEs or
other CEs. For example, consider the recognition of attacks
on computer network nodes, given the TCP/IP messages. A
CER system attempting to detect a DOS attack has to iden-
tify (as one possible scenario) both a forged IP address that
fails to respond and that the rate of requests is unusually
high.

Due to the complex nature of information sources, the in-
put events arriving at a CER system almost always carry a
certain degree of uncertainty and/or ambiguity. Sensor net-
works introduce uncertainty into the system due to reasons
that range from inaccurate measurements through network
local failures to unexpected interference of mediators. The
latter is a new phenomenon that stems from the distribution
of sensor sources. Sensor data may go through multiple me-
diators en route to the CER systems. Such mediators apply
filtering and aggregation mechanisms, most of which are un-
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known to the system that receives the data. For example, a
road sensor collecting traffic data may calculate the average
speed of cars passing over it within a time period, but this
calculation might not be accurate, it might be corrupted or
it might even fail to reach the CER system, due to some
network failure, unrelated to the sensor. Again, in the traf-
fic management domain, it might not be possible to define
all the possible situations which indicate the occurrence of
an accident. Hence, the uncertainty that is inherent to sen-
sor data is multiplied by the factor of unknown aggregation
and filtering treatments [5]. Even if we assume perfectly ac-
curate sensors, the domain under study might be difficult
or impossible to model precisely, thereby leading to another
type of uncertainty.

Until recently, most CER systems did not make any ef-
fort to handle uncertainty [9]. This need is gradually being
acknowledged and it seems that this might constitute a sig-
nificant line of research and development for CER. Almost
all of the papers presented have appeared after 2008. The
purpose of this paper is to present a short overview of ex-
isting approaches for performing CER under uncertainty.
It should be noted that handling uncertainty in activity
recognition (where SDEs come mainly from video streams
or RFID tracks) is an active research field that has strong
similarities with CER. However, in this short survey we have
chosen to present only those methods that come directly
from the field of CER.

The structure of the paper is as follows: In Section 2 we
discuss the dimensions along which a proposed solution for
handling uncertainty may be evaluated. Section 3 presents
the reviewed approaches, summarizes them in a tabular form
and comments on their limitations. Some open issues and
lines of potential future work are identified in Section 4.

2. EVALUATION DIMENSIONS
We restrict attention to the following types of uncertainty.

First, the rules defining a CE may be imperfect. Second,
the SDE stream may be incomplete and/or include erro-
neous events. Detailed discussions about types and sources
of uncertainty in CER may be found in [4, 22].

We follow the customary division between representation,
inference and learning. In other words, we are interested
in what kind of knowledge a system can encode (represen-
tation), what kind of queries it can answer (inference) and
if/what parameters and models it can learn. However, al-
though learning in general is a very active research area, we
have decided not to include a detailed discussion about the
learning capabilities of the examined approaches in our sur-



vey. The reason is quite simple. Almost none of the systems
touches upon this subject. Instead, we draw some conclu-
sions as far as the performance of each system is concerned.

2.1 Representation
Following the terminology of [15], we define an event as

an object in the form of a tuple of data components, signi-
fying an activity and holding certain relationships to other
events by time, causality and aggregation. An event with N
attributes can be represented as

E(Type, ID,Attribute1, . . . , AttributeN, T ime)

where T ime might be a point, in case of an instantaneous
event, or an interval during which the event happens, if it
is durative. In CER, we are interested in detecting patterns
of events among the streams of SDEs. Therefore, we need a
language for expressing such pattern detection rules.

Formalisms for reasoning about events and time have ap-
peared in the past, such as the Event Calculus [6, 14] and
Allen’s Interval Algebra [2,3], and have already been used for
defining event algebras (e.g. in [18]). With the help of the
theory of descriptive complexity, recent work has also iden-
tified those constructs of an event algebra which strike a bal-
ance between expressive power and complexity [27]. Based
on the capabilities of existing CER systems and on related
theoretical work, the following list enumerates those opera-
tions that should be supported by a CER engine:

• Sequence: Two events following each other in time.

• Disjunction: Either of two events occurring, regard-
less of temporal relations. Conjunction (both events
occurring) may be expressed by combining Sequence
and Disjunction.

• Iteration: An event occurring N times in sequence,
where N ≥ 0.

• Negation: Event not occurring at all.

• Selection: Select those events whose attributes satisfy
a set of predicates/relations, temporal or otherwise.

• Projection: Return an event whose attribute values
are a possibly transformed subset of the attribute val-
ues of its sub-events.

• Windowing: Apply pattern for events within a speci-
fied time window.

In a probabilistic setting, uncertain events are assigned an
occurrence probability. More complex models also allow for
probabilities on the attributes of the events as well. Fur-
thermore, the rules for expressing CE definitions may also
be probabilistic. The semantics for the probability space are
usually those of possible worlds. A possible world is one of
the possible SDE streams, as defined by the SDE probabili-
ties. Thus, the probability space is understood as the set of
all the alternative event streams that may have occurred and
the distribution is defined over this set. Event attributes are
usually discrete and the continuous case is outside the scope
of most CER systems.

2.2 Inference
In probabilistic CER, the most basic inference task is to

compute the probability of occurrence of a CE. In other
words, the task is to compute the marginal probabilities of
the CEs, given the SDEs. In some settings, we might also
be interested in performing maximum a posteriori (MAP)
inference, in which the task is to compute the most probable
states of some CEs, given the evidence SDEs stream. A
simple example from the domain of video recognition is the
query in which the user asks about the most probable time
interval during which a certain activity occurs.

Another dimension concerns the ability of a system to per-
form approximate inference. In the literature of statistical
relational learning, it is widely believed that for all but the
simplest cases, exact inference stumbles upon serious per-
formance issues, unless several simplifying assumptions are
made. For this reason, approximate inference is considered
essential. When this capability is present, certain systems
provide answers with confidence intervals and/or the option
of setting a confidence threshold above which an answer may
be accepted.

2.3 Performance
CER systems are usually evaluated for their performance

in terms of throughput, measured as number of events pro-
cessed per second. For some queries, the latency, as mea-
sured by the time required to process an event, is also im-
portant. Less often, the memory footprint is reported. Note
that no standard benchmarks exist, although some work
towards this direction has begun [12, 16, 17]. Reporting
throughput figures is not enough by itself, since there are
multiple factors which can affect performance, such as query
selectivity (see [16] for a list of such factors). When uncer-
tainty is introduced, the complexity of the problem grows
and other performance-affecting factors enter the picture,
such as the option of approximate inference. Moreover, sys-
tems need to be evaluated along another dimension, that of
accuracy.

The issue of accuracy is of critical importance and is not
orthogonal to that of performance. Precision and recall are
the usual measures of accuracy, but neither one of them
may be sufficient by itself. Therefore, a more appropriate
measure would be that of the F-measure, i.e. the harmonic
mean of precision and recall.

3. APPROACHES
Since many of the CER engines employ finite automata,

either deterministic (DFA) or non-deterministic (NFA), it
is not surprising that automata are one of the dominant
approaches for handling uncertainty. Less frequently, logic-
based approaches are preferred. In this section, we present
both of these areas.

We summarize our results in Tables 1 - 3. The columns of
Table 1 correspond to the list of operators presented in Sec-
tion 2.1 and refer to the expressive power of the language em-
ployed. An extra column has been added to indicate whether
a system supports event hierarchies, i.e. the ability to define
CEs at various levels and reuse those intermediate inferred
events in order to infer other higher-level events. In Table 2
we present the probabilistic properties of each method, with
respect to the independence assumptions they make and to
their capacity for assigning probabilities to the input data
(SDEs) and/or the rules for CE definitions. Some systems



Language Expressivity

Paper σ π ∧ ∨ ¬ ; * W H Remarks

Kawashima et al [13] X X X X X

Re et al [19] X X X

Chuanfei et al [7] X X X X
Not enough details in paper
about σ, π, ∧, ∨, ¬.

Shen et al [20] X X X X X

Wang et al [21] X X X X X X X

Zhang et al [26,27] X X X X X X X X

Cugola et al [10] X X X X X X X
* implicit;
Support for continuous
event attributes.

Wasserkrug et al [23,24,25] X X X X X Explicit time representation

Table 1: Expressive power of CER systems. Columns: σ: selection, π: projection, ∧: conjunction,
∨: disjunction, ¬: negation, ;: sequence, *: iteration, W:windowing, H: hierarchies.

Probabilistic Expressivity

Paper
Data (occur-
rence and/or
attributes)

Rules
Independence
Assumptions Remarks

Kawashima et al [13] Occurrence All events independent

Re et al [19] Both
1st-order Markov for
SDEs (different streams
independent)

Chuanfei et al [7] Occurrence 1st-order Markov with
extensions

Shen et al [20] Both SDEs independent

Wang et al [21] Occurrence
SDEs independent or
Markovian (different
streams independent).

Zhang et al [26,27] Occurrence SDEs independent Probability distribution
on time attribute

Cugola et al [10] Both X

Event attributes inde-
pendent. SDEs indepen-
dent. CEs dependent
only on events immedi-
ately below in hierarchy.

Bayesian Networks

Wasserkrug et al [23,24,25] Both X SDEs independent Bayesian Networks

Table 2: Expressive power of CER systems with respect to their probabilistic properties.



Inference

Paper Marginal / MAP Confidence
Thresholds

Approximate Performance Remarks

Kawashima et al [13] Marginal X 0.8-1.1 K events/s with
Kleene+

Re et al [19] Marginal X

> 10 points increase in
accuracy.
100K tuples/s for Ex-
tended Regular Queries.

Chuanfei et al [7] Marginal X
4-8K events/s for pat-
tern lengths 6-2

Shen et al [20] Marginal X

1000K events/s, almost
constant for varying win-
dow size.
1000K-100K events/s for
10-1 alternatives.

Wang et al [21] Marginal X 8K-13K events/s for 2-6
nodes

Distributed

Zhang et al [26,27] Marginal X

Reduction from expo-
nential to close-linear
cost w.r.t to selectivity /
window size

Cugola et al [10] Marginal X 50% overhead

Wasserkrug et al [23,24,25] Marginal X X

CEs within desired con-
fidence interval.
Sub-linear decay of
event rate w.r.t possible
worlds.

Table 3: Inference capabilities of probabilistic CER systems

may allow only uncertainty with respect to the occurrence
of an event, whereas others may allow uncertainty for the
event attributes as well. Finally, Table 3 presents some of
the systems’ properties when performing inference, such as
whether they perform marginal or MAP inference, whether
they give the user the option to set minimum confidence
thresholds and whether they can perform approximate in-
ference. Some comments about their performance are also
included.

3.1 Cayuga
The Lahar system of Re et al [19] constitutes one of the

earliest proposals. It is based on the Cayuga [11] CER en-
gine. The design goal behind the Lahar system is to develop
an efficient inference mechanism for answering queries over
probabilistic SDE streams, i.e. streams whose events are
tagged with a probability value. It is assumed that events
follow a first-order Markov process. The possible queries are
categorized in three different classes. Regular queries are
composed of subgoals which do not share any variables, can
readily be transformed into regular expressions with a cor-
responding automaton and can be evaluated in time linear
to the size of the event stream. Extended regular queries
allow for shared variables which must be present in all of
the subgoals. Therefore, the query can be broken into in-
dependent, regular “ground” queries (by substitution) and
its success probability can be computed by combining the
probabilities of its constituent “ground” queries. Finally,
in safe queries, variables might not be shared among all
subgoals. These queries are evaluated by using a version

of the Probabilistic Relational Algebra with a complexity
that is quadratic to the number of timestamps in the SDE
stream. Lahar was tested on object tracking in which per-
sons and objects were equipped with RFID tags and the per-
sons’ paths and/or locations had to be assessed. Significant
improvements in precision and recall were observed against
deterministic approaches, with only a relatively slight over-
head on throughput, which reached hundreds of thousands
of events per second. A method which attempts to over-
come the strict markovian hypothesis and to apply certain
optimizations, such as early pruning, may be found in [7].

3.2 SASE
A simple solution for handling uncertainty with automata

was proposed by Kawashima et al [13], as an extension of the
SASE+ event processing engine [1]. The system builds a de-
terministic automaton for every user query (CE definition)
and detects patterns above a certain confidence threshold
by developing a matching tree as new SDEs arrive until the
time window of the query expires. Branches of the tree below
the given threshold are pruned early for optimization pur-
poses. The SDEs are assumed to be independent (therefore,
probability values are calculated by multiplication) and are
tagged with an occurrence probability. Neither probability
values for the event attributes are allowed nor for the queries
themselves. Throughput values can reach several hundreds
of events per second, but these numbers correspond to exper-
iments with a single query of low complexity – a sequence
operator with equality selection on the attributes and no
shared variables.



Another early, NFA-based approach to incorporate uncer-
tainty within an existing CER system is presented in [20]
by Shen et al. This work uses SASE+ as its starting point
and amends it in order to handle probabilistic SDEs. Each
SDE is defined as a set of alternatives, each with its occur-
rence probability, with all alternatives summing to a prob-
ability value of 1 or less than 1 if non-occurrence is con-
sidered. The probability space is therefore defined over the
possible worlds, as determined by the different (mutually
exclusive) alternatives of the SDEs. The CE definitions are
encoded as NFAs, but, in order to avoid enumerating all
possible worlds, a special data structure, called Active In-
stance Graph, is used. The Active Instance Graph is a Di-
rected Acyclic Graph connecting events with previous can-
didate events, i.e. whose possible occurrence may lead to
the recognition of the CE. By backward-traversing the AIG,
the sequence(s) that satisfy the CE definition may be re-
trieved and this structure also allows for dynamic filtering of
events when other constraints (besides temporal sequence)
are present. Finally, each event is associated with its lin-
eage, i.e. a function which captures “where the event came
from”, used for computing its probability.

Inspired yet again by SASE, the work recently proposed
by Wang et al [21] attempts to address two important is-
sues. The first, related to previous NFA-based methods,
concerns their inability to express CE hierarchies. The sec-
ond is a performance issue and, this work is the first one
which develops a CER system which is both probabilistic
and distributed. The CE recognition process depends on
a data structure, called Active Instance Stack, which is an
optimized version of the already mentioned Active Instance
Graph. Probabilities may be assigned only to events and
refer to occurrences (neither probabilities for CE definitions
nor for event attributes are allowed). Events are also as-
sumed to be either independent or to follow a first-order
Markov process. A data partitioning scheme is used in or-
der to distribute different parts of the streams to different
nodes and the local results are later combined to produce
a global result. Finally, CE hierarchies may be constructed
by having different event processing agents producing differ-
ent CE types and connecting them through channels (agents
are pattern matching components which can be connected
to form an event processing network).

In most of the automata-based methods (with the excep-
tion of [10], presented in Section 3.3), uncertainty concerns
the occurrence of the event itself as a whole, but the event
attributes, including timestamps, are certain. In Zhang
et al [26], the issue of imprecise timestamps is addressed,
while all the other attributes have crisp values. Due to
sensors’ sensitivity or time granularity differences between
event sources, timestamps are assumed to follow a proba-
bility distribution (usually uniform). Each event may thus
have several alternative occurrence timestamps and many
possible worlds, i.e. event histories, are available to the
system. The temporal relations between events may dif-
fer among the possible worlds and a CE recognized in one
of them may not be recognized in another. One solution is
to enforce an ordering of the events from all possible worlds
and then leverage an existing CER engine, such as SASE,
for the CE recognition task. However, the authors present
another, more efficient method, which avoids a complete
enumeration of all possible worlds by employing an incre-
mental, three-pass algorithm through the events in order to

construct event matches and their intervals. This method
achieves high throughput but supports only sequence pat-
terns with simple equality/inequality predicates. Moreover,
it was extended in [27] by Zhang et al, which added negation
and Kleene plus and allowed for user-defined predicates.

3.3 CEP2U
A more recent effort extends the TESLA [8] event spec-

ification language with probabilistic modelling, in order to
handle the uncertainty both in input SDEs and in the defi-
nitions of CEs [10]. The semantics of the TESLA language
are formally specified by using a first order logical represen-
tation with temporal constraints that express the length of
time intervals. The CE recognition algorithm however em-
ploys automata. At the input level, the method supports
uncertainty regarding the occurrence of the SDEs, as well
as uncertainty regarding their content. In the former case,
SDEs are associated with probabilities that indicate a degree
of confidence. In the latter case, the attributes of an event
are modelled as random variables with some measurement
error. The probability distribution function of the measure-
ment error is assumed to be known (e.g. Gaussian distri-
bution). Since uncertainty also derives from incomplete or
erroneous assumptions about the environment in which the
system operates, the method also models the uncertainty of
the CE definitions. In particular, the method automatically
builds a Bayesian network for each rule. The probabilistic
parameters of the network are manually estimated by do-
main experts.

3.4 Logic-based methods
Wasserkrug et al [23,24,25] employ the technique of knowl-

edge based model construction (KBMC), whereby knowl-
edge representation is separated from the inference process.
Inference is preformed on a Bayesian network as needed
(when new SDEs arrive), without constructing the whole
network beforehand. Each event is assigned a probability,
denoting how probable it is that the event occurred with spe-
cific values for its attributes. Uncertainty about the value
of a single event attribute may be represented by multi-
ple event instances with different probabilities and with the
same values for all other attributes.

In turn, CE definitions are encoded in a two-fold way,
with a selection operation (mostly based on event type) per-
forming an initial filtering, followed by a pattern-detection
schema for more complex operations, based on temporal re-
lations and attribute equalities. The selection mechanism
imposes certain independence properties on the Bayesian
network. Inferred CEs are conditioned only on selectable
lower-level events, preventing the network from being clut-
tered with many dependency edges. This framework is not
limited to representing only propositional or first order knowl-
edge. It could potentially handle higher-order knowledge,
since this pattern-matching step could, in principle, be de-
fined in any kind of language. However, the system pre-
sented in the evaluation experiments allows only predicates
expressing temporal constraints on event timestamps or equal-
ity relations on event attributes.

Calculation of the probabilities for the inferred CEs is
done by dynamically constructing a Bayesian network upon
every new event arrival. The nodes of the network corre-
spond to SDEs and CEs. First, SDEs are added. Nodes for
CEs are inserted only when a rule defining the CE is sat-



isfied, having as parents the events that triggered the rule,
which might be SDEs or even other CEs, in case of hierar-
chical CE definitions. The probability and attribute values
of the inferred CEs are determined by mapping expressions
associated with the corresponding rule. In order to avoid
the cost of exact inference, a form of sampling is followed,
which allows for bypassing the construction of the network
by sampling directly according to the rules for CE defini-
tions.

3.5 Comments
In Table 1 we list the operators supported by each method.

Table 2 presents their probabilistic properties: their inde-
pendence assumptions and the support for data and/or rules
uncertainty. Their properties with respect to inference are
shown in Table 3 (marginal/MAP inference, support for con-
fidence thresholds, approximate inference).

As shown in Table 2, all of the presented approaches have
the ability to represent probabilistic SDEs, where uncer-
tainty may refer to their occurrence or/and the content of
their attributes. However, a feature which is lacking in most
of the methods is the capacity to assign probabilities to rules
expressing CE definitions. In this case, probabilistic graphi-
cal models, with their ability to represent all events as nodes
in a homogeneous manner and encode the direction of cau-
sation, can prove useful. The two methods which allow rule
probabilities, use such a model, namely Bayesian Networks.

The KBMC method of [23, 24, 25] and the CEP2U sys-
tem of [10] allow for both hierarchies and probabilistic rules
(see Table 2). Both of them use Bayesian Networks for in-
ference, with the nodes of the network representing events,
SDEs and CEs. CEP2U was designed from the very begin-
ning with the goal of minimizing the performance overhead
incurred by the introduction of uncertainty. Indeed, the
maximum overhead mentioned in the experiments was al-
most always less than 50%, compared to the deterministic
case. On the other hand, the KBMC technique is still far
from achieving event rates comparable (say, within an or-
der of magnitude) to those of purely deterministic models.
This performance robustness of CEP2U against uncertainty
comes at a price though, since some simplifying assumptions
have to be made. CEP2U constructs only a single Bayesian
Network for each rule (not for each grounding) and a simple
solution is proposed for the problem of propagating proba-
bilities from lower to higher level CEs. Occurrence proba-
bilities of intermediate events are propagated to higher level
events with a value of 1, essentially decomposing the total
probability space into smaller and more manageable spaces.
This means that these Bayesian Networks function more like
look-up tables, hence the much lower cost of inference. The
effects of this simplification on accuracy, however, are un-
clear.

A related issue is that of the independence assumptions
made by each method. Automata-based methods tend to
make a substantial number of simplifying assumptions about
the independence of events or streams, resulting in simpler
probabilistic models The most complex dependency mod-
els employed make the assumption that events may follow
a first-order Markov process, as in [19, 21] (a slightly more
complex model may be found in [7]). In domains charac-

terized mostly by sequential patterns upon homogeneous
streams, this assumption may be sufficient. When multiple
streams with different event types are involved and hierar-
chies of CEs are required, which take into account lower-level
CEs across a time window, more complex dependencies need
to be encoded.

Bayesian Networks offer such a flexibility but they suf-
fer from problems of high inference complexity. In order to
keep the inference cost low, certain simplifications are intro-
duced again. For example, CEP2U assumes that an inferred
CE is the only cause for all of its sub-events (note that, in
CEP2U, the direction of causation is from the higher level to
the lower level events), i.e. one sub-event cannot be used to
define other CEs and it is not possible to have multiple def-
initions for a CE. Although this obviously helps in making
the Bayesian Networks (which can be manually edited by
the user) the assumption of such a strict separation of rule
conditions limits the expressive power of the system (and
would presumably require tedious tuning to correct it).

4. CONCLUSIONS
Our short review of probabilistic CER systems identified

the following limitations: In terms of language expressivity,
the basic drawback of most systems is the absence of support
for constructing hierarchies of CEs. Moreover, most systems
do not support uncertainty in the rules defining CEs. Those
that do support rule uncertainty either make too strong sim-
plifying assumptions, thus possibly limiting accuracy in do-
mains with complex dependencies, or face serious issues of
under-performance, even when approximate inference is em-
ployed. Distributed processing of probabilistic SDE streams
is still at its early stages, with only one method employing
it. Notice also that none of the systems supports MAP in-
ference, a feature which is useful in certain domains (e.g.
in video recognition, where it is sometimes desirable to re-
trieve those time intervals during which it is most likely for
an activity to have occurred). Those issues should act as
indicators for possible directions of future work.
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