
Using Graph Traversal in Scientific Data Interpolation

Alireza Rezaei Mahdiraji
Jacobs-University
Bremen, Germany

a.rezaeim@jacobs-university.de

Peter Baumann
Jacobs-University
Bremen, Germany

pbaumann@jacobs-university.de

ABSTRACT

In this paper, we present a topological neighborhood ex-
pression which allows us to express arbitrary neighborhood
around cells in unstructured meshes. We show that the ex-
pression can be evaluated by traversing the connectivity in-
formation of the meshes. We implemented two algebraic
operators which use the expression to compute neighbors of
cells and approximate data fields of cells by aggregating their
neighbors’ information. We evaluate one of the operators on
a real dataset using four queries and report the results.

Keywords

Graph Data Model, Halo, Hull, Regrid, Topological Neigh-
borhood, Unstructured Meshes

1. INTRODUCTION
Many scientific domains such as oceanography and clima-

tology have data stored on unstructured meshes. Weighted
contribution from nearest-neighbor cells is known to im-
prove accuracy of interpolation operations on unstructured
meshes. Examples of such operations are smoothing a skewed
data field, and computing partial derivative in a point of in-
terest.

The common method to specify a neighborhood for a cell
of interest is stencil string which is originally defined only for
structured meshes. Stencil allows us to define the value of
a cell as a function of its topological nearest-neighbor cells.
In [3], the concept of stencil is generalized for unstructured
meshes. A stencil string w.r.t. an unstructured mesh con-
sists of a sequence of digits representing the dimensions of
cells in the neighborhood of a cell of interest which needs to
be accessed by an algorithm. The stencil string uses hard
coded dimensions and thus contains no topological abstrac-
tion. Furthermore, it is not obvious from the string what is
the result, i.e., union of elements visited in each intermedi-
ate layer (hull) or the elements only in the last layer (halo).
Finally, it is not possible to filter intermediate cells using
predicates.

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0.

In this paper, we present a neighborhood expression which
uses topological functions instead of dimensions and allows
filtering of intermediate results. We design two algebraic
operators which use the expression to extract neighborhood
and approximate information of a cell by interpolating in-
formation of its neighbors.

The paper is organized as follows: Section 2 introduces
some mathematical concepts, Section 3 discusses the related
work, Section 4 presents the new neighborhood expression,
Section 5 shows the algebraic operators which use the ex-
pression to explore the neighborhood and interpolate data,
Section 6 reports the experiments, and Section 7 concludes
the paper.

2. MATHEMATICAL CONCEPTS
We define a mesh as a 4-tuple M = (C,≺C,Γ,F) where

C, ≺C, Γ, and F are the set of cells, incidences, geometric
embedding, and data fields of the mesh M .

C contains a set of k-cells (0 ≤ k ≤ d) which is closed
under intersection, i.e., the intersection of two cells is either
empty or another lower dimension cell of the mesh. Each cell
in turn is formed by the union of lower dimensional cells (aka
the cell boundary). Cells of dimension i are called i-cells.
Cells of dimensions zero, one, two, and three are also called
vertices, edges, faces, and bodies. Dimension of a mesh is
defined as the maximal dimension of its cells (d).

The incidence set ≺C specifies the topological structure of
a mesh using the binary incidence relationship. The inci-
dence relationship is a partial order between cells in C, i.e.,
cells c and e are incident (i.e., c ≺C e) if one is located on the
boundary of the other, i.e., c ∈ ∂(e) (dim(c) < dim(e)) or
e ∈ ∂(c) (dim(e) < dim(c)) where ∂() represents the bound-
ary of the cell c. When k-cell c is on the boundary of m-cell
e, then c is called a k-face of e and e is a m-coface of c or
just co-boundary of c. When k = m− 1 then c is an imme-
diate boundary face of e and e is an immediate co-boundary
(coface) of c. Cells c and e (k = m 6= 0) are p-adjacent if
they share a p-face. Two vertices v1 and v2 (k = m = 0)
are adjacent if they share an edge. The adjacent relation
can be expressed as nested application of the co-boundary
and boundary relations, i.e., to find k-adjacent cells to the
m-cell c, first we need to find all its boundary k-faces and
then for each k-face find its m-cofaces.

The geometric embedding Γ maps each cell in C to its
corresponding geometric realization such that (c1 ≺C c2) ⇔
(Γ(c1) ⊂ Γ(c2) =

⋃

c∈∂(c2)
Γ(c)). For instance, the geomet-

ric realization of vertices are their coordinates.
F contains a set of (partial) functions which assign data

X

Y
Z

W

U

a

b

c

d

e

f g
f1

f2
f3

b b

b

bb
f1 f3 f2

a b f d e c g

X Y Z W U

Figure 1: A 2D triangular unstructured mesh (left)
and its incidence graph (right).

values to each cell. For instance, the function fi assigns a
value of type τ to each i-cells: fi : C

i → τ where Ci refers
to i-cells.

We can represent mesh topology using Incidence Graph
(IG) such that the nodes of the graph represents the cells
of the mesh and the links between two nodes encode the in-
cidence relationship. Figure 1 shows a simple 2D simplicial
mesh (left) and it topological structure (right) as a incidence
graph [13]. The incidence graph in Figure 1 shows that the
boundary and co-boundary a cell can be extracted by follow-
ing the links in the graph starting from the cell downward
and upward, respectively. The immediate boundary and co-
boundary cells of a cell are its children and parents. For
instance, the immediate boundary and co-boundary of the
edge d are {U,W } and {f3}, respectively and the boundary
and immediate co-boundary of face f3 are {d, c, g,W,U,Z}
and {}, respectively.

For detailed definitions, we refer the interested reader to
[13], Chapter 3 of [3], and the references therein.

3. RELATED WORK
Stencil string specifies a subset of neighboring vertices

of a given vertex on a structured mesh. The information
of the neighbors are later used by numerical approximation
algorithms to compute a weighted solution for the vertex.
In other words, the stencils determine the region of influ-
ence of numerical algorithms. For example, commonly used
neighborhood sizes by algorithms are three, five, and twenty
five neighbors for 1D, 2D, and 3D structured meshes, re-
spectively. The neighbors in a structured mesh can be eas-
ily specified by index arithmetic, e.g., the four neighbors of
the point (i, j) in a 2D structured grid. In systems such as
Pochoir, the neighboring vertices are explicitly listed [15].
Figure 2 (left) shows four neighboring vertices of the red
vertex on a 3D structured mesh (5-point stencil).

In his thesis, Berti generalized the idea of stencils for un-
structured meshes by abstracting topological structures of
mesh algorithms as an incidence sequence. For instance, if
the incidence sequence of a mesh algorithm is 010 (or al-
ternatively shown as vertex-edge-vertex) w.r.t. an unstruc-
tured mesh, then it means any calculation for a vertex v
needs to have access to all adjacent vertices of v (i.e., ver-
tices sharing an edge with v) [3]. The snippet below shows
how the stencil string 010 can be used to computes the data
for each vertex v1 as the sum of the data of its adjacent
vertices (v2).

forall vertices v1
forall edges e incident to v1

forall vertices v2 incident to e

result[v1]+=data[v2]

Figure 2 (right) depicts 010 stencil for the red vertex in a
2D unstructured mesh. As it can be seen, the stencil string
is implemented as nested for loops. Furthermore, Berti for-
mally defined the concept of incidence hull as the union of
all cells expressed by a stencil string. Gridfields uses stencil
string in the same manner [7].

The proposed neighborhood expression in this paper ex-
tends the stencil string in [3]. The new neighborhood expres-
sion offers several advantages to the stencil string notation:
it uses topological abstraction rather than dimensions, it can
return two types of neighborhoods (i.e., hull or halo), and it
is able to filter the intermediate results.

Figure 2: 5-point stencil for a vertex in 3D structured

mesh (left) and adjacent vertices of the red vertex repre-

sented by 010 stencil in a 2D unstructured mesh (right).

The other related area to this research is graph databases.
We use graph database Neo4j to implement the proposed
neighborhood expression. Neo4j is a popular open source
graph database implemented in Java which is operational
since 2003. Neo4j is schema-free, supports full ACID trans-
actions, and provides implementations for several graph al-
gorithms out of the box. Neo4j uses property graph data
model, i.e., data is stored in nodes and relationships of a
multi-graph with pairs of key-value properties. Neo4j graphs
can be queried using either its declarative query language
(known as Cypher) or its Core Java API. We refer the reader
to Neo4j documentation for further details on Neo4j and
Cypher [1, 14].

The reason to choose graph databases is that they allow
implementing the general purpose mesh data model (see
Section 5.1). The reasons for choosing Neo4j rather than
other graph databases such as DEX (implemented in C++)
are two folds, namely, high performance on graph traversal
queries and supporting spatial data. Recent research show
that the performance of Neo4j drastically improved since its
early version. The argument is supported by performance
evaluation of several graph databases (e.g., such as Neo4j,
DEX, orientDB, etc.) using data ingestion, traversal, non-
traversal, and manipulation queries. Neo4j outperforms the
other systems in traversal queries (the main focus of this
paper) [8, 9, 11, 10]. Moreover, Neo4j is shown to have
close performance to graph-processing frameworks such as
GraphLab and Giraph [5]. The spatial layer is crucial for
several mesh operations. This is beyond the scope of this
paper and will not be covered here.

4. TOPOLOGICAL NEIGHBORHOOD EX-

PRESSION
The basic idea of the neighborhood expression is to use

topological abstraction for expressing neighborhood traver-
sal, i.e., to express a neighborhood as nested application of
boundary, co-boundary, and adjacency functions. We define

these functions as follows:
Boundary Function. it is represented as b(c, k) for a given

cell c and it returns the boundary elements of dimension k
(k < dim(c)) of the cell c:

b(c, k) = {e| (e ∈ ∂(c)) ∧ (dim(e) = k)}

For a cell set C, it is defined as the union of k-cells on the
boundary of each member of the set.

Immediate Boundary Function. it is represented as ib(c)
for a cell c and it returns the immediate boundary of c:

ib(c) = {e|(e ∈ ∂(c)) ∧ (dim(e) = dim(c)− 1)}

Co-Boundary Function. it is represented as cob(c, k) for a
given cell c and it returns the co-boundary of dimension k
(k > dim(c)) of cell c:

cob(c, k) = {e| c ∈ ∂(e) ∧ (dim(e) = k)}

For a cell set C, it is defined as the union of k-cells on the
co-boundary of each member of the set.

Immediate Co-Boundary Function. it is represented as
icob(c) for a given cell c and it returns the immediate co-
boundary of c:

icob(c) = {e| c ∈ ∂(e) ∧ (dim(e) = dim(c) + 1)}

Adjacency Function. it is represented as adj(c, k) for a given
cell c and it returns the k-adjacent cells to the cell c, i.e.,
cells which share a k-face with c. Formally,

adj(c, k) = {e| (∃s : s ∈ (∂(c) ∩ ∂(e))) ∧ dim(s) = k}

Note that dim(c) = dim(e).
The definition of the adjacency relation for vertices is defined
as follows:

adj(v) = {c| ∃e : (dim(e) = 1) ∧ (v ≺ e) ∧ (c ≺ e)}

where v and c are vertices. Note that in this case the func-
tion has only one argument.

4.1 Basic Neighborhood Expression
The basic neighborhood expression is semantically equiv-

alent to the stencil string. The difference is that instead
of using dimensions it uses the topological functions de-
fined in the previous section. This means that arbitrary
cell neighborhoods can be expressed as nested applications
of the functions. Assuming the set C containing all initial
elements which we would like to traverse their neighborhood
(a.k.a. seed), the basic expression is defined as:

nex = en(en−1(· · · e1(e0(C, k0), k1) · · · , kn−1), kn)

where nex is the neighborhood expression, ei is a (immediate)
boundary, (immediate) co-boundary, or adjacency relation-
ships, 0 ≤ k ≤ d (d is the mesh dimension), ki shows an op-
tional dimension argument for the functions, and 0 ≤ i ≤ n.
The expression repeatedly applies the functions to explore
the neighborhood of the cells in the set C. Functions such as
b needs a dimension parameter which specifies the dimension
of the target boundary element. For the adjacency function,
adj means p-cells which share a (p − 1)-face with a given
p-cell in the seed set.

The nex is a functional expression, i.e., its functions are
applied from innermost to outermost, i.e., e0 is applied to the
seed set C and produces layer zero result L0, e1 is applied
on L1 and stored as layer one result L1 and so on.

For instance, the stencil 010 (adjacent vertices of the seed
vertices) can be expressed as icob(ib(V)) or simply adj(V),
where V is the seed set. As another example, a common
stencil on 2D triangular mesh is 202, i.e., neighboring 2-
cells which share at least one vertex with the seed 2-cell. In
Figure 2 (right), the stencil for the triangle number 1 as seed
contains triangles number 2 to 11. The stencil can be ex-
pressed as cob(b(F, 0), 2) (or icob(icob(ib(ib(F))))) where F
is the seed set. The stencil 0102 can be succinctly expressed
as cob(adj(V), 2) with V as the seed set.

The final result of the expression can be either the ele-
ments in the last layer or union of elements in all intermedi-
ate layers. In the latter case, the result forms a stencil mesh
[7]. We define these two types of outputs as follows:

Halo Neighborhood. A halo neighborhood w.r.t. a given
neighborhood expression nex contains the cells of the last
layer only, i.e., before computing elements of the current
layer it removes cells from the previous layer:

halo(C, nex) = Ln

Hull Neighborhood. A hull neighborhood w.r.t. a given
neighborhood expression nex contains the union of elements
in all intermediate layers of the nex evaluation:

hull(C, nex) =
i=n
⋃

i=0

Li

4.2 Advanced Neighborhood Expression
The neighborhood expression from Section 4.1 has enough

abstraction w.r.t. mesh topology. However, in comparison
to stencil string, it does not offer anything new. Often appli-
cations need to filter the intermediate results of the traversal
while searching the neighborhood. This is not possible with
stencil string. Thus, we further extend the basic neighbor-
hood expression to allow filtering of cells in intermediate
layers using predicates on mesh components (e.g., field val-
ues, geometry, etc.). To this end, we extend the definition
of the functions as follows:

Extended Boundary Function. It is represented as b(C, k, p).
It computes the k-cells in the boundary of each element in
C and then it checks if the boundary elements satisfies the
predicate p. It returns elements in the boundary which sat-
isfy p. It is formally defined as follows:

b(C, k, p) =
⋃

c∈C

{e|(e ∈ ∂(c)) ∧ (dim(e) = k) ∧ p(e)}

where p(e) means that the cell e satisfies p.
Extended Immediate Boundary Function. It is represented

as ib(C, p). For each cell c in C, it computes its immediate
boundary and applies the predicate p on each cell in the
immediate boundary of c. It returns cells in the immediate
boundary which satisfy the predicate. It is formally defined
as follows:

ib(C, p) =
⋃

c∈C

{e|(e ∈ ∂(c)) ∧ (dim(e) = dim(c)− 1) ∧ p(e)}

Extended Co-Boundary Function. It is shown as cob(C, k, p).
For each cell c in C, it computes its co-boundary elements
of dimension k and checks if they satisfies the predicate p.
It returns co-boundary cells which satisfy the predicate. It
is formally defined as follows:

cob(C, k, p) =
⋃

c∈C

{e|(c ∈ ∂(e)) ∧ (dim(e) = k) ∧ p(e)}

Extended Immediate Co-Boundary Function. It is repre-
sented as icob(C, p). For each cell c in C, it computes its im-
mediate co-boundary and applies the predicate p on each cell
in the immediate co-boundary of c. It returns cells in the im-
mediate co-boundary which satisfy the predicate. icob(C, p)
is formally defined as follows:

⋃

c∈C

{e|(c ∈ ∂(e)) ∧ (dim(e) = dim(c) + 1) ∧ p(e)}

Extended Adjacency Function. It is represented as adj(C, p).
For each p-cell c in C, it computes its (p− 1)-adjacent cells
and checks the predicate p. It returns (p− 1)-adjacent cells
which satisfy the predicate. adj(C, p) is formally defined as
follows:

⋃

c∈C

{e|(∃s : s ∈ (∂(c) ∩ ∂(e))) ∧ (dim(s) = k) ∧ p(e)}

With the definitions above, the new functional neighborhood
expression is as follows:

nex = en(en−1(· · · e1(e0(C , k0, p0), k1, p1)

· · · , kn−1, pn−1), kn, pn)

where ki and pi are the (optional) dimension and the pred-
icate arguments, respectively. The predicate pi is defined
on properties of cells returned by ei, e.g., predicates on data
fields or geometric features such as length, area, volume, etc.

For instance, the expression icob(ib(T, f < 24.0)) (or equiv-
alently adj(T, 2, f < 24.0)) finds 2-adjacent 3-cells using 3-
cells in T as seed set. The predicate selects only 2-cells where
the value of the field f is less than 24.0.

Such a functional notation with many nested parentheses
can become very tedious to read/write. Thus, we propose
a notation inspired by XPath [2]. We use slash to separate
the topological functions and brackets to express predicates.
Assuming C as the seed set, the previous nex can be written
as follows:

nex = e0(k0)[p0]/e1(k1)[p1]/ · · · /en−2(kn−2)[pn−2]/

en−1(kn−1)[pn−1]/en(kn)[pn]

Note that ki and pi are optional and the seed set is not
present in the expression. In the next Section, we show how
to specify the seed.
For instance, the expression from the previous example can
be written as ib[f < 24.0]/icob using T as seed.

In comparison to the functional form, the evaluation of
XPath-like neighborhood expression is done left-to-right, i.e.,
first applying e0 to the seed set C and filtering the result us-
ing p0, then applying e1 to the result from layer zero and so
on. More formally, the elements in each intermediate layer
is computed as follows:

nex =



















L0 =
⋃

c∈C
{e|e ∈ e0(c) ∧ p0(e)} i = 0

L1 =
⋃

c∈L0 {e|e ∈ e1(c) ∧ p1(e)} i = 1
· · · · · ·
Ln =

⋃

c∈Ln−1 {e|e ∈ en(c) ∧ pn(e)} i = n

where Li represents elements in the layer i and pi(e) means
that the predicate pi holds for cell e.

5. IMPLEMENTATION
We implemented a set of algebraic mesh operators which

we call AMQL (Algebraic Mesh Query Language). The op-
erators are declarative meaning that we only need to de-
scribe the information need and the AMQL engine will figure
out how to find it. Two of AMQL’s operators use the neigh-
borhood expression, namely, the neighbors and self-regrid
operators. Other operators are described in [13]. In the rest
of this section, first we discuss the data model which we use
to store unstructured meshes as graphs and then we explain
the neighbors and self-regrid operators.

5.1 Graph Data Model for Meshes
In Section 2, we discussed that incidence graph can store

connectivity information of unstructured meshes. The graph
model allows us to find boundary, co-boundary, and adja-
cency relationships of cell using graph traversal.

The IG does not encode information about the data fields
and geometric embedding of cells. Many mesh application
domains have operations which needs to manipulate fields
and geometry data. Furthermore, the IG stores only inci-
dence relationship and the adjacency relationship needs to
be computed on demand. Neighborhood queries use adja-
cency information extensively. Adjacency based data struc-
ture are proved to be more efficient [4].

Based on the above observations, we extend the IG model
to a general purpose mesh model such that nodes in the
graph contains data fields and geometries and each node
stores information about its adjacent nodes. Figure 3 shows
the graph data model for a linear 3D unstructured mesh.
The nodes in the graphs represent the cells, e.g, vertex, edge,
face, and body. V F ieldi, EFieldi, FFieldi, and BFieldi
represent properties of vertices, edges, faces, and bodies, re-
spectively. Geom is the geometric object of each node, i.e.,
point for vertex, line-segment, polygon for face, and volume
for body. This allows us to compute geometric predicates
such as length, area, volume, centroid, distance, etc. Fur-
thermore, there are two types of topological relationships
between nodes, namely, boundary (between cells of differ-
ent dimensions) and adjacency (represented as self-loop in
the Figure 3). These relationships allow us to navigate the
topology using graph traversal algorithms.

5.2 Self-Regrid Operator
In domains such as climatology and oceanography, the

regrid operator is used to transform data from source meshes
to a target mesh [6]. The operator works in two steps: first,
it assigns a set of target cells to each source cell (mapping
step), then, it combines the data of the mapped cells to
estimate data of the target cell (interpolation step) [7].

The self-regrid operator is a special case of the regrid op-
erator (i.e., the source and the target meshes are the same)
where the goal is to estimate the data of a cell using its
neighbors information. The mapping step uses topological
or geometric neighborhood functions. The geometric map-
ping function, which assigns neighbors to a cell based on
their geometric distance to the cell (e.g., k-nearest neigh-
bors), is beyond the scope of this paper. The neighborhood
expression introduced in this paper can be used as a topo-
logical mapping function in the self-regrid operator to assign
neighboring cells to each given cell, e.g., assigns all adjacent
vertices to each vertex.

Figure 3: The graph data model for 3D linear meshes.

The notation for self-regrid operator is:

regrid(M, i, nex, agg f = aggFunc(f))

The operator assigns cells defined by nex to each i-cell of
M using the i-cell as the seed. Then, it applies the ag-
gregation function aggFunc on the field f of the mapped
cells and store the result as a new field agg f for the i-cell.
The algorithm 1 shows how the self-regrid algorithm works.
The algorithm loops over i-cells of the mesh M (line 7) and
by using each i-cell as seed evaluate the topological func-
tions from left-to-right. Th topological functions is stored
in L and L[i] refers to the ith function in the expression
nex. For instance, if the topological function is ib and has a
corresponding predicate, it first computes the result of the
topological function and then for each cell in the result check
the predicate. If there is no corresponding predicate, it just
returns the result of the function (line 12-17). The value of
field f of the mapped cells is combined to estimate value for
the target cell (line 23-26).

For instance, the following self-regrid operator can be used
to smooth temperature field on each vertex of the mesh M
using information from its adjacent vertices. To find adja-
cent vertices we need to compute the neighborhood expres-
sion adj (or icob/ib). This is equivalent to the stencil string
010.

regrid (M, 0, adj , agg_temp =avg(temperature))

In more structured and readable form, we can write it as
follows:

FOR VERTEX v IN M

MAP v TO neighbors(M, v , halo , icob/ib) AS m
RETURN v, avg(m.temperature)

The FOR loop iterates over all vertices of the mesh M. For
each vertex, the operator maps the vertex to the output set

Algorithm 1: Evaluation of the Regrid Operator
regrid(M, i, nex, agg f = aggFunc(f))

input : Mesh M , dimension i, field f , aggregation function
aggFunc, output field name agg f , and neighborhood
expression nex

output: Mesh M with new field agg f

1 L← List of (co-)boundary functions extracted from nex;
2 P ← List of predicates extracted from nex;
3 MappedCells ← ∅;
4 Seed← ∅;
5 S ← ∅;
6 fvals← ∅;
7 while (there are i-cells in C) do

8 Seed ← next unused i-cell c;
9 k ← i;

10 for (j from 0 to length(L))) do

11 for (e in Seed) do

12 if (P [i] 6= null) then

13 I ← L[j](e);
14 add cell c from I to S where P [i](c) holds;

15 else

16 add ib(e) to S;
17 end

18 end

19 Seed← S;
20 S ← ∅;

21 end

22 MappedCells ← Seed;
23 for (k-cell e in MappedCells) do

24 add e.f to fvals;
25 end

26 c.”agg f” = aggFunc(fvals) ;
27 MappedCells ← ∅;
28 fvals← ∅;

29 end

m from the neighbors operator (using the MAP ... TO ...
AS clause) and return the average of the temperature of the
mapped cells. The dot notation is used to refer to the field
temperature of a vertex, i.e., e.temperature.

5.3 Topological Neighbors Operator
The neighbors operator can create sub-meshes (a.k.a. sten-

cil meshes). It is represented as N (M,E,ROI,nex) where
its arguments are a mesh, seed set, the Region Of Influence
(ROI), and a neighborhood expression, respectively. The
Region Of Influence (ROI) is either halo or hall. The oper-
ator returns a set of cells by evaluating the expression nex
on the seed set E w.r.t. to the ROI argument.
For instance, the hull mesh around a vertex v containing
the vertex itself and all edges and faces can be expressed as
N (M, {v} , hull, icob/icob/ib/ib).

Algorithm 2 shows how to construct result of the neigh-
bors operator N (M,E, halo, nex). A similar algorithm can
be written for the hull with small modification of the algo-
rithm 2.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
Experimental Design. We conducted experiments to

evaluate the performance of the declarative self-regrid op-
erator. The operator is implemented within AMQL which
contains a collection of declarative operators for unstruc-
tured meshes implemented in Java. As explained in Section
3, the main reason to use Java is that Neo4j provides spa-
tial data management (crucial for some of the operators)
and either performs better or has close to existing graph

Algorithm 2: Algorithm Evaluation of Neighbors Op-
erator N (M,E, halo, nex)

input : Mesh M , seed cells E, ROI = halo, and neighborhood
expression nex

output: Sequence N containing all cells which are in the defined
neighbourhood by nex

1 N ← ∅;
2 L← List of (co-)boundary functions extracted from nex;
3 P ← List of predicates extracted from nex;
4 Seed← E;
5 S ← ∅;
6 I ← ∅;
7 k ← dimension of element in E;
8 for (i from 0 to length(L)) do

9 for (e in Seed) do

10 if (P [i] 6= null) then

11 I ← L[i](e);
12 add cell c from I to S where P [i](c) holds;

13 else

14 add ib(e) to S;
15 end

16 end

17 Seed ← S;
18 S ← ∅;

19 end

20 N ← Seed;

databases and frameworks such as DEX or GraphLab. We
compare the performance of our implementation with GrAL
(a C++ mesh library) [3] by measuring the execution time
(this does not include time of building internal data struc-
tures or indexes for each system). The reason to use GrAL
is that it uses a generic approach to meshes which enables
it to express virtually any combinatoric query using domain
specific language of iterators [3].

We use four smoothing field queries in the experiments.
The queries differ in the length of the neighborhood expres-
sions and use of predicates. This allows us to observe the ef-
fect of expression length and predicates on the performance.

Implementation Details. We run the experiments on
a system with four cores (2.4 GHz processor) with 8GB of
RAM and XUbuntu 12.10 operating system.

We use ANTLR to parse AMQL operators including the
self-regrid [12]. The operators are implemented in Java and
use Neo4j database facilities, e.g., storage, indexes, traver-
sal framework, etc. However, the AMQL implementation is
storage neutral, i.e., the implementation is abstracted and
can be used with any other system which provides imple-
mentations for the abstract methods.

We implemented the self-regrid operator using both Cypher
and Neo4j core Java API. We refer to these two implemen-
tations as AMQL Cypher and AMQL Java, respectively. In
particular, the implementation of AMQL Cypher translates
each regrid query to a Cypher query. We report performance
of each implementation .
We use GrAL as of 1.11.2014 and Neo4j 2.1.6. GrAL is
compiled using gcc 4.6.3 with setting -03 which controls
depth of template instantiation. GrAL implements each
query separately in C++. We run each query ten times
and average the response times over ten trials for each pair
of (query,dataset).

Dataset. We use a real dataset from oceanographic do-
main [7]. The dataset contains a 2D triangular mesh where
each vertex has two data fields, namely, temperature and
bathymetry. The number of vertices, edges, and faces in the
dataset are 20736, 39133, and 59884, respectively. To see

how the systems perform with the data set size, we applied
the subsetting operator from AMQL to divide the dataset
to three smaller datasets with different size of vertices, i.e.,
4862 (D1), 10270 (D2), and 20736 (D3). As it can be seen,
the second dataset has (almost) twice the number of ver-
tices as in the dataset two and the dataset three has twice
the number of vertices as in the dataset two. The reason
behind the subsetting is that all the queries needs to iter-
ate over all the vertices in the datasets. This means the
workload for each dataset is twice the previous dataset.

Queries. We use four field smoothing queries for the
experiment. The smoothing operation is commonly used to
smooth a noisy data field or a data field with missing values.
The queries are as follows:

Q1. Compute temperature of each vertex as average of
the temperature of its adjacent vertices.

In the Section 5.2, we showed the regrid operator for this
query and its Cypher translation is as follows:

MATCH (p0:M)
WHERE p0.dim=0

WITH p0
MATCH (p0:M)<-[:ADJACENCY]-(p1:M)

RETURN p0.cid , avg(p1.temperature)

The MATCH clause is used for graph pattern matching.
The first MATCH clause defines an iterator variable p0 on
all nodes of mesh M . The WHERE clause filters p0 to ver-
tices where dim property is zero. The WITH clause chains
several smaller queries. In the query, the WITH only passes
the vertices to the next part of the query. The second
MATCH clause does a path matching in the graph by se-
lecting all p1 nodes which has ADJACENCY relationship
with p0. Finally, the RETURN clause returns the identifier
of each vertex in p0 and average value of temperature over
all correspondent p1. We refer the interested reader to Neo4j
documentation for elaborate details on Cypher [1].

The GrAL C++ code implementing the same query con-
sists of 10 lines of codes which uses underlying GrAL ab-
straction such as Cell-On-Cell iterators and mesh functions.

Q2. Compute temperature of each vertex as average of
the temperature of its adjacent vertices with the bathymetry
field greater than 5.0.

The query can not be expressed by a stencil. The query
is equivalent to the neighborhood expression adj[bathymetry
> 5.0] or icob/ib[bathymetry > 5.0]. The implementation of
the query in the AMQL is as follows:

regrid(M, 0, adj[bathymetry > 5.0],
agg_temp =avg(temperature))

The regrid operator above is translated to the the following
Cypher query:

MATCH (p0:M)
WHERE p0.dim=0
WITH p0

MATCH (p0:M)<-[:ADJACENCY]-(p1:M)
WHERE p1.bathymetry >5.0

RETURN p0.cid , avg(p1.temperature)

The GrAL C++ code implementing the same query consists
of 10 lines of codes.

Q3. Compute temperature of each vertex as average of the
temperature of vertices which are exactly two edges (2-hops)
away from the vertex.

This is equivalent to the stencil string 01010 and the neigh-
borhood expression adj/adj (or icob/ib/icob/ib). The self-
regrid operator pertaining to the query is:

regrid (M, 0, adj/adj,
agg_temp =avg(temperature))

The regrid operator is translated to the following Cypher
query.

MATCH (p0:M)
WHERE p0.dim=0

WITH p0 MATCH (p0:M)<-[:ADJACENCY]-(p1:M)
<-[:ADJACENCY]-(p2:M)

RETURN p0.cid , avg(p2.temperature)

The GrAL C++ code implementing the same query consists
of 15 lines of codes. The code uses several abstraction con-
cepts from GrAL [3] and contains three nested FOR loops.

Q4. Compute temperature of each vertex as average of
the temperature of vertices which are exactly two edges away
from it. Consider immediate adjacent vertices only if their
bathymetry field is greater than 5.0.

There is no stencil equivalent to this query. The query is
equivalent to the neighborhood expression adj[bathymetry >
5.0]/adj (or icob/ib[bathymetry > 5.0]/icob/ib). The imple-
mentation of the query in AMQL is as follows:

regrid (M, 0, adj[bathymetry > 5.0]/adj ,
agg_temp =avg(temperature))

The above regrid operator is translated to the following
Cypher query.

MATCH (p0:M)

WHERE p0.dim=0 WITH p0
MATCH (p0:M)<-[:ADJACENCY]-(p1:M)

<-[:ADJACENCY]-(p2)

WHERE p2.bathymetry >5.0
WITH p0, p2

MATCH (p2:M)
RETURN p0.cid , avg(p2.temperature)

Note that the complexity of the Cypher query grows with
the length of the expression and the number of predicates.
Moreover, some predicates such as geometric predicates can
not be translated to Cypher.

The corresponding GrAL code for the query consists of 18
lines with three nested FOR loops.

6.2 Performance Evaluation
Figure 4, 5, 6, and 7 show the results of the Q1, Q2, Q3,

and Q4 queries. Clearly, the GrAL implementation outper-
forms AMQL in all the queries except Q3. A closer look
on the performance data of the Q1, Q2, and Q4 queries
shows that GrAL on average is 150 (570), 140 (565), 500
(60) percent faster than AMQL Java and AMQL Cypher,
respectively. However, in Q3, GrAL is on average 15 per-
cent slower than AMQL Java and 140 percent faster than
AMQL Cypher.

The performance of AMQL Java increases by increasing
the length of the neighborhood expression (see Figures 4
and 6). Its performance on Q3 even outperforms GrAL.
This means that the traversal framework of Neo4j is very
efficient on long expression. However, increasing the length
and adding predicates cause a drastic increase in the per-
formance of AMQL Java (see Figures 6 and 7). This means
that the traversal framework of Neo4j Java API does not
perform well on a complex neighborhood expression with
long length and predicates.

In comparison to AMQL Java, the performance of AMQL
Cypher is better on longer expressions with predicates (see

Figures 7). The reason is that we need to apply the traver-
sal framework several times while evaluating an expression
with predicates. Furthermore, the evaluation of predicates
is done using Java code. However, AMQL Cypher breaks
down the query to shorter path and applies the predicates
directly on Neo4j (which is faster than running on Java).

We conclude that both Cypher and Neo4j Java API should
be used in implementing of the the expression depending on
length of the expression and usage of predicates.

We observe that by increasing the length of the neighbor-
hood expression and adding predicates the performances of
AMQL and GrAL get closer (see Figure 6 and 7).

A common pattern in the performance of the both systems
is that the response times increase linearly with the number
of vertices. More precisely, for each pair of (system, query)
the execution time on D2 is (almost) twice the execution
on D1 and the execution time on D3 is (almost) twice the
execution on D2.

Figure 4: Performance of Q1 on AMQL and GrAL.

Figure 5: Performance of Q2 on AMQL and GrAL.

We believe that the poor performance of AMQL in com-
parison to GrAL has the following reasons. First, AMQL
provides a generic solution which can accept any neighbor-
hood expression as input while the GrAL implementations
are query specific, i.e., any changes in the query requires
changes in the implementation. The generic solution offers
a declarative way of expressing the self-regrid but it has a
cost which is the query parser overhead. Moreover, we use
Neo4j’s transactions in the implementation which introduce
significant overhead. Also, in comparison to GrAL which
uses a light and pure topological data structure, AMQL uses

Figure 6: Performance of Q3 on AMQL and GrAL.

Figure 7: Performance of Q4 on AMQL and GrAL.

a general purpose mesh data model which contains the com-
plete mesh information. This introduces further query pro-
cessing overhead. Finally, it is known that Java language
has inherent performance inefficiencies compare to C++.

To sum up, AMQL implementation works better on long
neighborhood expression without predicates. In terms of
expressiveness, the expression described in this paper is more
expressive than the stencil string. Furthermore, it offers
declarative querying (i.e., shorter and more readable than
C++) and allows persisting of the computed data (i.e., the
result of the regrid can be stored as a new field in the input
mesh).

7. CONCLUSIONS AND FUTURE WORK
We presented a topological neighborhood expression which

is more expressive than the stencil string. The implementa-
tion of the expression is declarative and generic. However,
compare to a query-specific implementation in C++ it per-
forms poorly (except on very long expressions).

In the future, we would like to measure the cost of the
operator w.r.t. to the total cost of the queries and improve
the operator implementation. Also, we would like to imple-
ment the operators on top of a graph database (framework)
written in C++ such as DEX or GraphLab and repeat the
experiments. We also want to use the expression in a struc-
tured query language for unstructured meshes similar to the
example in the Section 5.2.

8. ACKNOWLEDGMENTS
The authors would like to thank Dr. Guntram Berti for

his help in implementing the queries in GrAL library.

9. REFERENCES
[1] Neo4j - the world’s leading graph database, Viewed

December 2014.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernandez, M. Kay, J. Robie, and J. Siméon. Xml
path language (xpath). World Wide Web Consortium
(W3C), 2003.

[3] G. Berti. Generic software components for Scientific
Computing. PhD thesis, BTU Cottbus, 2000.

[4] D. Canino, L. De Floriani, and K. Weiss. Ia*: An
adjacency-based representation for non-manifold
simplicial shapes in arbitrary dimensions. Computers
& Graphics, 35(3):747–753, 2011.

[5] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup,
C. Martella, and T. L. Willke. Towards benchmarking
graph-processing platforms. Poster at Supercomputing,
2013.

[6] H. Hinterberger, K. A. Meier, and H. Gilgen. Spatial
data reallocation based on multidimensional range
queries. a contribution to data management for the
earth sciences. In Scientific and Statistical Database
Management, pages 228–239. IEEE, 1994.

[7] B. Howe. Gridfields: model-driven data transformation
in the physical sciences. PhD thesis, Portland, OR,
USA, 2007. AAI3255425.

[8] S. Jouili and V. Vansteenberghe. An empirical
comparison of graph databases. In Social Computing
(SocialCom), 2013 International Conference on, pages
708–715. IEEE, 2013.

[9] V. Kolomičenko, M. Svoboda, and I. H. Mlỳnková.
Experimental comparison of graph databases. In
Proceedings of International Conference on
Information Integration and Web-based Applications &
Services, page 115. ACM, 2013.

[10] P. Macko, D. Margo, and M. Seltzer. Performance
introspection of graph databases. In Proceedings of the
6th International Systems and Storage Conference,
page 18. ACM, 2013.

[11] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and
D. A. Bader. A performance evaluation of open source
graph databases. In Proceedings of the first workshop
on Parallel programming for analytics applications,
pages 11–18. ACM, 2014.

[12] T. Parr. The definitive ANTLR reference: building
domain-specific languages. Pragmatic Bookshelf, 2007.

[13] A. Rezaei Mahdiraji. Toward unstructured mesh
algebra and query language. In Proceedings of the 2014
SIGMOD PhD Symposium, pages 16–20. ACM, 2014.

[14] I. Robinson, J. Webber, and E. Eifrem. Graph
databases. ” O’Reilly Media, Inc.”, 2013.

[15] Y. Tang, R. Chowdhury, C.-K. Luk, and C. E.
Leiserson. Coding stencil computations using the
pochoir stencil-specification language. In 3rd USENIX
Workshop on Hot Topics in Parallelism (HotPar’11),
2011.

