Implementing Flexible Operators for Regular Path Queries

Petra Selmer
London Knowledge Lab
Birkbeck, University of London
Iselm01@dcs.bbk.ac.uk

ABSTRACT

Given the heterogeneity of complex graph data on the web,
such as RDF linked data, a user wishing to query such data
may lack full knowledge of its structure and irregularities.
Hence, providing users with flexible querying capabilities
can be beneficial. The query language we adopt comprises
conjunctions of regular path queries, thus including exten-
sions proposed for SPARQL 1.1 to allow for querying paths
using regular expressions. To this language we add two op-
erators: APPROX, supporting standard notions of approx-
imation based on edit distance, and RELAX, which per-
forms query relaxation based on RDFS inference rules. We
describe our techniques for implementing the extended lan-
guage and present a performance study undertaken on two
real-world data sets. Our baseline implementation performs
competitively with other automaton-based approaches, and
we demonstrate empirically how various optimisations can
decrease execution times of queries containing APPROX and
RELAX, sometimes by orders of magnitude.

1. INTRODUCTION

The volume of graph-structured data on the web continues
to grow, most recently in the form of RDF Linked Data. At
the time of writing, there are 570 large datasets, spanning a
variety of domains, such as the life sciences, geographical and
government domains [2]. The prevalence of graph databases,
such as Sparksee [21], Neo4]j [14] and OrientDB [16], has also
greatly increased over the past few years; they have been
used in areas as diverse as social network analysis, recom-
mendation services [20] and bioinformatics [1].

Graph-structured data in these domains may be complex,
heterogeneous and evolving in terms of its structure, mak-
ing it difficult for users to formulate queries that precisely
match their information retrieval requirements. In this pa-
per, we discuss the development of efficient algorithms for
approximate matching and relaxation of conjunctive regular
path (CRP) queries over such data, with the aim of assist-
ing users in formulating queries and interactively retrieving

(©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

Alexandra Poulovassilis
London Knowledge Lab
Birkbeck, University of London

ap@dcs.bbk.ac.uk

Peter T. Wood
London Knowledge Lab
Birkbeck, University of London
ptw@dcs.bbk.ac.uk

results that are of relevance to them. Query results are
returned incrementally to the user in order of their increas-
ing edit or relaxation distance from the original query, with
users being able to specify a limit on the number of results
returned in each phase.

This paper extends earlier work in [9, 18], where the AP-
PROX and RELAX operators were introduced, and in [17],
where an initial prototype implementation was described,
by describing our system implementation, called Omega, in
detail. We also undertake here a performance study on real-
world data sourced from adult further education [17] and
from YAGO [10]. This study demonstrates that the perfor-
mance of exact query evaluation is competitive with other
automaton-based approaches, while a number of novel op-
timisations improve the performance of queries containing
APPROX and RELAX, sometimes by orders of magnitude.

In Section 2 we give the necessary background and moti-
vation, introducing our graph-based data model and query
language. In Section 3 we discuss the implementation of
Omega. We present our performance study in Section 4. In
Section 5 we review related work in CRP query evaluation
for graph-structured data. Section 6 summarises the con-
tributions of the paper, gives our concluding remarks and
directions for further work.

2. BACKGROUND AND PRELIMINARIES

Omega uses a general graph-structured data model com-
prising a directed graph G = (Vg, Eg,X) and a separate
ontology K = (Vk,Ek). The set Vi contains nodes each
representing an entity instance or an entity class, while the
set Eg C Vo x (2 Utype) x Vi represents relationships be-
tween members of V. For an edge e = (z,l,y) € Eg, [is
called the label of e, x the source of e, and y the target. We
assume that the alphabet ¥ is finite. The label type is used
to connect an entity instance to its class, and can represent
the corresponding notion in RDF/S (see below).

The set Vi contains nodes each of which represents an
entity class or a property. We call a node in Vi or Vi that
represents an entity class a class node and a node in Vx that
represents a property a property node. So Vg N Vi consists
of all the class nodes of Vg.

The edges in Ex capture subclass relationships between
class nodes, subproperty relationships between property nodes,
and domain and range relationships between property and
class nodes. Hence, Ex C Vi X {sc, sp,dom, range} X Vk.
We assume that 3 N {type, sc, sp, dom, range} =). We also
assume that the set of labels of property nodes in Vi does
not contain the label type.

This general graph model encompasses RDF data, ex-
cept that it does not allow for the representation of RDF’s
‘blank’ nodes; however, blank nodes are discouraged for
linked data [7]. Our graph model also encompasses a frag-
ment of the RDF'S vocabulary: rdf :type, rdfs:subClass0f,
rdfs:subProperty0f, rdfs:domain, and rdfs:range, which
we abbreviate by the symbols type, sc, sp, dom, and range.

The query language underlying Omega is that of conjunc-
tive regular path queries [3]. A conjunctive regular path
(CRP) query @, consisting of n conjuncts, is of the form

(Z1, . ,Zm) < (Xl,Rl,Yl), ey (Xn,Rn,Yn)

where m,n > 1, each X; and Y; is a variable or a constant,
each Z; is a variable appearing in the right-hand-side of @,
and each R; is a regular expression over the alphabet from
which edge labels in the graph are drawn. In our context, a
regular expression R is defined as follows:

R:=¢|a|a— |_|(Rl-R2)| (R1|R2) | R* | R"

where € is the empty string, a is any label in XU {type}, a—
represents traversal of an edge in the reverse direction, “_”
denotes the disjunction of all constants in ¥ U {type}, and
the operators have their usual meaning.

The (exact) answer to a CRP query @ on a graph G can be
obtained in a standard way by finding all pairs of nodes in G
satisfying each conjunct, joining the results, and projecting
over the variables in the head of Q.

EXAMPLE 1. Suppose a user wishes to find people who
graduated from an institution located in the UK and poses
the following query, Q, over the YAGO graph [10]:

(7X) <- (UK,isLocatedIn-.gradFrom,7X)

(Variables in a query have an initial question mark.) This
query returns no results since it requires that there is some
entity y, located in the UK, which has graduated from some
institution. However, no such y exists, since only people can
graduate from an institution and only events and places can
be located in a country.

The work in [9] investigated approzimate matching of CRP
queries, allowing edit operations such as insertions, deletions
and substitutions of edge labels to be applied to the regular
expressions R; of a CRP query, each with some edit cost
configurable by the user.

EXAMPLE 2. In Omega, the user can submit a variant of
Q in which the conjunct can be approrimated:

(?X) <- APPROX (UK,isLocatedIn-.gradFrom,?X)

isLocatedIn—.gradFrom is approzimated by isLocatedIn—.
gradFrom—, at some edit distance o, by substituting gradFrom
with gradFrom—. This query now returns results, matching
the user’s original intention by correcting the error in Q.

The work in [18] also considered applying ontology-based
relazation to the regular expressions R;. This allows query
relaxations entailed using information from the ontology K,
in particular: (i) replacing a class/property label by that of
an immediate superclass/superproperty, at some cost 3; (ii)
replacing a property label by a type edge with target the
property’s domain or range class, at some cost .

ExAMPLE 3. In Omega, the user can submit a variant of
Q in which the conjunct can be relazed:

(7X) <- RELAX (UK,isLocatedIn-.gradFrom,7X)

This query allows gradFrom to be relazed to its parent prop-
erty relationLocatedByObject at cost B, which now allows
properties such as happenedIn and participatedIn to be
matched, and answers to be returned at ‘distance’ 3.

3. IMPLEMENTATION OF ovmEGA

Figure 1 illustrates the architecture of the Omega sys-
tem. Sparksee [21] (formerly DEX) is used as the data store.
The development was undertaken using the Microsoft .NET
framework. The system comprises four components: (i) the
console layer, in which queries are submitted, and which dis-
plays the results; (ii) the system layer in which query plans
are constructed and executed; (iii) the Sparksee API; and
(iv) the data store itself.

_.| Result manager | | Query submitter H Query initialiser Console
layer

T
|
J_ System
<—>| Query Tree builder | Conjunct builder C?r.'s."umon v
utilities
Data
= Query Tree initialiser NFA utilities utilities
Y HFA builder [
£ Ontology
L] B manager

i Conjunct initialiser 9
S
5
<]

—
MNFA manager
Sparksee
Conjunct evaluator manager

Evaluation utilities

—-| P API (C#)

Initialisation utilities

Query Tree evaluator

Data store - Sparksee

Data graph

Figure 1: System architecture

The architecture of the system layer broadly follows that
described in [17], with the major change being that the data
store used in Omega is Sparksee [21] rather than XML. This
layer is responsible for the construction of the automaton
(NFA) corresponding to each query conjunct. Given a query
conjunct (X, R,Y), a weighted NFA Mg is constructed to
recognise the language denoted by the regular expression R.
If the conjunct is prefixed by APPROX or RELAX, then
Mg is augmented to produce an automaton Ar or MK,
respectively; we discuss this in Section 3.3. Further respon-
sibilities of the system layer include the construction of the
query tree, the incremental construction of a weighted prod-
uct automaton Hp from each conjunct’s automaton and the
data graph G, and the evaluation of the overall query, in-
cluding performing a ranked join for multi-conjunct queries.
We make extensive use of data structures provided by the
C5 Generic Collection library [15].

3.1 The Sparksee Data Model and API

The two main Sparksee structures used in our implemen-
tation are nodes and edges (which may be directed or undi-
rected), each of which has a pre-created type (this is a label,

of string data type), and a unique object identifier (oid) of
long data type. Associated with each node and edge are zero
or more attributes, which are key-value pairs; values may be
of any primitive data type. Further details regarding Spark-
see may be found in [12, 13] and the User Manual'. The
main Sparksee API functions used in Omega are as follows:

Neighbors takes as arguments a node n and edge type ¢,
and returns the set of nodes connected to n via an edge of
type t; the directionality of edges may also be specified.

Heads takes a set of edges F, and returns the set of nodes
which are the target of an edge in F. Tails is analogous
to Heads, except that nodes which are sources are returned.
TailsAndHeads returns the union of Heads and Tails.

To store the data, Sparksee uses a combination of maps
(inverted indexes) and associated bitmap vectors [13]. To
improve the performance of the Neighbors function, an op-
tion may be set to index the neighbouring nodes when creat-
ing an edge type t. This means that an index entry is created
when an edge of type t is created between any two nodes.
Node- and edge-related attributes may also be configured to
be indexed when they are created (the index stores all oids
associated with each value of the attribute).

3.2 Omega data graphs

As it is mandatory in Sparksee for each node to have a
type, and as our data model does not assume that nodes are
typed, we create all of our nodes to be of the same type,
‘node’. All of our nodes have one attribute, of string data
type, representing the node label (which is unique in the
data graph G). This attribute has indexing enabled.

We create multiple edge types, all of which are defined
to be directed edge types with indexing enabled. Specifi-
cally, for each edge in G having label | € X, two Sparksee
edges are created: (i) one having type [, and (ii) one hav-
ing type ‘edge’ with an associated indexed string-valued at-
tribute corresponding to [. We introduce the generic ‘edge’
type to counter a limitation of the Neighbors function which
requires the type of the edge to be provided as an argument,
in order to allow us easily to retrieve multiple types of edges
simultaneously. For each edge in G labelled type, only one
edge is created, whose type is type. In cases which require
the retrieval of all types of edges of a node, we retrieve all
‘edge’ edges, followed by all type edges.

3.3 Query conjunct initialisation

The initialisation of a query conjunct (X, R,Y") comprises
the construction of the associated automaton (one of Mg,
Ag or ME), and the initialisation of its data structures prior
to the evaluation of the conjunct. We discuss each here.

In all cases, an automaton (NFA) Mg is first constructed
from regular expression R using standard techniques. Then,
if the conjunct is prefixed by APPROX or RELAX in the
query, additional transitions and states are added (see [18]),
along with the removal of e-transitions, to form Ar or M
respectively. As the automaton is weighted, the removal of
e-transitions may result in final states having an additional,
positive weight [5]. For state s, we denote this weight by
weight(s). The NFA is represented as a set of transitions
(s,a,c,t), where s is the ‘from’ state, ¢ is the ‘to’ state, a is
the label, and c is the cost.

If the conjunct is APPROXed, the insertion edit opera-
tion would result in many additional transitions in the NFA,
1

one for each label in ¥ U {type} and their reversals. To make
our automaton more compact, we represent these as a single
transition labelled by the wildcard label *.

In all cases, if X (respectively, Y) is a constant ¢, we
annotate the initial (resp. final) state with ¢; otherwise we
annotate the initial (resp. final) state with the wildcard
symbol matching any constant.

The pseudocode for the initialisation of a conjunct is given
in the Open procedure below. After constructing the ap-
propriate automaton, the procedure evaluates the conjunct
by traversing the automaton and the data graph simulta-
neously. This traversal is represented by tuples of the form
(v,n,s,d, f), where d is the distance associated with visiting
node n in state s having started from node v, and f denotes
whether the tuple is ‘final’ or ‘non-final’ (see below).

The tuples are added to and removed from a dictionary
Dpg whose key is an integer-boolean variable (where the in-
teger portion represents a distance and the boolean portion
represents the final or non-final tuples at that distance). The
value associated with each key is a linked list of tuples. Tu-
ples are always added to, and removed from, the head of a
linked list (at cost O(1)). We introduced the notion of fi-
nal and non-final tuples in order to prioritise the removal of
‘final’ tuples (rather than ‘non-final’ ones) at the minimum
distance (if any), so that answers may be returned earlier.
Including this refinement improved the performance of most
of our queries, and also ensured that some queries, which
had previously failed by running out of memory, completed.

Procedure Open

(1)
(2)

(3)
(4)
(5)
(6)
(7
(8)
(9)

(10)
(11)

(12)
(13)
(14)
(15)
(16)
an)

(18)
(19)
(20)

(21)
(22)
(23)

Input: query conjunct (X, R,Y)
construct NFA Mg for R; initial state is so
transform Mg into Ar (APPROX) or M (RELAX) if
necessary
visitedr < 0
d<+0
if congunct is of the form (C,R,7X) then
//Let n be the node in G corresponding to C'
if RELAX 1s being applied then

foreach node m € GetAncestors(n) do
L L add(Dg, (m,m, so,d, false))

else
L add(Dg, (n,n, so,d, false))

else
//the conjunct is of the form (?X, R,?Y)
if so is final then
if weight(so) = 0 then
foreach node n in G do
L L add(Dg, (n,n, so, d, true))

else
foreach n € GetAllNodesByLabel(so) do
L add(Dg, (n,n, so,d, false))
else
foreach n € GetAllStartNodesByLabel(so) do
L add(Dg, (n,n, so,d, false))

www.sparsity-technologies.com/downloads/UserManual.pdf

We distinguish between 3 cases in the Open procedure:
(Case 1) If the conjunct is of the form (C, R, ?Y’) where C

is a constant, we begin the traversal at the node in G having
the attribute value C.

(Case 2) A conjunct of the form (?7X, R, C) is transformed
to (C,R™,7X), where R™ is the reversal of R. This reversal
can be accomplished in linear time starting from the NFA
for R [23]. Thus, Case 2 reverts to Case 1.

If the conjunct has the RELAX operator and C is a class

node, we also add to Dg every node returned by Get Ancestors

(line 8). This function returns all superclasses of C' in order
of increasing specificity so that they are added to the list in
Dr in that order. We want to process more specific classes
first, given that nodes representing more general classes will
have larger degree (owing to transitive closure) and will lead
to answers of greater cost.

(Case 8) For a conjunct of the form (?X, R,?Y), lines 14
to 23 are invoked. The function Get AllNodesByLabel (line
19) takes as input a list of all labels on transitions whose
‘from’ state is the initial state sg. Each label in the list is
then processed as follows: (i) the directionality of the label is
determined — i.e. whether it is an incoming or an outgoing
edge, or whether both incoming and outgoing edges are re-
quired (as for the *-labelled transitions, introduced above);
(ii) the set of object identifiers (oids) for the nodes having
the relevant edge and directionality are retrieved using the
Sparksee methods Heads, Tails and TailsAndHeads; (iii)
Sparksee set operations are used to maintain a distinct set
of nodes, so that the same node is not re-added to Dg at
a higher cost (this can occur with the ‘*’ label); and (iv)
the remaining nodes in the graph G are returned. When
adding to Dg, we iterate through the set of nodes in order
of decreasing cost. The function Get AllStartN odesByLabel
(line 22) is identical to GetAllNodesByLabel, except that
it does not include step (iv).

We have implemented the above two functions and that
retrieving all nodes in G (line 16) as coroutines in conjunc-
tion with the GetNext procedure (discussed in Section 3.4),
incrementally obtaining nodes in batches (the default is 100
nodes at a time). We found that, as a result, the execution
time of some queries was reduced by half, since nodes not
required to answer the user’s query are not added to Dg.

3.4 Query conjunct evaluation

The two algorithms concerned with the evaluation of a
single query conjunct are GetNext and Succ, which have
previously been presented in [9, 18]. We now describe our
physical implementation of these algorithms.

GetNext returns the next query answer, in order of non-
decreasing distance from the original query), by repeatedly
removing the first tuple (v, n, s, d, f) from the distance d list
of Dr until Dg is empty. If the removed tuple is final (f
is true) and the answer (v,n,d’) has not been been gener-
ated before for some d’, the triple (v,n,d) is returned after
being added to answersg. If the tuple is not final, we add
(v,m,s) to visitedg, and add (v,m,s’,d+d’, false) to Dg

for each transition % (s’,m) returned by Succ(s,n) such
that (v,m,s’) € visitedg. If s is a final state, its annota-
tion matches n, and the answer (v,n,d’) has not been been
generated before for some d’, then we add the weight of s to
d, mark the tuple as final, and add the tuple to Dg.

For visitedr, we use a hashed set which has O(1) lookup
time. Lines 8 and 9 in practice are executed as a single
step, and the logic in lines 10 to 13 is only executed if the
item was added. This means that we never re-process a

Procedure GetNext(X, R,Y)

Input: query conjunct (X, R,Y)
Output: triple (v,n,d), where v and n are
instantiations of X and Y

(1) while nonempty(Dr) do

(2) (v,n,s,d, final) < remove(DR)

3) if final then

(4) if Ad'.(v,n,d’) € answersg then
(5) append (v,n,d) to answersg
(6) L return (v, n,d)

7 else

(8) if (v,n,s) € visitedr then

(9) add (v,n, s) to visitedr

(10) foreach % (s’,m) € Succ(s,n) s.t.
(v,m,s’) € visitedr do

(11) | add(Dr, (v,m,s',d+d', false))

(12) if s is a final state and its annotation
matches n and Ad'.(v,n,d’) € answersgr
then

(13) L add(Dg, (v,n, s,d + weight(s), true))

(14) //Incrementally add the next batch of initial nodes

(15) if no distance 0 tuples in Dgr and more initial nodes

available then

(16) foreach initial node n’ do

an) L | add(Dg, (n',n', 50,0, false));

(18) return null

previously-processed (v, n, s) triple; this situation may arise
when (v,n,s) triples of monotonically-increasing distances
are created and added at lines 11 and 13 (we therefore never
process ‘duplicate’ tuples at a higher distance).

In lines 15 to 17, we utilise a coroutine for (?X, R,?Y)
conjuncts. If Dr no longer contains any tuples at distance
0, we retrieve and add the next batch of initial nodes from
the functions initially invoked in the Open procedure.

The Succ function takes as input a node (s,n) of the
weighted product automaton Hgr and returns a set of of

transitions % (p,m), such that there is an edge in Hr from
(s,m) to (p,m) with cost d. The function NextStates(s)
returns the set of states reachable from state s on reading
some label, along with the associated costs. We only re-
trieve those edges for node n in G whose label corresponds
to one of those returned by NextStates(s), thereby using
the transitions in the automaton to guide the selection of
neighbouring nodes in G.

NeighboursByFEdge takes as input the oid of a node n
from G and a label, and returns a list of neighbouring node
oids. If the label is not ‘*’, we invoke the Sparksee method
Neighbors in order to retrieve all neighbouring nodes for n
connected by an edge labelled with label, taking direction-
ality into account. If the label is ‘*’, we invoke Neighbors
once for edges labelled ‘edge’ and once for edges labelled
type. We do this for both directions in both cases.

In each case, we iterate over the neighbouring nodes, adding
their oid to W (lines 7 and 8). As it is possible for NexztStates
to return identical labels consecutively (at the same cost), we
store the results of NeighboursByFEdge for new labels in a

Procedure Succ(s,n)

(1)
(2)
(3)
(4)
(5)
(6)
(7
(8)
(9)
(10)

Input: state s of NF A and node n of G
Output: set of transitions from (s,n) in Hg
W+ 0; U+ 0
currlabel < null; previabel < null
foreach (label, successor, cost) € NextStates(s) do
currlabel < label
if currlabel # previabel then
L U + NeighboursByEdge(n, label)

foreach node m € U do
t add the transition “S" (successor,m) to W

| prevlabel < currlabel

return W

L1 L2 L3 L4
Nodes | 2,601 | 15,188 | 68,544 240,519
Edges | 19,856 | 118,088 | 558,072 | 1,861,959

Figure 3: Characteristics of the L4All data graphs.

Q1 (Work Episode, type , 7X)

Q2 (Information Systems, type .qualif ™, ?X)

Q3 (Software Professionals, type™ .job™ , 7X)

4 (7X, job.type, 7Y)
J yp

Q5 (7X, next+, 7Y)

Q6 (7X, prereqg+, ?Y)

Q7 (?X ,next+| (prereg+.next), 7Y)

Q8 (Mathematical and Computer Sciences, type.prereq+, 7X)

Q9 (Alumni 4 Episode 1_1, prereqg#*.next+.prereq, 7X)

Q10 | (Librarians, type , 7X)

Class hierarchy Depth | Average fan-out
Episode 2 2.67

Subject 2 8
Occupation 4 4.08
Education Qualification Level 2 3.89
Industry Sector 1 21

Figure 2: Characteristics of the class hierarchies.

set U (line 6), avoiding identical calls to NeighboursByFEdge.

4. PERFORMANCE STUDY

In this section, we present performance results from two
case studies. We also discuss two optimisations, showing
how each results in improved performance for some of the
APPROX/RELAX queries. All experiments were run on an
Intel Core 17-950 (3.07-3.65GHz) with 6GB memory, running
Windows 7 (64 bit).

4.1 L4All Case Study

Our first case study uses data from the L4All project [17].
Briefly, the L4All system aimed to support lifelong learn-
ers in exploring learning opportunities and in planning and
reflecting on their learning. The system allows users to cre-
ate and maintain a chronological record — a timeline — of
their learning and work episodes. Each episode is (i) linked
to an Episode category by an edge labelled type, (ii) linked
to other episodes edges labelled ‘next’ or ‘prereq’ (indicating
whether the earlier episode simply preceded, or was neces-
sary in order to be able to proceed to, the later episode),
and (iii) linked to either an occupational or an educational
event, by means of an edge labelled ‘job’ or ‘qualif’, which in
turn is classified in terms of Education Qualification Level
or Industry Sector, respectively.

Figure 2 shows the class hierarchies used in the ontol-
ogy accompanying the data; the depth is the length of the
longest path from the root to the leaf nodes, and the av-
erage fan-out is the average number of children of each
non-leaf class. There is only one property hierarchy: the
super-property ‘isEpisodeLink’ has ‘next’ and ‘prereq’ as
subproperties. These properties also have defined domains
and ranges, but as these are not used in the our performance
study, we do not discuss them further.

Our initial data comprised five detailed timelines from real
users, to which we added 16 additional realistic timelines.
Each of these timelines consisted of a mixture of educa-

Q11 | (Librarians, type .job™ .next, 7X)

Q12 | (BTEC Introductory Diploma, level™ .qualif .prereq, 7X)

Figure 4: The L4All query set.

tional and occupational episodes, and varied in terms of the
number of episodes contained within them, as well as the
classification of each episode.

We then scaled this data graph up by creating synthetic
versions of the real timelines in order to obtain four data
graphs of increasing size, called L1 (143), L2 (1,201), L3
(5,221) and L4 (11,416), where the number in brackets refers
to the number of timelines. Figure 3 shows the characteris-
tics of each data graph. The synthetic timelines were gener-
ated by duplicating a real timeline and using the ontology to
alter the classification of each episode to be a ‘sibling’ class
of its original class, for as many sibling classes as are present.
Each duplicated timeline remained identical to the original
in terms of the number of episodes, whether the type of the
episode was educational or occupational, and the manner in
which episodes were linked to each other. Thus, as the data
graph increases in size, the degree of the class nodes (i.e.
the nodes with incoming type edges) increases linearly. As
the data graph size increases, the total number of edges also
increases linearly with the number of nodes.

We execute a series of single-conjunct queries on this data
in order to evaluate the performance of our APPROX and
RELAX operators, shown in Figure 4. These 12 queries in-
clude actual queries used in the original L4All case study,
as well as others designed to stress test our implementation.
Each query is first run in ‘exact’ mode — i.e. neither AP-
PROX nor RELAX is used — followed by versions of the
same query containing either the APPROX or the RELAX
operator. We therefore run 36 queries in total.

We used a cost of 1 for each approximation operation (in-
sertion, substitution and deletion). For RELAX, we applied
rules of type (i) (see Section 2), also at a cost of 1. We ran
each query five times, discarding the first run as the cache-
warm-up. After initialisation, each exact query was run to
completion, in which all results are obtained. On the other
hand, each APPROX and RELAX run comprises the follow-
ing sequence: initialisation; obtain results 1-10 (‘batch 17);
obtain results 11-20 (‘batch 2’); ...; obtain results 91-100
(batch 10). For exact queries, the average time to return all
answers was taken across runs 2 to 5. For APPROX and RE-
LAX queries, we took the average of each of the 10 batches
across runs 2 to 5 to obtain an average for each batch. We

Q3 Q8 Q9 Q10 Q11 Q12

L1: Exact 58 0 1 T 2 0
L1: APPROX 100 100 100 100 100 100
1 (42) | 2 (100) | 1 (32) 1(7) | 1(12) | 1 (100)

2 (67) | 2 (92) | 2 (86)
L1: RELAX 100 0 12 100 100 59
1 (42) 1(11) | 1(20) | 1 (40) 1 (59)

L2: Exact 1,090 0 1 1 2 0
L2: APPROX 100 100 100 100 100 100
2 (100) | 1 (32) 1(7) | 1(12) | 1 (100)

2 (67) | 2 (92) | 2 (86)

L2: RELAX 100 0 12 100 100 59
1 (11) | 1(20) | 1 (40) 1 (59)

L3: Exact 3,104 0 1 1,024 | 2,048 0
L3: APPROX 100 100 100 100 100 100
2 (100) | 1 (32) 1 (100)

2 (67)
L3: RELAX 100 0 12 100 100 59
1 (11) 1 (59)
L4: Exact 3,104 0 1 1,024 | 2,048 0
L4: APPROX 100 100 100 100 100 100
2 (100) | 1 (32) 1 (100)

2 (67)
L4: RELAX 100 0 12 100 100 100

1 (11) 1 (100)

Figure 5: Results for each query and data graph.

then computed the average over all batches. Some of these
queries yielded fewer than 100 results.

We show the number of results obtained for queries 3, 8,
9, 10, 11 and 12 per data graph in Figure 5. Queries 1 and 2
showed similar performance to Query 3, while queries 4-7 all
returned well over 100 exact results on all the data graphs,
thus negating the need to apply APPROX and RELAX to
them for the purposes of this performance study. For AP-
PROX and RELAX queries yielding non-exact answers, we
also show in Figure 5 the distances of the non-exact answers,
as well as the number of the answers at each non-zero dis-
tance in brackets (with the number of exact answers com-
prising the difference). For example, query Q9/APPROX
on data graph L2 returns 1 exact answer (100-(32467)), 32
answers at distance 1 and 67 answers at distance 2.

Figures 6, 7 and 8 show the average execution times for
the exact, APPROX and RELAX versions, respectively, of
queries 3, 8, 9, 10, 11 and 12 over the data graphs L1-L4.

1000

100 ﬁ—
// —+—0Q3-E
10 V4 ——-Qs-£
: ;2 / ——[Q9-E
1 —+—Q10-E
// ——Q11-E

01 —~&—0Q12-E

0.01

Figure 6: Execution time (ms) — exact queries.

For the exact queries, we see that queries 8 and 9 take
constant time for all the data graphs since at most a single
answer is returned. The jump in execution time from L2
to L3 for queries 10 and 11 is caused by the large increase
in the number of answers; similarly for query 3. Query 12
shows a steep increase owing to the manner in which the syn-
thetic timelines were generated, giving rise to the processing
of nodes of ever-increasing degree. We note that the perfor-
mance of all the queries is competitive with the expected
behaviour of native NFA-based approaches to regular path
query evaluation [11].

10000
1000 /
/ —=03-A
100 / —8—-Qs-A
"’/’:‘ﬁgﬁE:::"ﬂ"— / —dr=[03-A
10 =—e=Q10-A
/ e Q11-A
1 —0—Q12-A
01 : : : :
L1 Lz 13 L4

Figure 7: Execution time (ms) — APPROX queries.

100
10 /

=—4=—03-R

1 4 —8-08-R

< —i—[Qg-R

0.1 = — — e —e=Q10-R

e 011-R

0.01 - fli— i #— —9—QlZR

0.001 . . . :

1 L2 3 L4

Figure 8: Execution time (ms) — RELAX queries.

For the APPROX queries, queries 10 and 11 show a de-
crease in the time taken for L3 and L4 compared with L2
which is caused by the fast processing of sufficient exact re-
sults for the larger two data graphs; similarly for query 3.
However, the APPROX versions of queries 8, 9 and 12 ex-
hibit an exponential increase in time taken to retrieve the
top 100 results. This is caused by a large number of inter-
mediate results being generated (due to the Succ function
returning a large number of transitions which are then con-
verted into tuples in GetNext and added to Dr). We discuss
optimisation of query 9 in Section 4.3. Regarding queries 8
and 12, the time for query 8 decreased from 332ms to 272ms
by applying the first optimisation of Section 4.3. Query 12
was not aided by the optimisations of Section 4.3.

The RELAX queries 3, 8, 9, 10 and 11 all exhibit a fairly
constant execution time across the data graphs. Query 12
shows an increase from L3 to L4 for a reason similar to that
for its APPROX version.

4.2 YAGO Case Study

For our second case study, we used data from YAGO [10].
The connectivity patterns in YAGO differ from the rather
‘linear’ timelines comprising the L4All data, so provide a
contrasting basis on which to evaluate query performance.
Additionally, the YAGO ontology differs from the L4All one
in terms of its breadth and depth.

We downloaded the simpler taxonomy and core data facts
from the YAGO website (the SIMPLETAX and CORE por-

Q1 (Halle_Saxony-Anhalt, bornIn™ .marriedTo.hasChild, ?X)
Q2 | (Li_Peng, hasChild.gradFrom.gradFrom .hasWonPrize, 7X)

Q3 | (wordnet_ziggurat, type .locatedIn™ , ?X)

Q4 | (7X, directed.married.married+.playsFor, ?Y)

Q5 (?X, isConnectedTo.wasBornIn, ?Y)

Q6 (7X, imports.exports™ , ?Y)

Q7 | (wordnet_city, type .happenedIn” .participatedIn™ , ?X)
Q8 | (Annie Haslam, type.type .actedIn, ?X)

Q9 | (UK, (livesIn™ .hasCurrency) | (locatedIn™ .gradFrom), 7X)

Figure 9: The YAGO query set.

Q2 Q3 | Q4 Q5 Qo
Exact 2 0 0 0 0
APPROX 100 100 7 7 100
1 (98) 1 (5) 1 (100)

2 (95)
RELAX 2 100 0 100 100
1 (100) 1 (100) | 1 (100)

Figure 10: Query results for the YAGO data graph.

tions) and imported these into our system?. The resulting
data graph consists of 3,110,056 nodes and 17,043,938 edges.
There is only one classification hierarchy in YAGO; its depth
is 2 and average fan-out is 933.43.

Including the type property, YAGO uses 38 properties.
There are two property hierarchies, containing 2 and 6 sub-
properties respectively. The properties also have domains
and ranges defined, not used in our performance study.

The queries we ran on the YAGO data are listed in Fig-
ure 9. The exact, APPROX and RELAX versions therefore
give rise to 27 queries, for which we calculated the timings as
described in Section 4.1, with the edit and relaxation costs
the same as those used for the L4All case study.

The number of results obtained for queries 2, 3, 4, 5 and 9
for the YAGO data graph are shown in Figure 10. For each
query, the exact version was run to completion, and the
APPROX and RELAX versions were run until the top 100
answers were retrieved. The ‘7’ indicates instances where
the system ran out of memory and hence failed without re-
turning any answers. Query 1 showed a similar performance
to query 2; query 6 is similar to queries 4 and 5 in terms of
query structure, but it terminated, unlike these; and queries
7 and 8 returned well over 100 exact results, therefore negat-
ing the need for APPROX and RELAX.

Figure 11 shows the average execution times for queries 2,
3,4, 5 and 9. For the exact queries, queries 2 and 3 execute
quickly. Queries 4 and 5 take longer to execute because their
conjuncts are of the form (?7X, R,?Y). Hence processing is
initiated from a large number of nodes (41,811 and 33,834
respectively), and further traversal leads to large numbers
of intermediate results; query 9 behaves similarly.

APPROX queries 2 and 3 exhibit poor performance due to
a large number of intermediate results, while query 9 takes
the same time as the exact version; we discuss these further
in Section 4.3. Queries 4 and 5 failed to terminate as the
system ran out of memory; this, too, is due to a large number
of intermediate results.

RELAX queries 2, 3 and 9 performed competitively, re-
turning more results for the latter two than their exact coun-
terparts. Query 4’s time was the same as for the exact ver-

*http://www.mpi-inf.mpg.de/departments,/databases-and-
information-systems/research/yago-naga/yago/downloads/

10000

1000

100

10

o

Q2-E Q2-A Q2R Q3-E Q3-A Q3R Q4-E Q4R Qs-E Qas-rR Qs-E Q%-A QSR

Figure 11: Execution times (ms), YAGO data graph.

sion (with no extra results). Query 5 returned results and
executed faster than the exact version; this is due to 100
results being found (by the application of rules of type i)
and execution terminating sooner.

4.3 Query execution optimisations

In this section we outline two optimisations which may
improve the performance of APPROX and RELAX queries.

Retrieving answers by distance: We have implemented
a distance-aware mode of query execution for APPROX and
RELAX queries in order to prevent the unnecessary process-
ing of data which yields answers at a cost higher than that
required by the user. For example, if the user requests the
top 100 answers in cases where there are over 100 answers
at cost 0, using transitions of greater cost to traverse G and
add tuples to Dg results in a slower query execution time
overall, owing to the processing of redundant data.

We set a current maximum cost, 1, to be 0 initially. No
tuple having a cost greater than zero is processed (i.e. added
or removed from Dg), and all answers of cost 0 are returned.
Should more answers be required, we then increment i by
the smallest cost, ¢, of the edit or relaxation operations be-
ing applied. For each successive value of 1, query evaluation
commences from the beginning, as all tuples having a cost
¢ < 1 need to be considered (so this method is not suitable
in cases where answers at high cost are required) but no
tuple having a cost greater than 1 is processed.

Using distance-aware retrieval substantially improves the
performance of some APPROX queries. For example, L4All
queries 3 and 9 run three to four times faster with this opti-
misation. YAGO query 3 executes twice as fast, while query
2 takes 0.6ms instead of 2560ms, a dramatic improvement.

Replacing alternation by disjunction: Another op-
timisation for APPROX queries we have implemented is to
decompose the NFA for a regular expression R = Ri|Rz2]...
into sub-automata NFA; for each R;, providing the NFA
has a single start state. These are processed in default or-
der (NFA;, NFA,, ...) for the distance 0 answers, and we
store the number of answers returned in each case, ng ;. To
compute the answers at distance ¢, we evaluate the sub-
automata by increasing ng,; value. In general, to compute
the answers at distance k¢, we evaluate the sub-automata
by increasing n(x—1)¢,; value.

For example, applying this to YAGO query 9, results in
the sub-automata NFA; for (UK, livesIn™ .hasCurrency,
7X) and NFA, for (UK, locatedIn™ .gradFrom, ?X). NFA;
the returns the least answers at distance 0, so this is pro-
cessed first for the distance 1 answers. This reduces the
query execution time to 12.65ms compared with 101.23ms.

S. RELATED WORK

In this section we briefly review previous work on the im-
plementation of regular path queries.

[11] presents a technique for the evaluation of exact queries
which takes advantage of rare labels in a graph. A query
containing one or more rare labels is broken down into a set
of sub-queries such that each sub-query begins or ends with
a rare label. Their method, using a bi-directional search
utilising graph indexes, is shown to be faster than other
automaton-based implementations. Our exact queries per-
form favourably compared with the results in [11].

[22] presents RPL, a regular path language for RDF data,
whose implementation, like ours, uses an automaton-based
approach. However, RPL is only able to process very small
graphs efficiently [11].

[4] describes a framework allowing weighted RDF data to
be queried in a cost-aware manner, and returning results
ranked according to cost. This is accomplished by an ex-
tension to SPARQL, SPARankQL, encompassing the provi-
sion of novel predicates for expressing flexible paths between
nodes and the capacity to define ranked queries (in which the
weights are used). Our work allows the path to be expressed
by a regular expression which may be mutated by edit op-
erations, whereas SPARankQL can only be used to express
either no restrictions on paths from a node or restrictions on
specified labels of the path. The data graphs used in their
performance study have, respectively, 9K nodes (24K edges)
and 10K nodes (25K edges), and are both smaller and more
sparse than our L2 graph.

[6] discusses a SPARQL query graph model using trans-
formation rules to rewrite queries. Experiments are run on
RDF graphs of increasing size, with the largest comprising
1,272K triples. The rewritten queries run approximately
twice as fast as the original ones. We do not yet make use
of query rewriting, which is an area of future work.

6. CONCLUSIONS

Building on previous work on combining approximation
and relaxation for regular path queries [18, 17], we have pro-
vided a detailed description of our implementation, Omega,
focussing on low-level data structures and physical optimisa-
tions, both in terms of the interaction with the graph store,
Sparksee, and our query processing layer within Omega.

We have presented a comprehensive performance study,
using large graphs consisting of real-world data, in which
we show that our baseline implementation performs compet-
itively in terms of exact regular path queries. The benefits
of our APPROX and RELAX operators have been shown
in terms of additional answers being returned for queries re-
turning few or no answers for the exact version. Many of the
APPROX and RELAX queries executed quickly, but some
either failed to terminate or did not complete within a rea-
sonable amount of time. We discussed the reasons for this in
each case, and showed how further optimisations, such as re-
trieval by distance and replacing alternation by disjunction,
enabled several queries to execute faster.

For future work, we will consider the use of disk-based
data structures to guarantee the termination of APPROX
queries with large intermediate results (such as YAGO queries
4 and 5). We will also investigate using characteristics of
the data graph and heuristics to reduce the amount of un-
necessary processing. Other promising directions are query

rewriting, and leveraging rare labels as in [11]. Distributed
approaches [8, 19] are also relevant for flexible querying
of larger-scale graphs than we have considered in our cen-
tralised approach so far.

7. REFERENCES

[1] Bio4j. http://biodj.com/.

[2] C. Bizer, A. Jentzsch, and R. Cyganiak.
http://lod-cloud.net/state/.

[3] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Y. Vardi. Containment of conjunctive regular path
queries with inverse. In KR, pages 176-185, 2000.

[4] J. P. Cedefio and K. S. Candan. R2DF framework for
ranked path queries over weighted RDF graphs. In
Proc. WIMS, pages 40:1-40:12, 2011.

[5] M. Droste, W. Kuich, and H. Vogler. Handbook of
Weighted Automata. Springer, 2009.

[6] O. Hartig and R. Heese. The SPARQL query graph
model for query optimization. In Proc. ESWC, pages
564-578, 2007.

[7] T. Heath, M. Hausenblas, C. Bizer, and R. Cyganiak.
How to publish linked data on the web (tutorial). In
Proc. ISWC, 2008.

[8] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB,
4(11):1123-1134, 2011.

[9] C. A. Hurtado, A. Poulovassilis, and P. T. Wood.
Ranking approximate answers to semantic web
queries. In Proc. ESWC, pages 263277, 2009.

[10] G. Kasneci, M. Ramanath, F. Suchanek, and
G. Weikum. The YAGO-NAGA approach to
knowledge discovery. SIGMOD Rec., 37(4):41-47,
Mar. 2009.

[11] A. Koschmieder and U. Leser. Regular path queries on
large graphs. In Proc. SSDBM, pages 177-194, 2012.

[12] N. Martinez-Bazan and D. Dominguez-Sal. Using
semijoin programs to solve traversal queries in graph
databases. In Proc. GRADES, pages 6:1-6:6, 2014.

[13] N. Martinez-Bazan et al. Efficient graph management
based on bitmap indices. In Proc. IDEAS, pages
110-119, 2012.

[14] Neo4j. http://www.neodj.com/.

[15] 1. U. of Copenhagen. http://www.itu.dk/research/c5/.

[16] OrientDB. http://www.orientdb.org/.

[17] A. Poulovassilis, P. Selmer, and P. T. Wood. Flexible
querying of lifelong learner metadata. IEEE Trans. on
Learning Technologies, 5(2):117-129, 2012.

[18] A. Poulovassilis and P. T. Wood. Combining
approximation and relaxation in semantic web path
queries. In Proc. ISWC, pages 631-646, 2010.

[19] M. Przyjaciel-Zablocki, A. Schétzle, T. Hornung, and
G. Lausen. RDFPath: Path query processing on large
RDF graphs with MapReduce. In ESWC Workshops,
2011.

[20] Recod]j. http://www.recodj.org/.

[21] Sparksee. http://www.sparsity-technologies.com/.

[22] H. Zauner, B. Linse, T. Furche, and F. Bry. A RPL
through RDF: expressive navigation in RDF graphs.
In Proc. RR, pages 251-257, 2010.

[23] D. D. Zhu and K. I. Ko. Problem Solving in Automata,
Languages, and Complezity. Wiley, Newark, NJ, 2004.

