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ABSTRACT
Graph analysis is an essential tool to understand natural
and man-made networks, such as social networks, food webs,
transportation infrastructures, etc. Although graph analysis
has fomented the development of algorithms, visual tools,
and distributed processing frameworks, there is still little
support for analysis at the query language level. Current
graph query languages are mostly concerned with flexible
matching of subgraphs, while graph processing frameworks
are mostly concerned with fast parallel execution of instruc-
tions.

Our goal is to provide analysis capabilities at the language
level, allowing more interactive and explorative query-based
analysis. In this paper, we present our ongoing efforts to-
wards a relational algebra extension that offers an operator
for graph-based data aggregation. The beta (β) operator is
composed of four suboperators, which are used to control
the path-based aggregations. The β-algebra allows seamless
composition of queries that mix relational and graph-based
aspects.

Here we introduce our current algebra and provide examples
of its use. We also show how we are using the analysis
strategy in query scenarios. Since the algebra-based query
scenario allows for execution plan rewritings, we also discuss
our first efforts on equivalence rules for query optimization.

Keywords
Graph algebra, relational algebra, Complex Networks, graph
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1. INTRODUCTION
Graph analysis has become an important tool in diverse
fields. Social, transportation, communication, and biolog-
ical networks are examples of information often organized
as graphs, which require specific tools and algorithms for
proper data analysis.
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The area of Complex Network Analysis [6] has advanced
in the last decades and has produced several models, algo-
rithms and techniques to study natural and human-made
networks. In terms of database support, there has been
a strong acceleration in the usage of graph databases and
query languages, as well as in the development of the under-
lying algorithms and mechanisms. There is, however, still
a big gap between graph query languages and the analysis
techniques. Current graph query languages offer little sup-
port for the type of analysis required for complex networks.
Such a gap is not present, for example, in traditional rela-
tional databases, which support query languages that offer
aggregation operations that are the basis of more sophisti-
cated multidimensional analysis.

Our goal is contributing towards bridging this gap. We aim
at developing data management and querying mechanisms
that offer a better support for network analysis. In this pa-
per, we present our first steps towards creating an algebra
that offers a graph-based aggregation operation. We expect
this algebra to be the basis of more expressive queries, sup-
porting declarative and interactive graph data exploration.

Our proposed algebra is based on Codd’s relational algebra
[4]. This has several advantages: (i) it provides a well estab-
lished theoretical basis; (ii) it allows the combination of tra-
ditional relational operations alongside our proposed graph
operation; (iii) it is a de facto standard in database research.
Having an underlying algebra allows a better understanding
of the semantics of the query language and, most impor-
tantly, allows the definition of rewriting rules for execution
plan optimization. As an extra benefit, relational algebra
compatibility also simplifies implementation in current rela-
tional database systems.

In simple terms, our goal with the algebra is to provide
graph-based aggregation of values. The core of our pro-
posal is the beta (β) operator, which encapsulates the graph
traversal procedure and allows parametric control over the
aggregation of values. We see graph-based aggregation as
a generalization of relational aggregation over sets. Consid-
ering that most useful relational aggregations perform joins
before applying an aggregation operation, we adopt this pat-
tern of first deriving relationships between the data (joins or
graph traversals) and then aggregating the values as the ba-
sis for our new constructor.

Combining the advantages of relational query languages and



graph analysis, the proposed algebra allows the construc-
tion of queries involving subgoals such as: obtain a sub-
graph based on given nodes properties and edge labels; cal-
culate the reputation of the nodes in the subgraph; combine
the reputation and the average distance to a given refer-
ence node in the general graph; order the resulting nodes
based on the final score. In our envisioned scenario, such
queries would be starting points for deeper explorative anal-
ysis, with goals such as: analyze the average node degree for
the top-k nodes returned in the query; obtain the average
value for a certain attribute for the bottom-k scoring nodes,
etc.

This paper is organized as follows: Section 2 describes re-
lated work and fundamental concepts. Section 3 presents the
definition of our algebra alongside with query and execution
examples. Section 4 briefly describes our current approach
for querying and initial query rewriting rules for execution
plan optimization. Finally, Section 5 concludes the paper.

2. RELATED WORK
There is great diversity of graph query languages, which have
pushed the boundaries for more expressive constructors [16].
Graph query languages are often based on conjunctive regu-
lar path queries (CRPQs). CRPQs are the basis for several
graph languages, such as GraphLog [5] and SPARQL1. Re-
cent developments have extended CRPQs in order to allow
constraints over path properties. These types of queries have
been described as extended conjunctive regular path queries
(ECRPQs) [2]. ECRPQs also allow paths to be returned as
query results. These queries are all focused on data selection
and support only the simplest cases of analysis.

Query languages such as in GID [15] allow ranking based on
pre-calculated metrics of importance which capture the dy-
namics of a snapshot of the network. Our goal is to enable a
higher level of on-demand analysis in graph query languages.
To that extent, we are working towards an algebra that can
handle graphs and aggregations over paths. The goal is to
use this algebra to build more flexible query languages.

Several algebras that support graphs have been proposed.
To our knowledge, the algebra that is closer to our goals
is the alpha-algebra [1], which also serves as inspiration for
the name of our operator. The alpha operator derives the
transitive closure for tables that express self-relationships –
e.g. CONNECTS(from, to, distance). The algebra supports
aggregation and filtering over paths through the delta (∆)
attribute, which is an internal relation containing each path
history in the result set. Conceptually, the alpha operator
has two main characteristics that make it unsuited for our
needs: the operator always processes until reaching fix point,
and there is a single point for value aggregation. In our alge-
bra, we add more flexible stop conditions and split aggrega-
tion in four suboperations (Section 3). We also change the
underlying model and add several elements for querying con-
venience. The changes allow more analysis algorithms to be
represented in the algebra as well as providing more oppor-
tunities for optimization based on query rewritings (Section
4).

1http://www.w3.org/TR/sparql11-query

Frasincar et al. [8] propose an algebra for RDF, with some
operators inspired by relational algebra. The algebra en-
ables both querying and construction of RDF models. Al-
though the algebra shares many of the goals in this paper,
the focus is on the complete RDF-S model, which incurs con-
siderable complexity when compared to our simpler graph
model. Most importantly, the proposed algebra does not
support graph-based aggregation, our main focus.

In a more recent and simpler proposal, Cyganiak [7] defines a
relational algebra for the SPARQL language over the RDF
model. The authors rely on a global reference table con-
taining RDF triples (subject, property, object) as basis for
the operations. We use a similar strategy for our underlying
model as we employ global tables for nodes and relationships
to represent the graph in the database. Their proposal, how-
ever, does not deal with aggregation or analysis issues.

The demand for graph analysis in large scale has motivated
the development of several frameworks for distributed com-
putation: Google’s Pregel, the first NoSQL implementation
in that scale, was followed by diverse proposals including
GraphLab [13] and GraphX2. These models focus on paral-
lelization of the API operations and do not provide declar-
ative languages as means for data querying. GraphX shares
some of our motivation since it aims at simplifying mixed
analysis that include graphs and relations. The focus is,
however, on general parallel computation and not on query-
ing. Our goal is to provide a higher level, declarative lan-
guage for graph querying and analysis, allowing a more in-
teractive and explorative interface with the user. Although
we are not concerned with distributed computation at the
moment, we believe that would be a natural evolution for
our framework.

The Complex Networks [6] field is a prominent area that
would benefit from query-base graph analysis. Complex net-
work formation is based on localized phenomena, which in
a global scale determines emergent behavior that cannot be
assessed based merely on the analysis of parts of the system.
The researchers employ a variety of models and algorithms
to derive knowledge from the structures. Among the fre-
quently used algorithms are the well known PageRank [3]
and HITS. Most of the analysis in the field is done using ad
hoc applications with no database support.

The algebra that we propose in this paper has been de-
veloped in the context of our Complex Data Management
System (CDMS) [11], which aims at providing a database-
like framework for complex network analysis and manage-
ment. Appropriate query languages (and underlying alge-
bras) would allow a more fine-grained, exploratory and in-
teractive interaction with the networks.

3. THE BETA-ALGEBRA
In this section we describe the requirements for our algebra
and present the beta operator alongside example queries.

3.1 Requirements
The basic requirements for the proposed algebra are:

2https://spark.apache.org/graphx/



Allow traditional relational aggregation: given the widespread
use and familiarity with relational database queries, it is im-
portant to build on and leverage this foundation. Moreover,
a graph analysis workflow often contains routines that are
typically relational (counting, ranking, statistics, etc).

Enable aggregation over path traversals: Most graph analysis
tasks involve aggregating values along graph traversals. It
is important to allow flexible and case-specific aggregation
functions that are applied as the graph is traversed.

Preserve the closure of relational algebra: It is important
that the aggregation operates over and produces relations.
This allows compatibility with relational algebra properties
studied for decades, as well as making the language more
flexible and composable.

Support flexible selection of nodes of interest : To enable ex-
plorative analysis over graph data it is important to have
efficient means to filter nodes and relationships that are to
be part of the analysis. A declarative language would natu-
rally allow this type of flexibility.

Offer means to express subgraphs to constrain the analy-
sis: Currently, most complex networks analysis is done over
graphs as a whole. We believe this is highly associated with
a lack of convenient means to select a subgraph of interest
and apply the analysis over the selection. An appropriate
algebra needs to enable graph-based constraints over the ex-
ecution of the algorithms.

Rewriting rules for cost-based optimization: One of the main
advantages of building query languages over an underlying
algebra is the possibility of rewriting the queries for faster
execution. Including graph-specific operations allows the
specification of semantically sound rewriting rules for the
graph setting.

Other requirements, not covered in this paper but that we
want to address soon are:

Include convergence criteria for operation termination: This
would allow the implementation of complete versions of pop-
ular graph analysis algorithms (e.g. PageRank).

Provenance/Path information for query results: Like in the
alpha algebra with its delta attribute, adding information
about paths traversed by the operations allows more flexi-
bility for query composition and allows optimizations such
as avoiding loops in graphs.

3.2 Data model
In this paper we use a simple interpretation of graphs in the
relational model. In this model, a labeled property multi-
graph3 [14] G is represented in two relational tables, V (ver-
tices or nodes) and E (edges or links). The tables contain
attributes representing the properties for all nodes and edges
(typically highly sparse tables). The V table is in the form
〈node, a1, a2...an〉, where node represents the node id in the
database, and a1, a2...an are node properties.

3a graph with labeled links and properties for nodes and
links

Figure 1: Subgraph from a movies dataset

The E table is in the form 〈source, dest, label, a1, a2...an〉.
source and dest are ids representing the connected nodes for
a given edge (the order implies the direction), label is the
label according to the labeled property graph model, and
the properties are as in the V table.

This data model is the reference for the proposed algebra.
However, as with any other model, it does not impose im-
plementation constrains (e.g. it can be implemented over a
pure graph database and use efficient structures to represent
the sparse tables). Our own implementation stack does not
include any traditional relational component.

In the following paragraphs, the beta operator will be pre-
sented informally, in increasingly complexity as parameters
and suboperations are introduced. Since the operator can
be seen from either a graph or relational perspective, we will
use equivalent terms interchangeably (e.g. join and traversal
step). The semantics, however, is always relational.

3.3 The beta operator
Much like the alpha operator, the beta operator assesses
recursive relations in the database. However, the main goal
is not to derive transitive closure. Instead, the focus is on
data aggregation along the traversal of the relations. In
its simplest form, the beta operator performs a single join
between a single column source table and the table E. An
union operation is then applied to aggregate the original and
new nodes. For the sake of readability, we omit extra join,
projection, and renaming operations required to maintain
the original schema after the execution of the operator. In a
graph interpretation, the beta operator augments an initial
set of nodes with all of their neighbors. For example, based
on the graph in Figure 1, the beta operator applied to a
source table containing one column with node ids {9, 10}
would produce {9, 10, 3, 1, 4}. This operation is represented
as β(σid∈{9,10}(V )).

In general, we represent the beta operator as nβp(R), with
p = 〈s, dir, set,map, reduce, update, C〉. Several parameters
are used to control the behavior of the beta operator. s is
the join condition, which accepts Boolean expressions just
like its relational counterpart. n determines the number
of recursive calls to the operator (i.e. consecutive joins).



Figure 2: Simplified execution tree template

dir ∈ {inbound, outbound, both} determines the order of the
relations in the joins (or the direction of the graph traversal
operations). The optional parameter source determines, for
tables with more than one node column, the column over
which the beta operator operates (the default is the fist col-
umn).

The operator keeps the algebra closed since (i) it always pro-
duces a table with at least the same columns as the input
table, and (ii) it can be defined using standard relational
algebra with aggregation. The design choices (such as en-
capsulating the table E inside the beta operator) are for
convenience and to focus on what we think are the most im-
portant aspects of an aggregation operation. This aspect is
inspired by the introduction of the relation join that despite
being a redundant operation has directed the focus of the re-
search on properties and optimizations of a central element
of the model.

The most important elements of the beta operator are the
aggregation suboperations. To allow full control of the com-
putation as the graph is traversed, we define four operations:
set, map, reduce, and update. set is a function that at-
tributes a value to a new column before the join (traversal)
operation is performed. map calculates a new value based
on each node in the source relation. The new values are as-
sociated with the neighbors after the join operation. reduce
is a function that aggregates over values for the same source
node (equivalent to a group by). Finally, update redefines
the aggregation values for the source nodes before the union.
Figure 2 shows a simplified execution tree for the beta op-
erator. As an example, the query:

σtype=movie(5β(σid=1(V ))),
with {set: dist=0, map: dist=dist+1,dir=both}, obtains
distances to movie nodes that can be reached from the initial
node 1 (director Woody Allen) in up to 5 steps. Figure 3
shows the partial tables after the suboperations for the first
iteration of the query. The query:

Figure 3: Snapshots of the resulting tables inside the
beta operator for the first iteration of the example
query.

σtype=movie(5β(σid=1(V ))),
with {set: dist=0, map: dist=dist+1, reduce: dist=MIN(dist)}
obtains the minimum distances in the same setting.

Another parameter is the optional graph constructor C. Its
purpose is to specify the effective subgraph for the beta op-
erator, constraining the search space for the traversals. The
reference points for the constructor are the input nodes. C
has its own parameters: radius is the maximum distance
from the reference points; s is the edge selection expression
(similar to the join condition in the beta operator). Nodes
and links beyond the radius or that do not match the se-
lection are ignored by the beta operator. The addition of
the graph constructor in the algebra is also for convenience
sake. The same effect could be obtained by a series of joins
and selections over the E table. The query:

5β(σtype=movie(V )),
with {set: rank=1, map: rank=rank/|e.out()|,
reduce: SUM(rank), reset: rank = 0, C: {radius:3}}, is a
simplified PageRank algorithm executed for five iterations
(not until convergence) over a graph of radius 3 around the
source nodes in R. |e.out()| represents the number outbound
nodes (that can be obtained with traditional algebra aggre-
gation). If the number of source nodes is known and its
inverse is used in set function, the query obtains, for each
node in the constructed graph from C, the probability that
a random walker would stop at the node after five steps.

Other parameters and functionalities that we want to inves-
tigate are (i) specifying stop conditions for the beta oper-
ator, including simple test and convergence properties, (ii)
recording path traversal information in a delta attribute,
with functions that operate over it (similar to the alpha-
algebra), and (iii) a modifier equivalent to the SQL distinct,
that uses the delta attribute to avoid the computation of
cycles.

4. QUERYING AND OPTIMIZATION
In this section we present our initial attempts with query
language design and rule-based optimization.

4.1 Querying
We are developing the algebra presented here to support the
query language that we have been developing as part of our
CDMS system. The language that we are currently using is
an extension of popular graph queries as shown in Figure 4.
The language shows the type of queries we are envisioning,
although it is less expressive than the algebra that we are



Figure 4: Query examples. a) extends SPARQL and
b) extends Cypher

proposing. We plan to design a more expressive language
following the definition of our algebra.

In the initial language, the graph-based aggregation is ex-
pressed in a RANK BY clause. The clause accepts met-
rics that aggregate values over graph traversals as in the
algebra presented. For example, Relevance is a generaliza-
tion of the notion of relevance in Information Retrieval, at-
tributing higher scores to elements that have multiple and
more specific connections (paths). This metric can be rep-
resented in our algebra by a beta operator with aggrega-
tion functions {set : score = 1,map : score = (score ∗
0.9)/e.out(), reduce := SUM(score)}. Details about the
metrics and queries can be found in [10].

Figure 4a shows a query that retrieves actors whose careers
are strongly correlated (relevant) with the director Woody
Allen (id 1). Based on the subgraph in Figure 1, Mia Farrow
would have a much higher score than Robin Williams. An-
other interesting query, that includes traditional relational
aggregation, would be to find the pair (actor, director) with
the maximum mutual relevance. This type of query would
be hard to express using current graph or relational queries.

Figure 4b shows a query that we used for a nursing diagnosis
task. Possible diagnosis are ranked based on their connec-
tions with the symptoms identified in the patients. This
query contains a combination of two different metrics (Rel-
evance and Connectivity).

4.2 Rewriting rules
An important motivation for introducing a new algebra is
to better understand the computation complexity and de-
fine rewriting rules for query optimization. This work is
still ongoing and we will only show some first examples for
illustration.

The first rule is about the bidirectionality of the analysis. A
beta operation that starts on a group of nodes and selects
another group of target nodes can be reversed (changing the
directions of the allowed edges). Reversing the direction can,
in certain cases, reduce the search space by avoiding dense
regions of the graph. For example, a three step undirected
traversal from node 1 to node 6 in Figure 1 visits 9 nodes,
while the traversal from 6 to 1 activates only 4 nodes. This
rule can be represented as:

σa(β(σb(R))) ≡ σb(β(σa(R))), where β represents the β op-
erator with inverted directions (parameter dir). We are
omitting, for sake of simplicity, extra joins and renamings
that would make the outmost selections equivalent. We have
tested this strategy for the query in Figure 4a against a com-
prehensive movie database [12]. The execution was reduced
to half the time of the baseline query. The initial results,
using a different formalization, were published as a technical
report [9]. We still have to assess the subset of aggregation
functions that allow the use of this rule. In practice, this
rule requires cost-based planning, which we have not imple-
mented yet.

Another rule, regarding compositionability of operators, com-
bines aggregation functions that are applied over the same
data by different beta operators. It can be represented as:

σa(βp(σb(R))) 1 σa(β′p′(σb(R))) ≡ σa(βp•p′(σb(R))), where
p represents the tuple of aggregation functions for the op-
erator and p • p′ combines the respective functions. The
functions in p and p′ must not make conflicting operations
over the same attributes. We expect this type of rewriting
to be very common, as multiple metrics can be used for the
same target nodes (as in the query b in Figure 4). We have
not yet implemented this rule in the system.

We have also explored options for speeding up queries be-
yond rule-based rewritings. We have tested, with positive
results, caching paths between nodes for metrics that need to
traverse the paths in both directions. We also explored a few
query approximation strategies for specific metrics. These
experiments are also reported in [9]. Another possibility is
to materialize graphs constructed from the parameter C for
use in multiple beta operators in the same query (rewrit-
ing the execution tree to take advantage of the materialized
graph).

5. CONCLUSION
Graph analysis has become an important requirement in
a wide range of modern applications and research fields.
This type of analysis is currently highly specialized, employ-
ing ad-hoc applications or complex distributed frameworks.
Graph databases offer little support for graph-based aggre-
gations that would allow for query-based analysis.

Here we presented our ongoing work on the beta-algebra,
which is intended to allow graph-based aggregations for declar-
ative query languages. The algebra extends the relational
model to support graph traversals and allows the control of
several aspects of the aggregations.

We have shown examples of the use of the algebra and how
it fits in our broader goal of developing data management
and querying mechanisms specific for graph/complex net-
work analysis. Also, we presented initial tests and directions
for query optimization based on execution plan rewriting,
along with our preliminary experimental results.

Our algebra allows more expressive querying when compar-
ing to pure relation aggregation and CRPQs. The increased
expressiveness enables explorative analysis and more inter-
active data manipulation. It also enables seamless integra-
tion of relational and graph-based analysis, which is a com-



mon application scenario. We believe the algebra is a good
basis to build expressive query languages as well as useful
optimization strategies.

Ongoing and future work include the expansion of the alge-
bra to allow more flexible stop conditions (e.g. convergence),
accumulation of traversal history (such as with the delta at-
tribute in alpha-algebra), definition and tests of rewriting
rules, specification of a query language that can take full ad-
vantage of the algebra, and implementation of a distributed
query processor.
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