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ABSTRACT
Linked Data (LD) follows the web in providing low barriers
to publication, and in deploying web-scale keyword search
as a central way of identifying relevant data. As in the
web, searches initially identify results in broadly the form
in which they were published, and the published form may
be provided to the user as the result of a search. This will
be satisfactory in some cases, but the diversity of publish-
ers means that the results of the search may be obtained
from many different sources, and described in many differ-
ent ways. As such, there seems to be an opportunity to add
value to search results by providing users with an integrated
representation that brings together features from different
sources. This involves an on-the-fly and automated data
integration process being applied to search results, which
raises the question as to what technologies might be most
suitable for supporting the integration of LD search results.
In this paper, we investigate the use of Markov Logic, which
brings together first order logic and probabilistic graphical
models to support both learning and inference in uncertain
domains. Specifically, we: (i) characterise key features of
LD search results that are relevant to their integration; (ii)
discuss how these motivate the use of an approach based on
Markov Logic; (iii) describe some initial experiences in the
use of Markov Logic for interpreting search results; and (iv)
present some avenues for future investigation.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed databases; H.3.5
[Online Information Services]: Data sharing; H.3.5 [Online
Information Services]: Web-based services

1. INTRODUCTION
Linked Data (LD) seeks to do for data what the web did
for documents. In essence, LD involves publication of data
according to a small collection of principles that indicate
how data resources are identified and represented, and that
encourage the creation of links [1]. Publishers make data
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available following the principles, and users access or pro-
cess the resulting data using either generic tools or bespoke
applications.

As in the web of documents, keyword search engines are an
important element in the tool set. However, although search
results in the web of documents provide a result that was de-
signed for human use, search results in the web of data tend
to be collections of RDF resources that may be time con-
suming and cumbersome to explore. Furthermore, the re-
sults of a search may involve values of different types, which
are interleaved in a search result. For example, a search
for Bob Dylan using the Sindice search engine [22] returns
results that represent a person, (several) albums and (sev-
eral) songs. A manually created report over such a search
result might pull together the properties of the individual
Bob Dylan from several resources into a heading and a list
of properties, and then might provide separate tables for the
collections of albums and songs about which information was
retrieved.

Could such a report be generated automatically? The cre-
ation of such a report requires, at a minimum, identifying:

• the (real-world) entity types that are represented in
the search result;

• the individuals entity instances that are represented
in the search result, and in particular which ones are
individuals and which ones belong to collections; and

• the properties of each of the relevant entity instances.

Although this is a data integration problem, it is quite un-
like classical data integration, in which typically there is a
known target (or global) schema to which source data should
be mapped, and there is some level of human engagement in
the data integration. This raises the question as to what ap-
proaches might be suitable for interpreting and integrating
search results.

We know of one previous proposal to address this problem,
namely Sig.ma [24], which generated a report that integrated
the top hits from the Sindice search engine. In Sig.ma, sev-
eral steps were followed to integrate the data, as discussed
more fully in Section 2, but the overall approach assumed
that the result of the search described a single entity in-
stance. Although Sig.ma was important in identifying the



opportunity and in developing an initial realisation of the
vision, the data integration component of Sig.ma was quite
restrictive and seemed rather ad hoc. As such, there seems to
be scope to explore additional approaches that seek to make
the result integration both more general and more system-
atic. We would expect there to be several very different ways
of addressing this problem, one of which is explored in this
paper.

Here we discuss an approach based on Markov Logic [6],
in which we: (i) postulate rules that capture relationships
that exist within search results, which are expressed using
logic; (ii) learn weights for these rules that represent their
strengths as constraints; and (iii) use the resulting weighted
rules over search results to infer (with uncertainty) the en-
tity types and instances that are represented in the result.
We are motivated to use Markov Logic as it provides a well
founded approach to integrating evidence of different types
to support conclusions that can inform data integration.
Markov logic has been applied to a range of tasks of relevance
to data integration, including classification, entity resolution
and knowledge-base construction, as discussed more fully in
Section 2.

This paper investigates the application of Markov Logic to
the integration of LD search results. In so doing, it uses the
following structure. In Section 2, we review related work in
linked data search, linked data integration and applications
of Markov Logic. In Section 3 we provide an overview of
Markov Logic, and in Section 4 we describe how it can be
applied for identifying entity types and instances in linked
data search results. In Section 5 we draw some conclusions
and outline directions for future work.

2. RELATED WORK
In this section we discuss work that is relevant to the prob-
lem of linked data search result integration, specifically by
reviewing results on Linked Data Search, Data Integration
for Linked Data and Markov Logic for Data Integration.

Linked Data Search. The increase in the amount of RDF
data published in the web has given rise to a number of LD
search proposals. Swoogle [5] is an early LD search engine
that indexed RDF(s) and OWL ontologies using inverted in-
dexes. Given a set of terms, Swoogle returns ontologies that
mention these terms. As such, Swoogle adopts a document-
centric approach for indexing LD ontologies [12]. Unlike
Swoogle, the Falcons [3] search engine was tailored towards
the search of arbitrary data while providing an entity-centric
search approach in which the objective is to identify the most
relevant RDF resources rather than the most relevant docu-
ments that contain them. Falcons included components for
crawling, parsing, organizing, ranking, sorting and querying
RDF data. In order to extract terms from RDF documents,
it employed the notion of a virtual document as an interme-
diate representation that enables the consolidation of data
from multiple sources. This consolidation is based on URI
reuse and the mention of an entity in different sources. Fal-
cons also includes a reasoning component aimed at inferring
class hierarchies of indexed entities. These hierarchies pro-
vide a means for restricting the search result based on the
types of resources. Sindice [22] adopts a document-centric

approach and aimed to provide a range of search services
over RDF documents. The services offered include keyword
search over RDF, searching for entities (classes, properties
and individuals) matching a term in RDF documents, and
providing APIs to expose search services to software agents.
Sindice consolidates entities while indexing, based on inverse
functional properties. It also implements a localized reason-
ing component for discovering additional information about
entities. From this brief review, it can be seen that LD
search engines often carry out some preliminary result con-
solidation tasks, but falls short of a concerted approach to
result integration.

Sig.ma [24], however, does address result integration in a
more comprehensive manner. Sig.ma uses search results
from Sindice [22] to collect RDF data and build an ag-
gregated view of the results in the form of entity profiles.
Sig.ma uses a recursive search step that collects RDF data
which contains resource identifiers that match a search term.
A first search step collects the source URLs that contain
the search terms. A second step is performed to search for
sources containing the URI identifiers found in the results
of the first step. The collected RDF data is decomposed
into chunks (called resource descriptions) that describe dis-
tinct entities, and ranked against the search term. Sig.ma
collects additional data when it encounters an owl:sameAs
predicate. The resulting resource descriptions are consoli-
dated by combining the values of lexically similar attributes.
Hand-crafted rules such as the removal of “has” from “has
title” or replacement of attributes that may share similar
values such as “web page” and “homepage” with the term
“Web page” are applied in the consolidation step. In ad-
dition, Sig.ma allows users to interact with the resulting
entity profiles, either through navigating to other sources
of information, or by refining the results. The refinement
capabilities allow users to reject or accept the sources that
contribute data to the generated entity profiles. However,
Sig.ma does not provide any means for resolving semantic
heterogeneities in the data before attempting to construct
the integrated view. For example, if a user is interested in
information about Manchester University, Sig.ma combines
data on the university, on Manchester Grammar School, and
on a railway station. While it brings together lots of cor-
rect information, some incorrect data is often included. Our
aim is to develop a more principled approach that enables
us to resolve such heterogeneities through the identification
entities and their types using Markov Logic.

Data Integration for Linked Data. Low barriers to pub-
lication, as well as diversity of publishers without central
coordination, have led to LD being published with incon-
sistencies both at the conceptual and at the instance levels.
At the conceptual level, this comes in the form of different
conceptualizations of the same domain, inconsistencies in
the structural representation of concepts in LD terminolo-
gies, etc. At the instance level, there may be many different
resources that describe the same real world entities, redun-
dant information, and contradictory attribute values. There
is a plethora of approaches that deal with the alignment and
matching of RDF sources. These approaches can be divided
into two broad categories: ontology matching and instance
matching approaches [2]. The goal of ontology matching ap-



proaches is to align schema level elements of RDF sources
using information from the schema level, the instance level,
or both [7]. On the other hand, instance level approaches
try to resolve the multiplicity of data resources that describe
the same real world entity [8]. RDF instance matching tools
such Silk [16, 15], ObjectCoref [14], and LIMES [18] discover
owl:sameAs identity links at the instance level. Our work
aims not just to resolve identities between pairs of resources
in the search results but also to infer a ER schema structure
for the results and populate with data provided in the in-
stances of the search. In this regard, there have been a num-
ber of proposals for structure inference from RDF sources [4,
27, 28, 25]. Such approaches take as an input a data graph
and produce a structural summary that is homomorphic to
the original data graph using techniques such as hierarchical
clustering [4, 28], association rule mining [25], and inference
using Bayesian Networks [27]. However, these approaches
are often evaluated on a specific dataset at time (i.e. Mag-
natune or DBpedia). This is different from inferring a struc-
ture from search results because the relevant sources in the
results often vary in terms of the datasets they originate
from. For example, a search for a film title (e.g. Godfather)
on Sindice [22] returns results from at least three datasets:
DBpedia1, freebase2, and LinkedMDB 3. This makes the
structure inference problem harder as mappings between the
dataset need to be inferred or incorporated as evidence.

In addition to research in linking RDF at the conceptual
and instance levels, there have been some studies on map-
ping properties across RDF sources [9, 26, 10]. The aim
of such approaches is to find similar [9] or equivalent [26,
10] properties using statistical measures that utilize subject
and object overlap of properties. These approaches, as well
as approaches that map between ontology concepts and in-
stances across datasets can be utilized as additional sources
of evidence in in our approach (see Section 5).

Markov Logic for Data Integration. Markov Logic brings
together two prominent paradigms within artificial intelli-
gence, namely first-order logic and Markov networks [6].
The basic idea is that the syntax of first order logic is used to
describe constraints that hold on the set of possible worlds,
but that the constraints are no longer necessarily hard. In-
stead, each formula is associated with a weight that indicates
how strong the constraint is; the higher the weight the more
likely a constraint is to hold. A set of weighted formulas is
referred to as a Markov logic network (MLN).

Markov Logic (ML) has been applied to data integration
tasks such as entity resolution [23], knowledge base construc-
tion [20] and ontology matching [19]. Sigla and Domingos
[23] described a domain-specific MLN that performs an en-
tity resolution task on bibliography entries. They used an
MLN to encode knowledge about the similarity of the publi-
cations based on the similarity of the venue, authors and ti-
tles. They demonstrated that such an MLN, combined with
predicate equivalence and reverse predicate equivalence ax-
ioms, can achieve superior results to established approaches.

1http://www.dbpedia.org
2http://rdf.freebase.com
3http://data.linkedmdb.org/

Figure 1: The ER metamodel that is to be populated from
search results.

In contrast with this approach, the rules we use in our MLN
do not currently encode domain-specific knowledge. In seek-
ing to integrated data from multiple sources, our work is
similar to Elementary [20]. The goal of Elementary is the
construction of a knowledge base of entities based on infor-
mation extracted from web pages. It uses an MLN inference
engine for discovering co-referent entity mentions of peo-
ple and organizations. It also links between such entities
by using the co-occurrence pattens as evidence in the infer-
ence process. Elementary combine various forms of evidence,
such as data extracted from standard NLP toolkits, domain
knowledge, lexical matching, and user feedback in the in-
ference process. In the context of LD, Niepert et al. [19]
utilized ML for ontology and RDF instance matching prob-
lems. Their approach to ontology matching was combining
logical axioms expressed in ontologies with lexical similari-
ties to map between the concepts and attributes in different
ontologies. In their instance matching problem they utilized
a similarity metric [21] to infer matches between instances.
They used the constraints defined in the ontologies of these
instances to prevent the MLN from making incorrect infer-
ences. While this approach demonstrates how semantic and
syntactic evidence can be combined using ML, this approach
assumes that ontology definitions are available with the in-
stance data, which is not necessarily the case for LD search
results.

3. MARKOV LOGIC
Markov Logic combines first-order logic and Markov net-
works in a unifying representation for the definition of prob-
abilistic models.

Formally, a Markov logic network (MLN) is a set of pairs
(Fi, wi), where Fi is a first-order logic formula and wi is
a real value representing its weight. Formulas can be seen
as constraints on a set of possible worlds. The higher the
weight, the stronger the constraint is, and therefore, the less
probable is a world that violates the constraint. In an MLN,
a formula with a negative weight w can be replaced with its
negated formula with a weight of −w. A formula can also
be assigned an infinite weight to indicate a constraint that
should not be violated. Given as set of constants in some
domain, an MLN defines a ground Markov network where
the nodes correspond to ground predicates.



//Evidence Predciates
Triple1(uri , uri , uri)
Triple2(uri , uri , literal )

//Query Predicates
Entity(uri)
EntityType(uri)
Attribute(uri)
AttributeValue( literal )
LnkAttributeValue(uri)
Has(uri,uri)
IsInstanceOf(uri , uri)

(a) Predicates

Triple1(s , rdf :type,o) => Entity(s) ˆ EntityType(o) ˆ IsInstanceOf(s,o) R1

Triple2(s ,p,o) ˆ Attribute(p) ˆ AttributeValue(o) => Entity(s) R2

Triple1(s ,p,o) ˆ Attribute(p) ˆ LnkAttributeValue(o) => Entity(s) R3

Triple2(s ,p,o) ˆ Entity(s) ˆ AttributeValue(o) => Attribute(p) R4

Triple1(s ,p,o) ˆ Entity(s) ˆ LnkAttributeValue(o) => Attribute(p) R5

Triple1(s ,p,o) ˆ Entity(s) ˆ Attribute(p) => LnkAttributeValue(o) R6

Triple2(s ,p,o) ˆ Entity(s) ˆ Attribute(p) => AttributeValue(o) R7

Triple1(s , rdf :type,type) ˆ Triple2(s ,p,o) R8

ˆ EntityType(type) ˆ Attribute(p) => Has(type,p)
Triple1(s , rdf :type,type) ˆ Triple1(s ,p,o) R9

ˆ EntityType(type) ˆ Attribute(p) => Has(type,p)

(b) Rules

Figure 2: An MLN rule set that uses RDF triples to derive ER construct extensions

An MLN formula is defined over a set of predicates. The
predicates can be categorized into query and evidence pred-
icates. The MLN formulas define relationships using these
predicates. The MLN in Figure 2 describes relationships be-
tween evidence predicates that represent search results and
query predicates that represent the constructs of the entity
relationship (ER) meta model in Figure 1. The evidence and
query predicates are then related to each other by formulas
such as:

Triple1(s, ”rdf : type”, o) =⇒ EntityType(s).

In this formula, s and o are variables that represent the sub-
ject and object of a triple in a search result. The formula
states that where there is a triple in which s is related to o
by rdf : type, we can infer that s is an EntityType. Now, in
fact, this may not always be the case, and the weight associ-
ated with the formula in the MLN captures the strength of
the constraint represented by the rule. We discuss the evi-
dence and query predicates, as well as the formulas in our
MLN model, in more detail in Section 4.

Given a domain of interest, there are three tasks to be per-
formed by the modeller: structure learning, weight learning
and inference. An overview of these tasks now follows.

Structure Learning
Given a set of predicates and example data for the domain
of interest, the ML structure learning process learns first-
order logic formulas that define the relationships between
the given declared predicates from the evidence provided
in the form of example data in the domain. The structure
learning process uses a beam search strategy to find the best
clauses to add to the MLN [6]. In theory, structure learn-
ing provides an alternative to relying on domain experts to
write rules that capture the semantics of the domain. How-
ever, the structure learning process is known to give rise to
scalability issues for large datasets [17]. Given that, in this
case, the presumed MLN structure is known a priori, i.e.,
we have developed a meta-model of ER models, and written
rules for populating this meta-model based on the evidence
in the form of triples from the search result. Thus, we have
not performed structure learning and hence do not report
any results in this respect.

Weight Learning
Given a set of rules and a database of evidence from the do-
main of interest, the weights of the rules can be learned. In
this process, one or more predicates whose truth values are
unknown are designated as query predicates. The learning
procedure optimizes the learned weights with respect to such
predicates assuming that all the truth values of the remain-
ing predicates are given. The weight produced for each rule
can be either positive, negative, or zero. A positive weight
is an indication that a rule is supported in the domain given
the evidence. On the other hand, a learned negative weight
−w is an indication that a rule is not supported by domain
evidence, and in fact its negation is supported in the do-
main with weight w. Finally, a weight 0 suggests that a rule
has no evidence (either for or against) in the domain. This
occurs when groundings of the rule are not provided in the
evidence.

Inference
The inference process takes as input a weighted MLN and
a database consisting of ground evidence predicates, and
outputs the marginal probabilities of query predicates of the
most likely world given the evidence. This involves finding
the truth assignment that maximises the sum of the weights
of satisfied clauses [6].

4. INTERPRETING LINKED DATA SEARCH
RESULTS

The problem we address is that of inferring, from search re-
sults, the entities, entity types, attributes and relationships
that are described in the results. By these terms, we mean
the constructs that are familiar from entity-relationship (ER)
conceptual modelling. Identifying what entities and attributes
are described from the user’s point of view is a task with
uncertain outcomes. This is because not every resource de-
scribed using RDF is seen as an entity by the user. For
example, the RDF resource depicted in Figure 3(a) that de-
scribes an organization named “Universities UK” may not
be considered an entity in a search for members of a collec-
tion of UK universities. Also, not all RDF predicates that
are used in the description of a resource can be seen as at-
tributes of interest to the end user. An example of this is
dbo:wikiPageID, which denotes a Wikipedia page identifier
from the DBpedia dataset.

To model such uncertainty, we use ML to define a number of
hypotheses as to what the URIs and literals in the resources
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Figure 3: An Example of search result for a search of “Universities UK”

denote in terms of ER constructs. Inference from such hy-
potheses allows us to build an ER view of the data in the
search results, and thereby to organize the results in a form
that is suitable for the user. A key advantage of using ML
for this task is that it provides an opportunity for incorpo-
rating different forms of evidence, including using feedback
as typical of the pay-as-you-go approach to data integration
[11]. We now describe an MLN for learning the uncertainty
of constructing such ER views from the search results. We
also describe the learning and inference processes. Finally,
we present the initial experimental results of our investiga-
tion.

4.1 An MLN for search results
We now describe the MLN in Figure 2 that we use to inter-
pret RDF search results. The evidence predicates represent
observed variables with known truth values in the ground
Markov network. The query predicates represent the unob-
served variables for which the inference process estimates a
probability distribution given the evidence. In this MLN,
the evidence predicates represent the observed triple pat-
terns in the RDF data. These predicates are defined over the
uri and literal domains. Partitioning the space of triples
provides a simpler, more direct way for writing rule bodies.
As such, we use Triple1 to represent RDF triples that have
URIs in the object position, and Triple2 to represent RDF
triples what have literals in the object position. Then, for
example, we can use the Triple2 predicate in Rule R7 in
Figure 2 for the query predicate AttributeValue because we
expect a literal in the object position. Such partitioning can
be extended to include BNodes, although, here we only use
uri and literal domains.

There are seven query predicates that characterize the hy-
potheses we want to substantiate using the evidence, which
represent the constructs in the meta-model in Figure 1. The
Entity, EntityType, and Attribute predicates model whether
a given URI represents an entity, entity type, or attribute.
For example, given the RDF graph shown in Figure 3(b),
the following are true:

Entity(dbr:Open University),
Attribute ( foaf :name), and
EntityType(schema:Organization).

Conversely, given the graph shown in Figure 3(a),the follow-
ing are false:

Entity(dbp:name),
Attribute (dbr:London), and
EntityType(dbr:Universities UK).

We also define predicates for Has and IsInstanceOf. Has
models a relationship between two URIs where the first is
an entity type and the second is an attribute of that type.
IsInstanceOf models a relationship between two URIs where
the first is an entity, the second is an entity type, and the
first is an instance of the second. Examples from Figure 3
are:

Has(dbo:Organisation,dbp: location ), and
IsInstanceOf(dbr:Open University,dbo:Organisation).

Finally, we use two predicates to interpret values in the ob-
ject position of RDF triples, viz., AttributeValue and
LnkAttributeValue.

In addition to the described predicates, the MLN contains
rules that encode knowledge about the relationships between
MLN predicates. Rules R1, R8 and R9 utilize the rdf : type
construct for the inference of Entity, EntityType, IsInstanceOf
and Has. Note that R1 makes a direct inference from the ev-
idence, whereas R8 and R9 additionally rely on EntityType
and Attribute .

4.2 Experiments
Dataset
To our knowledge, there is no publicly available standard
dataset that allows us to evaluate our proposed approach.
In order to learn the weights for the MLN described in Sec-
tion 4.1 we conducted 10 searches using the Sindice [22] LD
search engine. The terms used in these searches are shown in
Table 1. The results were pre-processed by removing triples
containing rdf : type objects that belong to the yago4 and
dbyago5 name-spaces. The reason is that such types are
used for categorizing resources as opposed to assigning real-
world entity types to resources. These types cannot be eas-
ily assigned specific attributes. Also triples which contain
domain-independent RDF predicates and have literal ob-
jects were removed: dct : abstract , rdfs :comment, rdfs : label ,
skos: prefLabel , skos: altLabel , skos:note and dce: description .

4http://yago-knowledge.org/resource/
5http://dbpedia.org/class/yago/



Predicate Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Entity 0.41 0.51 0.41 0.61 0.90 0.568 ± 0.203
EntityType 0.95 0.97 0.88 0.92 0.97 0.938 ± 0.038
Attribute 0.25 0.15 0.24 0.14 0.17 0.190 ± 0.051
Has 0.06 0.08 0.04 0.04 0.07 0.058 ± 0.018
InstanceOf 0.85 0.89 0.90 0.90 0.77 0.862 ± 0.055

Table 3: AUC PR scores per fold

Domain Search Terms
Cities Berlin,Manchester
Movies Godfather,Casablanca
Organizations Apple Inc.,Microsoft
People Tim Berners-Lee, Chris Bizer
Collections Godfather actors, UK universities

Table 1: 10 search terms used in constructing the learn-
ing/evaluation dataset

Entity(dbr:Open University)
Entity(dbr:Open University)
EntityType(dbo:Organisation)
EntityType(dbo:University)
Has(dbo:University,dbp:postgrad)
Has(dbo:University,dbo:chancellor)
IsInstanceOf(dbr:Open University,dbo:University)
IsInstanceOf(dbr:Open University,dbo:Organisation)

Figure 4: Ground truth annotation for the RDF in Figure
3(b)

From each search, the top five results were selected to be an-
notated with the ground truth. Figure 4 shows an example
of the ground truth annotation for the RDF graph shown in
Figure 3(b).

Methodology and Results
To learn the weights of the rules in the MLN, we used a
5-fold cross-validation procedure on the annotated dataset.
To ensure that the weights are not skewed towards a par-
ticular domain of search, we randomized the search results
to ensure that every split contained search results from ev-
ery one of the domains shown in Table 1. Table 2 shows
the average weights learned for the MLN rules. A positive
weight of a rule is an indication that the rule is supported
by the evidence present in the data. The higher the weight,
the stronger the evidence for the corresponding rule. One
obvious observation is that the weight of R1 is much higher
than the weight of other rules. The reason for this is that
rdf : type provides the strongest signal that URI represents
an entity as opposed to the strength of the signal for the
other query predicates in the MLN.

As mentioned in Section 3, the ML inference engine returns
the probability that a query atom is true. To evaluate the
inference results we measured the area under precision/re-
call (AUC PR) curves for all query predicates in the MLN
model. The precision/recall curve is computed by varying
the threshold above which a query atom is predicted to be
true. Table 3 shows the AUC PR scores obtained for every
query predicate for different test folds. We note that while

Rule ID Average Weight
1 55.259± 2.255
2 1.433± 0.151
3 1.793± 0.188
4 4.051± 0.121
5 4.161± 0.111
6 2.903± 0.248
7 3.227± 0.086
8 1.140± 0.358
9 1.229± 0.249

Table 2: Average weights learned for each rule

the standard deviation for Entity is rather high, for all other
query predicates it is relatively small.

The MLN seems to perform well on Entity, EntityType, and
IsInstanceOf; it is able to extract the signal from the data
that allows the inference of these predicates. On the other
hand, the MLN does not perform well on Attribute and Has.
This could be attributed to inference chains in the body of
the rules that define these predicates. In ML, longer chains
mean that the inference engine has a larger space to sam-
ple from, which reduces the likelihood of finding the correct
answer for the query predicate. Note that Attribute and
Has atoms correspond to schema elements with weak signal
from the data (e.g., no one-step inference from rdf : type as
with rule R1). Previous research has shown that schema in-
ference from instance data is challenging [4]. In LD search,
this problem is even harder because of the variability in the
data resources in terms of the descriptions they use. In Sec-
tion 5 we discuss proposals for improving the performance
of the MLN.

5. CONCLUSIONS AND FUTURE WORK
Search results over the web of data consist of collections of
triples from a range of sources, and typically contain RDF
resources that describe real-world entities of different types.
In addition, search results often contain assertions that pro-
vide additional metadata about the entities, which means
that the result of a search is a complex data set that may
be difficult to interpret automatically.

With a view to managing this complexity, we have inves-
tigated the use of Markov Logic to infer, with uncertainty,
which triples in a search result represent types, individu-
als, attributes and attribute values. This we have done by
learning the weights of an MLN, where the associated rules
express various hypotheses about the relationships between
the triples in a search result and the roles the elements in
those triples may be able to play in an entity relationship
diagram. The reason for targeting an entity relationship



diagram is that we would expect to be able to generate in-
tuitive tabular reports capturing features of search results
from such a representation.

The initial results might be considered to be somewhat dis-
appointing. Although we have been able to identify entity
types and instance-of relationships from the search domain
with high confidence, entity instances and attributes are not
being identified reliably by our MLN. Although there are dif-
ferent possible reasons for this (e.g. that the rules for identi-
fying such features could be improved upon), our preferred
interpretation is that the rules are plausible, it is simply that
the evidence to support them in actual search results is rel-
atively weak. In this context, the evidence may be lacking
because, for example, different publishers publish the data
in different ways, or a significant fraction of the data re-
trieved is not directly concerned with the structure of the
data in the domain. This in turn suggests that the problem
of capturing the domain knowledge in a search result, from
the contents of that result, is a difficult one.

Given these challenges, what might be the way ahead? The
Markov Logic framework is quite a general one, and we se-
lected it for use with this problem in part because this seems
to be an evidence-rich problem, in which the results of the
search can be combined with additional information to en-
able well founded inferences to be drawn. We envisage that
the following avenues can be pursued:

• Additional generic integration rules. To date, the in-
tegration rules have focused on the identification of
concepts from entity relationship diagrams using the
data from the search result. However, it would be pos-
sible to write additional generic rules. For example,
none of the current rules make use of the search terms,
and no attempt is made to identify duplicate triples or
entities across resources retrieved by the search. Ad-
ditional rules that capture such relationships may be
useful in distinguishing between the domain knowledge
in a result and associated metadata.

• Domain-specific integration rules. Successful applica-
tions of Markov Logic, for example in entity resolution
or knowledge base construction, have often made use
of domain-specific rules. As such, although searches
are generic, it would be possible to write rules that
know about certain domains, and the widely used ter-
minologies in such domains. For example, rules could
be written that are informed by common searches in
search logs, or that cover terminologies that are widely
used in practice [13]. Another possibility here is writ-
ing rules that use mappings between instance level or
schema level elements produced by exiting tools.

• Integration of results of other analyses. The current
rules act directly on the search results. However, it
would be possible to run additional analyses on these
search results, which in turn could be reflected in rules.
For example, analyses could carry out ontology align-
ment between search results, or could cluster triples
based on attribute values. The results of such anal-
yses could then be used as evidence predicates, and
included in additional generic or domain-specific inte-
gration rules.

• Integration of feedback. In Sig.ma, users are able to
refine the reports produced by ruling in/out specific
sources of data. However, in pay-as-you-go data inte-
gration, feedback of different forms can be provided,
for example on the correctness or relevance of specific
results. Such feedback could be used as evidence by
an MLN to inform the inference of results for different
query predicates.
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