
Privacy-Integrated Graph Clustering Through Differential
Privacy

Yvonne Mülle
∗

University of Zurich,
Switzerland

muelle@ifi.uzh.ch

Chris Clifton
Purdue University, USA

clifton@cs.purdue.edu

Klemens Böhm
Karlsruhe Institute of

Technology (KIT), Germany
klemens.boehm@kit.edu

ABSTRACT
Data mining tasks like graph clustering can automatically
process a large amount of data and retrieve valuable infor-
mation. However, publishing such graph clustering results
also involves privacy risks. In particular, linking the result
with available background knowledge can disclose private
information of the data set. The strong privacy guarantees
of the differential privacy model allow coping with the arbi-
trarily large background knowledge of a potential adversary.
As current definitions of neighboring graphs do not fulfill the
needs of graph clustering results, this paper proposes a new
one. Furthermore, this paper proposes a graph clustering
approach that guarantees 1-edge-differential privacy for its
results. Besides giving strong privacy guarantees, our ap-
proach is able to calculate usable results. Those guarantees
are ensured by perturbing the input graph. We have thor-
oughly evaluated our approach on synthetic data as well as
on real-world graphs.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Security

Keywords
Clustering, Graph Mining, Differential Privacy

1. INTRODUCTION
For many types of data, the proper representation is a

graph structure. There exist many approaches which auto-
matically retrieve valuable information from graphs. One
such approach is graph clustering. Clustering groups similar
objects together and assigns dissimilar objects to different
groups. In the context of social networks, graph clustering
helps to better understand the structure of these networks.

∗Work originated while author was at Purdue University.

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Being able to collect and process such graph data does not
only have its opportunities, but also involves privacy risks.
The Gaydar project [1] of two MIT students illustrates such
a risk: by linking the Facebook friends of a person with the
knowledge of the gender and sexuality of those friends, it
has been possible to predict if the person is gay. Let us now
assume that an operator of a social network wants to publish
information on the community structure (i.e., cluster struc-
ture) of the network. The operator decides to publish the
result of a graph clustering algorithm, i.e., the community
structure of the network, without the actual graph struc-
ture. Such a clustering result can still put the users’ privacy
at risk. Dependent on the background knowledge, an out-
sider can retrieve actual connections between users from the
community structure. In the worst case, it might even be
possible to not only identify certain connections but to re-
construct the entire social network. In consequence, it is
necessary to publish the community structure and thus the
clustering result in a privacy preserving manner. As differen-
tial privacy gives strong privacy guarantees, it is desirable to
publish a differentially private graph clustering result. For
differentially private graph clustering, no approach exists so
far. The paper focuses on proposing such an approach.

In order to apply differential privacy to graph clustering,
the following challenges have to be solved. 1. It needs to be
determined which parts of the graph information that the
clustering result exposes are relevant to privacy: a node, that
node’s edges, or any edges in the graph. 2. A noise-adding
mechanism must be developed to protect this information.
As a consequence, only the graph parts to be protected
should be perturbed. Choosing the appropriate perturba-
tion is challenging as, for instance, minor changes in the
edge structure of the graph can significantly alter the clus-
tering result. 3. The ever present trade-off between privacy
and usability must be solved so that both are preserved at a
reasonable level. This also includes determining which prop-
erties a graph clustering algorithm and graphs must have in
order to still produce a usable clustering result.

In this paper, we propose solutions to these challenges.
An important category of graph clustering approaches cal-
culates their results only based on the edge structure. The
nodes are used to represent a cluster. Thus changes in the
node set are directly visible in the clustering result. There-
fore, we propose m-edge-differential privacy. It relies on a
new neighboring graphs definition that guarantees privacy
for the edges of a node, but does not require changing the
node set. We also investigate if it is necessary to protect
all edges of a node or if it is sufficient to only protect some

of them. Additionally, we propose PIG, an approach that
combines the perturbation of the input graph with exist-
ing graph clustering approaches. PIG guarantees 1-edge-
differential privacy, a notion that can be generalized to m-
edge-differential privacy. The amount of noise created by the
perturbation is configurable via a parameter that represents
the trade-off between privacy and usability. We develop rec-
ommendations on how to set this parameter to achieve spe-
cific privacy goals.

2. RELATED WORK
Privacy for data mining tasks can be achieved by releas-

ing sanitized data sets or by developing private data mining
algorithms. The approaches not only differ in how data min-
ing is performed, but also in the underlying privacy model.

Privacy-preserving clustering approaches perform cluster-
ing on tabular data where the data is distributed among
several parties. They are based on the concept of secure
multi-party computation. The goal is that each party only
learns the final clustering result, but no intermediate val-
ues. Privacy preserving k-means clustering [26, 11, 10] and
privacy-preserving DBSCAN [15] have been studied. All
these approaches have in common that they perform clus-
tering on tabular data and therefore are not able to deal with
many instances of graph data. Furthermore, unlike differ-
ential privacy they provide no protection against the result
inherently revealing individual information. A clustering re-
sult contains new, so far probably unknown correlations be-
tween entries or nodes and thus has the potential to reveal
sensitive information.

Differentially private data analysis is the task of publish-
ing a graph in a differentially private manner. [19] uses a
Kronecker graph model in order to publish a differentially
private maximum likelihood estimator for graphs. [24] pro-
poses an approach that uses the degree correlations of the
original graph to generate a differentially private dK-graph
model. Thus, it aims to preserve as much structure of the
unmodified graph as possible. Both approaches publish the
synthetic graph for a general purpose. However, as data
mining tasks often differ in what data they need, the accu-
racy of the result is expected to increase when the data is
sanitized for a specific task.

Differentially private data mining approaches exist for
tabular data as well as for graph data. Differentially pri-
vate data mining techniques have been proposed for fre-
quent itemsets [2, 17] and pattern mining [9, 25], but also
for clustering and graph analysis. The challenge how to per-
form clustering in a differentially private manner has been
addressed by [6], [22], and [7]. All approaches focus on k-
median and k-means queries on tabular data. [6] realizes the
task by publishing private coresets that are representative
subsets of a database which preserve some geometric prop-
erties. [22] releases private clustering results by perturbing
the coordinates of the center points that represent a cluster.
[7] proposes an approach for differentially private k-median
clustering. The approach uses the exponential mechanism
to swap center points with non-center points.

The following approaches release individual graph proper-
ties in an edge-differentially private manner. Graph proper-
ties like the degree distribution [8], frequent graph patterns
[25], counting queries for k-triangles and k-stars [12], and
clustering coefficients [27] have been considered. Guaran-
teeing node-differential privacy has been taken into account

for the number of edges in a graph, counting queries like
triangles, k-cycles, k-stars and certain estimators for power
law graphs [13].

Differential privacy was successfully applied to all those
data mining tasks. However, differentially private graph
clustering has not yet been addressed. Thus, we focus on
how graph clustering results can be released in a differen-
tially private manner.

3. FOUNDATIONS

3.1 Graph Clustering
Clustering groups similar objects in so-called clusters. In

contrast to clustering on tabular data, graph clustering also
– or even exclusively – considers the structural data given by
the edges of the graph. The following four criteria specify
a graph clustering approach: the graph type, the cluster
definition, the clustering realization and the representation
of the graph clustering result.

The graph type contains the information on what sort of
graph the clustering approach can be performed. Defini-
tion 1 formalizes the term graph as used in this paper.

Definition 1. Graph G = (V,E)
A graph G = (V,E) consists of a set of nodes V and a

set of edges E ⊆ V × V . The graph is non-attributed and
unweighted. The edges between nodes are undirected.

A cluster definition contains the properties that a set of
nodes must fulfill in order to form a cluster. No universally
accepted graph cluster definition exists. We consider cluster
definitions that group nodes together based on their connec-
tivity and other structural properties. Such properties are
reachability, inter-cluster connectivity, and neighborhood.

The realization of the cluster definition consists of two
steps: how many clusters a node can belong to and the con-
crete procedure of calculating the clustering result based on
the given cluster definition. We do not restrict the realiza-
tion of the cluster definition.

A graph clustering result Res = {C1, . . . , Cj} is a set of
clusters, each of which consists of a set of node IDs. This
general solution is mostly used in state-of-the-art graph clus-
tering algorithms. Furthermore, it contains all essential in-
formation and does not reveal additional structural infor-
mation that could increase the privacy risk of a clustering
result.

To sum up, this paper focuses on graph clustering ap-
proaches that fulfill the following requirements: (R1) They
require an undirected, unweighted and non-attributed graph
as input. (R2) Their cluster definition is based on connectiv-
ity and other structural properties of the graph. (R3) Their
representation of the clustering result consists of node IDs.

3.2 Differential Privacy
Differential privacy [3] is a privacy model that gives strong

privacy guarantees. It assumes a powerful adversary. The
adversary has a broad, nearly unlimited background knowl-
edge. He even is aware of all entries – except for a single
one – of the data set. Despite this strong adversary, differ-
ential privacy protects against determining if the unknown
individual is even in the data. This is the case as query re-
sults on the data set remain indistinguishable, independent
of whether a single database entry has participated in the
result calculation or not.

An algorithm A is differentially private if the following
holds true: For any possible result, it cannot be determined
beyond a specific certainty if it was calculated on a graph
G1 or on its neighboring graph G2.

Definition 2. ε-Differential Privacy
A graph clustering algorithm GCA is ε-differentially pri-

vate if for all neighboring graphs G1 and G2 ∈ N (G1), and
for all subsets S of the set of all possible outputs {Res1, . . . ,
Resi},

Pr[GCA(G1) ∈ S] ≤ exp(ε) · Pr[GCA(G2) ∈ S]

N (G1) is the set of all neighboring graphs of graph G1.

The term neighboring graphs for graph clustering is dis-
cussed in Subsection 4.1. In general, deterministic algo-
rithms cannot achieve differential privacy (if the result is
dependent on the input data set). But they can be converted
into non-deterministic algorithms by adding non-deterministic
noise. Noise-adding mechanisms for graph clustering ap-
proaches are discussed in Subsection 4.2.

4. GRAPH CLUSTERING MEETS DIFFER-
ENTIAL PRIVACY

4.1 Neighboring Graphs
[8] has proposed two adaptations of differential privacy

for graph data. k-edge-differential privacy assumes that the
edges contain the sensitive information and thus up to any
k edges in the graph should be protected. In contrast, node-
differential privacy states that a node and all its adjacent
edges contain the sensitive information. In the following,
we analyze which requirements a neighboring graphs defini-
tion for graph clustering must fulfill. As a result we show
that the neighboring graphs definition of node-differential
privacy does not meet the needs of graph clustering and
k-edge-differential privacy covers more neighboring graphs
than required. Limiting the set of neighboring graphs to
its sufficient set might simplify achieving differentially pri-
vate graph clustering. Thus, we propose a new neighboring
graphs definition based on the requirements we identify in
the following.

Requirement: Node Set. A graph clustering result is
represented by node IDs. Thus, adding or removing a node
can be directly visible in the clustering result. Therefore,
it is necessary that neighboring graphs consist of the same
node set. This is why the neighboring graph definition of
node-differential privacy is not applicable.

Requirement: Edge Set. We consider graph cluster-
ing approaches that calculate their result based on the edge
structure of the graph. Thus, the clustering result provides
information about structural similarities in the graph. Con-
cealing private information encoded in the clustering result
directly means concealing the existence of certain edges in
the graph. When differential privacy is applied to tabular
data, a certain row is both used to calculate the clustering
result and at the same time should be concealed in the re-
sult. Analogously, the edges of a particular node are what
determines the clustering – thus it stands to reason that this
is the property that should be concealed in this case. This is
why the neighboring graph definition of k-edge-differential
privacy is too broad and thus not appropriate here.

Requirement: Number of Protected Edges. Is it suffi-
cient to protect some of the edges of a node or is it necessary
to protect all of them? Most real-world graphs are power law
distributed, i.e., there exist many nodes with few edges and
only few nodes with many edges. For instance, in a social
network like Facebook, it is more likely that the highly con-
nected nodes represent companies and public figures. Com-
panies and public figures actively decided to reveal more
information about their relationships to other participants
than a private person would do. As a consequence, it is suffi-
cient to protect the relationships (and thus edges) of private
persons with few edges. Our neighboring graphs definition
allows protecting m edges of a node. Setting m to a value
that covers the number of edges a private person will have,
allows protecting (almost) all edges of some nodes (if they
have a low degree) and preserve the privacy of some edges
for highly connected nodes.

Neighboring Graphs Definition. Definition 3 formal-
izes the term neighboring graphs. Its flexibility allows pre-
serving all edges of a node or only a single edge in the whole
graph. How many edges of a node are preserved is dependent
on parameter m.

Definition 3. Neighboring Graphs
Let m ∈ N be given. Two graphs G1 = (V1, E1) and

G2 = (V2, E2) (according to Definition 1) are neighboring
graphs iff

1. V2 = V1

2. ∃x ∈ V1 : E2 = (E1 − Ea(x)) ∪ Eb(x) with

Ea(x) ⊆ {(u, v) ∈ E1|u = x ∨ v = x} and
Eb(x) = {(u, v) ∈ E2|u = x ∨ v = x ∧ (u, v) /∈ E1}

3. |E1 \ E2|+ |E2 \ E1| ≤ m

N (G1) is the set of all neighboring graphs of graph G1.

Note that for the case m = k = 1, there is no differ-
ence between the neighboring graphs definition of k-edge-
differential privacy and our definition. For m = k > 1
m-edge-differential privacy covers a subset of neighboring
graphs compared to k-edge-differential privacy.

Impact of Definition 3 on Clustering Results. Our
neighboring graphs definition allows removing edges from
and adding edges to a neighboring graph. Thus, comparing
the clustering results of two neighboring graphs can result in
the following differences: none, only a small number of nodes
are clustered differently, or most nodes belong to different
clusters, see Example 1.

Example 1. The original graph and two neighboring graphs
are shown in Figure 1. Nodes within a circle represent a
cluster. A cluster contains at least four nodes which are
connected to at least three other nodes in the cluster. In
graph G there exist three different clusters. Removing a
single edge as in graph G2 results in the removal of Clus-
ter 1 because its nodes no longer fulfill the cluster definition
in G2. Removing the edge between Node 1 and Node 6 as
it is the case for graph G3 does not have an impact on the
clustering result at all because the two nodes are also not
clustered in G. However, adding two new edges to G3 (com-
pared to G) results in a new cluster in the clustering result
of graph G3: Cluster 4.

Node 6

Cluster 2

Cluster 3

Node 11

Node 13

Node 12Node 1

Node 5

Node 4

Node 3

Node 2
Cluster 1

(a) Original graph G

Node 6

Cluster 2

Cluster 3

Node 11

Node 13

Node 12

Node 5

Node 1

Node 2

Node 3

Node 4

(b) G2 ∈ N (G) (m ≥ 1).

Node 6

Cluster 2

Cluster 3

Cluster 4

Node 11

Node 13

Node 12Node 1

Node 2

Node 4

Node 5

Node 3

(c) G3 ∈ N (G) (m ≥ 4).

Figure 1: Illustration of the term neighboring graphs.

4.2 Perturbation Mechanisms
We are aware of three different types of perturbation in

the literature: sampling, output perturbation and input per-
turbation. In the following, we discuss if they are suitable
for our purposes.

Sampling. Sampling integrates the perturbation into the
proceeding of the clustering approach. A possibility would
be to only consider a sample of potential edges, which may
change the result set. For instance, a clique clustering algo-
rithm would have a non-zero probability of creating a cluster
out of a set of nodes even though they are not fully connected
to each other if it draws a sample of edges that make the
nodes fully connected. An advantage of sampling could be
that the required amount of noise can be adapted during the
execution of the clustering algorithm. At this stage, more
information on how to choose the sample could be available.
This might reduce the influence of the perturbation on the
clustering result. However, sampling has the following two
drawbacks: (1) Each of the many existing graph clustering
approaches must be separately adapted dependent on the
individual cluster definitions and its realizations. (2) Inte-
grating the perturbation into the clustering algorithm makes
the analysis of privacy properties complex. In order to prove
differential privacy, it is required to analyze the probabili-
ties of clustering results for a specific algorithm. This is
particularly challenging as the output space of a graph clus-
tering algorithm is discrete, rewulting in difficulty specifying
a probability density function except by (intractable) enu-
meration. Additionally, finding a closed-form solution for
the upper and lower bounds of the probabilities may become
very difficult for complex clustering algorithms.

The aforementioned problems can be avoided if the per-
turbation is a separate step of the algorithm. This allows
the perturbation to be analyzed individually.

Output Perturbation. Output perturbation means that
the perturbation is performed on the graph clustering re-
sult. For instance, the cluster assignment of the nodes can

be changed. However, a clustering result only indirectly con-
tains the information that should be protected – the edges
of a node. Thus, there exists no intuitive mapping between
how the cluster assignment has to be changed and the guar-
antee of protecting the existence of the edges of a node. The
only possibility would be to additionally take the input data
into account.

Input Perturbation. Input perturbation adds noise to
the input graph. With this method, it is possible to per-
turb two neighboring graphs in a way that they are indistin-
guishable with a certain probability for the graph clustering
algorithm. As a consequence, the probabilities of a graph
clustering result do not need to be calculated; the output of
an algorithm on differentially private input is differentially
private. In the following, we discuss how the input pertur-
bation must be realized to be appropriate for graph cluster-
ing. (1) According to Definition 3, perturbing the graph by
changing its number of nodes is not an option. (2) Thus,
it is only possible to perturb the graph by adding and re-
moving edges. (2.1) Doing only one of the two (adding or
removing edges) is not an option. The reason is that there
always exist cases where such a procedure is not possible: If
a graph is fully connected, no edges can be added. If a graph
does not contain any edges, no edges can be removed. Thus,
the clustering result probabilities would also not be affected,
and only those results that are calculated for those graphs
would be possible. (2.2) Determining the number of edge
changes according to the global sensitivity of a clustering
approach is not a possibility. The global sensitivity [4] con-
tains the information about the maximum distance between
two clustering results of neighboring graphs. There does not
exist a correlation between the number of edge changes and
the distance between graph clustering results: There is no
guarantee that adding or removing l edges will result in a
distance increased or decreased by l – yet the distance is
what the global sensitivity is based on.

Thus, in order to achieve both differentially private results
independent of the algorithm and allow for useful results, we
propose an approach that combines edge sampling with edge
perturbation in Section 5.

5. PIG
We propose PIG – Privacy-Integrated Graph clustering

approach – as a general approach for guaranteeing 1-edge-
differential privacy. It is independent of a concrete graph
clustering algorithm as long as the clustering approach ful-
fills the requirements given in Subsection 3.1. Furthermore,
PIG perturbs the input graph by perturbing the adjacency
matrix of the graph dependent on differential privacy’s pa-
rameter ε. As future work, PIG will be extended to m-edge-
differential privacy.
PIG consists of two steps: the perturbation of the input

graph, called PIGpert, and the graph clustering algorithm
applied to the perturbed graph. The idea behind PIG is as
follows: If the perturbed versions of neighboring graphs are
the same, the graph clustering approach will calculate the
same clustering result.

The perturbation step of PIG is shown in Algorithm 1.
The perturbation method is a combination of edge sampling
and edge flipping, i.e., edge randomization. It operates on
the adjacency matrix A of the input graph. aij refers to
the entry of A in row i and column j and thus contains
the information if an edge between node i and node j ex-

Algorithm 1 Graph Perturbation Algorithm PIGpert
1: function perturbGraph(Graph G = (V,E), privacy

parameter s)
2: construct graph Gpert = (V ′, E′) where V ′ = V
3: construct adjacency matrix A from E of G
4: initialize the adjacency matrix A′ for E′ of Gpert

5: for all aij ∈ A with i < j do
. Preservation

6: if aij is chosen with probability 1− s then
7: set a′ij = a′ji = aij in A′ of Gpert

8: else
. Randomization

9: if 0 is chosen with probability 1
2
then

10: set a′ij = a′ji = 0 in A′ of Gpert

11: else
12: set a′ij = a′ji = 1 in A′ of Gpert

13: end if
14: end if
15: end for
16: return Gpert

17: end function

ists. The existence of an edge is represented by a value
of one, whereas an absence is represented as zero. As the
input graph is undirected, the adjacency matrix is symmet-
ric. This property is preserved in the perturbation step. As
the definition of self-loops does not make sense in the case
of undirected graphs, the corresponding entries aii are and
also remain zero in the perturbed entries a′ii.

The perturbation consists of the following mechanism: For
each entry in the adjacency matrix, it is first determined if
preservation or randomization should be performed. In or-
der to make this choice, we introduce a privacy parameter s
(s ∈ (0, 1]). Preservation is chosen with probability (1− s),
whereas randomization is chosen with probability s. The
higher s is, the more entries in the matrix are randomized.
In the case of preservation, the original entry of the adja-
cency matrix of the unperturbed graph is preserved in the
perturbed version of the graph. With randomization, the
entry in the perturbed version of the graph gets assigned 1
with probability 1

2
and 0 with the same probability. The as-

signment and thus the absence or presence of this particular
edge in the graph is independent of its existence or absence
in the original input graph.

Theorem 1. Edge-Differentially Private PIG
PIG guarantees 1-edge-differential privacy for ε ≥ ln(2

s
−

1) (s ∈ (0, 1]).

The idea behind the proof of Theorem 1 is as follows: The
proof is based on proving the basic definition of differential
privacy (see Definition 2). The probability that PIG cal-
culates a certain clustering result consists of two terms: the
probability that PIGpert returns a certain perturbed version
of the original graph and the probability that the graph clus-
tering algorithm used in PIG calculates that result on the
perturbed graph. In 1-edge-differential privacy neighboring
graphs can only differ in one edge. Thus, the ratio of the
probabilities that two neighboring graphs are perturbed to
an equal graph is only dependent on the ratio of the proba-
bilities that the differing edge gets assigned the same value
in PIGpert. According to Algorithm 1, an entry preserves its

original value in the perturbed graph with a probability of
1− 1

2
s, and gets assigned its opposite value with a probabil-

ity of 1
2
s. With this information, the probability ratio that

two neighboring graphs are perturbed to the same graph can
be expressed and Theorem 1 can be proven. For the proof
of Theorem 1 please refer to [20].

Choice of Privacy Parameter s.
Due to its correlation with parameter ε in ε-differential

privacy, PIG’s privacy parameter directly influences the ex-
tent of privacy that PIG is able to guarantee. But what is
a sufficient value for s? It is necessary to find a trade-off
between the quality of PIG’s clustering result and privacy
guarantees in order to choose parameter s.

Ideally, an adversary cannot say for any edge in the per-
turbed graph whether or not it existed in the original graph
with any greater confidence than if they were to flip a coin,
i.e., a confidence greater than 50%. The idea to achieve this
is to set s to such a value that the expected density of the
perturbation result will be twice the original density. This
implies that for each edge in the perturbed graph, an ad-
versary can never say with more than 50% confidence that
this edge was also present in the original graph. This is
particularly relevant for very sparse graphs. For small s it
occurs rarely that the perturbation will both be at an entry
in the adjacency matrix where the edge is set to exist and
the perturbation changes that entry.

Theorem 2. Choice of privacy parameter s
If privacy parameter s has the following value, it then

holds that the expected density in the perturbed graph is twice
the original density d (d ≤ 25%).

(1− s) · d+
s

2
≥ 2 · d

⇔ s ≥ 2 · d
1− 2 · d

The derivation of the expected density is shown in The-
orem 4. This way of choosing s is possible up to a density
of 25% because the maximum value for s is reached at that
point. However, this density limit covers virtually all real-
world graphs. At higher densities, a new trade-off between
privacy and usability would have to be found.

Influence on Graph Structure.
As PIGpert changes the edge structure of the input graph,

we examplarily analyze the following three important graph
properties upon which cluster definitions are based: (1) con-
nectivity that depends on the knowledge of the exact graph
structure, and (2) the number of edges, and (3) the density
that both are calculated based on the number of edges in
the graph. We determine the expected changes of the graph
properties in terms of the properties of the original graph.
Given a graph G = (V,E), n = |V |,m = |E|, we refer to
P = (VP , EP) as a perturbed version of graph G. PIGpert
preserves an entry in the adjacency matrix with probability
1 − 1

2
· s; an entry gets assigned the opposite value in the

perturbed graph with probability 1
2
· s.

Connectivity As the perturbation mechanism operates
on one edge at a time and does not take the other entries of
the adjacency matrix into account, it is possible that the per-
turbed version of a connected input graph is unconnected.

Number of Edges. The expected number of edges E[|EP |]
in the perturbed graph P depends on the expected number

of preserved edges and that of added edges (i.e., flipped en-
tries in the adjacency matrix of G). The adjacency matrix

of G contains (n·(n−1)
2

−m) changeable zero entries which
can result in added edges in P . The main diagonal of the
matrix contains non-changeable zero entries as self-loops are
not allowed in the graph.

Theorem 3. Expected Number of Edges in P

E[|EP |] = (1− 1

2
· s) ·m+ (

n · (n− 1)

2
−m) · 1

2
· s

= (1− s) ·m+
n · (n− 1)

4
· s

In a sparse graph, there exist only few edges and many
changeable zero entries in its adjacency matrix. Thus, per-
turbing such a graph results in a high increase in the number
of edges. The perturbed version of a graph with half of the
maximum number of possible edges is expected to have the
same edge count as before. If more than half of the possi-
ble edges are present, the number of edges decreases in the
perturbed graph.

Density. The density of a graph G is defined as the ratio
of the number of edges in G and its number of possible edges.
The number of possible edges only depends on the number of
nodes in the graph and the fact that the graph is undirected.
Thus, it is not influenced by the graph perturbation, which
only operates on the edge set of a graph.

Theorem 4. Expected Density dP of P

E[dP] =
E[|EP |]
n·(n−1)

2

= (1− s) · d+
s

2

6. EVALUATION
The goal of our empirical evaluation is to analyze the im-

pact of PIG on cluster quality, i.e., its influence on the clus-
tering result. Furthermore, we perform our evaluation on
synthetic graphs that vary in their density. This is inter-
esting as the behavior of PIGpert changes with increasing
density. We use certain graphs and two graph clustering ap-
proaches, and from there we generalize our results to prop-
erties a graph and clustering approaches must have in order
to cope with the perturbation introduced with PIG.

Setup.
Graphs. The synthetic graphs are generated based on

[16]: both the community sizes and the number of edges per
nodes are power law distributed. As real-world graphs, we
use the Disney graph [21] that is a subgraph of the Amazon
co-purchasing network with a small number of nodes and the
Facebook graph [18] with more than ten times the nodes.

The cluster quality is measured by means of the F1 score.
The non-perturbed clustering result is used as ground truth.

Graph Clustering Approaches. We use PIG with two
different graph clustering approaches: SCAN [28] and Graph
k-Medoids [23]. SCAN adapts the cluster definition of DB-
SCAN [5] to graphs. The cluster definition is based on the
density of the neighborhood (ε-neighborhood), i.e., with how
many neighboring nodes a node shares a certain number of
neighboring nodes. If the size of the ε-neighborhood ex-
ceeds a threshold µ, the node becomes a core object. The
graph perturbation of PIG directly influences this property.

Adding and removing edges in a graph changes which nodes
are in the neighborhood of a certain node. As the perturba-
tion is done randomly, similar neighborhoods of neighboring
nodes may become dissimilar when common nodes vanish
and disjoint new node sets can be added to the neighbor-
hood. Graph k-Medoids adapts the cluster definition of
k-medoids [14] to graphs. On the one hand, its cluster def-
inition is based on shortest paths which PIGpert can affect
to a great extent. On the other hand, it has the two charac-
teristics that the number of clusters is set to k and that all
nodes are assigned to exactly one cluster. Thus, it is inter-
esting whether these characteristics can reduce the influence
of PIGpert on the clustering result.

Cluster Quality.
Increasing parameter s means having more changes in the

input graph. In Theorem 2, we have presented a heuristic
that guarantees a sufficient amount of privacy while mini-
mizing the required amount of perturbation. Thus, we eval-
uate the impact of the perturbation on cluster quality for a
range of s around following minimum values resulting from
the heuristic.

Density s ≥ ε ≤
Synthetic graph (506 nodes) 1.29% 0.027 4.292
Disney graph 4.39% 0.096 2.988
Facebook graph 1.08% 0.022 4.499

As a general result, increasing privacy parameter s be-
yond a certain range around the minimum value and thus
decreasing ε increases the privacy guarantees at the cost of
usable clustering results. Due to space limitations, the de-
tailed evaluation of this aspect is in [20].
PIG-SCAN. Figure 2 shows the cluster quality of PIG-

SCAN for the real-world graphs, compared to the clustering
results of SCAN. It also contains the corresponding cluster
result statistics. The key original means that the same pa-
rameters as for the clustering on the non-perturbed graph
are used. The key optimal means that we use those param-
eters that result in the highest F1 score. Thus, the com-
parison with the optimal parameter setting shows how close
the clustering results on the perturbed and non-perturbed
graphs are at best. However, it is difficult or impossible
to determine the optimal parametrization without first per-
forming the clustering on the non-perturbed graph and using
the result as ground truth. Such a proceeding can result in
a privacy risk, as the perturbed clustering result contains
additional information on the non-perturbed one. This is
not the case if the parametrization is independent of the
non-private clustering result.

For the Disney as well as the Facebook graph the clus-
ter qualities are very close to each other for the different
parametrizations. First, we consider the Disney graph in
Figure 2. The decrease in the cluster quality for the original
parameter setting is the result of the decrease of the number
of clustered nodes. The higher s is, the more random edges
are added. This influences the neighborhood structure of
the nodes and thus the similarity of the neighborhoods be-
tween neighboring nodes. Adding random neighbors implies
that adding the same new neighbors to nodes of the former
neighborhood is unlikely. As a result, the ε-threshold of
SCAN can no longer preserve the same set of core objects.
If this set changes, the set of nodes which are candidates
for a cluster also changes. Thus, the cluster structure itself

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2 0.25

3.66 2.94 2.51 2.20 1.95
F

1

Privacy Parameter s

ε (Differential Privacy)

optimal original

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2 0.25

3.66 2.94 2.51 2.20 1.95

C
lu

st
er

ed
N

o
d
es

(i
n

%
)

Privacy Parameter s

ε (Differential Privacy)

optF1 original

(a) Disney data set.

0
0.2
0.4
0.6
0.8

1

0 0.02 0.04 0.06 0.08 0.1

5.29 4.18 3.66 3.32 3.06

F
1

Privacy Parameter s

ε (Differential Privacy)

optimal original

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1

5.29 4.18 3.66 3.32 3.06
C

lu
st

er
ed

N
o
d
es

(i
n

%
)

Privacy Parameter s

ε (Differential Privacy)

optF1 original

(b) Facebook data set.

Figure 2: Cluster quality of PIG-SCAN.

greatly differs from the non-private clustering result. Thus,
for s = 0.1, the F1 score is only about 0.3.

Result 1. Graphs with a high density like the Disney graph
(4.39%) require a relatively high s value and thus a lot of
perturbation. Additionally, if such a graph does not contain
clearly separated clusters in its non-perturbed version – as
it is the case for the Disney graph – those changes in the
graph structure have an even higher impact. This makes it
difficult for density-based approaches like SCAN to come
up with a useful private clustering result.

For the quality results on the Facebook graph in Figure 2,
the F1 score is almost constant for s ∈ [0.01, 0.07]. This
behavior can be explained with SCAN ’s parameter setting
together with the structure of the Facebook graph. The
Facebook graph is a graph with 4,039 nodes and a den-
sity of 1.08%. The non-private clustering result only con-
tains six clusters with almost 90% clustered nodes. Using
SCAN with µ = 160 requires that core objects must have
many neighbors, and this results in a high intra-cluster con-
nectivity. SCAN ’s ε is the minimum threshold of how sim-
ilar the neighborhoods of neighboring nodes must be. Thus,
setting SCAN ’s ε= 0.1 reduces the required similarity. This
particular parameter setting can cope very well with the ad-
ditional noise in the graph, resulting in an F1-score of about
0.7 for the minimum required value s = 0.03. However, us-
ing such an extreme parametrization does not always result
in stability against the perturbation. The number of clus-
tered nodes for the original parametrization is about 20%
less than the number for the non-private result. The fact
that this results in a high F1 score and accuracy means that
most of the nodes are true positives wrt. the non-perturbed
clustering result.

Result 2. Sparse graphs like the Facebook graph which
allows clustering almost all nodes in few, clearly separated
clusters can preserve their strong intra-cluster connectivity
upon perturbation. Thus, the impact of PIG on the cluster
quality is small and results in useful clustering results.

Result 3. SCAN ’s thresholds do not strictly bound the
neighborhood size, but allow variations in the size that still
pass them. Thus, graph clustering approaches which do not
require an exact edge structure, but can cope with neighbor
changes, and which bound their requirements by thresholds
seem to be able to cope with PIG.

PIG-Graph k-Medoids. We evaluate the impact of
PIG-Graph k-Medoids on the quality of the clustering re-
sult on the synthetic graphs with 506 nodes and the Disney
graph. We use the same parametrization for the clustering
on the perturbed graph as used on the non-perturbed one.
The cluster quality of PIG-Graph k-Medoids is shown in
Figure 3. For the synthetic graph, the F1 score is quite low.
For the minimum recommended value of s = 0.03, there are
only quality values under 0.4. Thus, the perturbed cluster-
ing result is no longer able to imitate the non-private cluster-
ing result very well. The reason is that its cluster definition
uses shortest paths that are highly sensitive to edge changes.
As a consequence, we have to negate the hypothesis that the
two characteristics of Graph k-Medoids can reduce the im-
pact of PIG on cluster quality. An interesting outcome is
that PIG with Graph k-Medoids produces clustering results
of higher quality on the Disney graph than with SCAN, es-
pecially as the result of PIG-SCAN are the worst on this
graph. For the minimum recommended s = 0.1, the F1 score
is almost 0.4. We hypothesize that the positive outcome is
correlated with the special structure of this real-world graph
and thus the perturbation can only influence the shortest
path structure to a small extent.

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1

5.29 4.18 3.66 3.32 3.06

F
1

Privacy Parameter s

ε (Differential Privacy)

(a) Synthetic graph (506 nodes).

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25

3.66 2.94 2.51 2.20 1.95

F
1

Privacy Parameter s

ε (Differential Privacy)

(b) Disney graph.

Figure 3: Cluster quality of PIG-Graph k-Medoids.

Result 4. Clustering algorithms whose cluster definition
is based on metrics that are highly sensitive to edge changes
do not perform well with PIG. For such approaches, the
privacy guarantees dominate the usability.

Graph Density Variation. In the synthetic graphs, the
nodes have many edges within their cluster and only few
edges to nodes outside of it. Thus, increasing the density
for those graphs means strengthening the structure within
the communities and then adding more connections to nodes
outside the community. With this behavior in mind, the
cluster quality results shown in Figure 4 are as expected. For
both node sizes, the densest graph has the highest cluster
quality. We vary the density in 0.5% steps up to a density
of 2.5%. Much higher densities are not possible with the
graph generator used and 40 communities. The minimum
recommended s values are as follows:

1.0% 1.5% 2.0% 2.5%

506 nodes s ≥ 0.03 0.04 0.05 0.06

0
0.2
0.4
0.6
0.8

1

0 0.02 0.04 0.06 0.08 0.1

4.60 3.89 3.48 3.18
F

1

Privacy Parameter s

ε (Differential Privacy)

0.98 %
1.46 %

1.95 %
2.43 %

0
0.2
0.4
0.6
0.8

1

0 0.02 0.04 0.06 0.08 0.1

4.60 3.89 3.48 3.18

C
lu

st
er

ed
N

o
d
es

(i
n

%
)

Privacy Parameter s

ε (Differential Privacy)

0.98 %
1.46 %

1.95 %
2.43 %

Figure 4: PIG-SCAN and density variation on synthetic
graphs with 506 nodes.

The F1 score on the graph with density 0.98% is slightly
better than the one on the graph with density 2.43%. An
interesting outcome is the cluster quality on the graph with
density 1.46%. For s > 0.02, the cluster quality is the worst
compared to the quality on the other graphs. A reason is
the percentage of clustered nodes: The higher s is, the fewer
nodes are clustered. Compared to the results on the other
graphs, it has the lowest clustered-nodes-rate. This has to
do with the concrete graph structure and is not dependent
on the density. The degree distribution can also not explain
why the percentage of clustered nodes is the smallest. The
graph with the lowest density has a similar degree distribu-
tion.

Result 5. The cluster quality highly depends on the s
value chosen. The denser the graph is, the higher s must
be. Thus, better cluster quality results on denser graphs are
relativized compared to sparser graphs. This is because the
denser ones require higher s values.

7. CONCLUSIONS
Publishing usable graph clustering results while giving

strong privacy guarantees is an important and challenging
task. It is important as a graph clustering result can reveal
information that is not directly encoded in the result, e.g.,
parts of the original graph structure.

In this paper, we have adapted differential privacy to
graph clustering. We have developed a neighboring graphs
definition suitable for graph clustering results. Based on
this definition, we have proposed m-edge-differential pri-
vacy. Furthermore, using graph perturbation as noise adding
mechanism allows guaranteeing differential privacy for arbi-
trary graph clustering approaches. Based on those results,
we proposed PIG that guarantees 1-edge-differential pri-
vacy. It independently perturbs each entry of the adjacency
matrix. In a thorough evaluation, we have analyzed the
impact of PIG on the graph structure and cluster quality.
We have shown that PIG can lead to good results and can
preserve the cluster structure up to a certain extent.

This paper is a first stab at the problem of differentially
private graph clustering. We see several topics worthy of
further research. First, it might be worthwhile to classify
the existing graph clustering approaches according to their
ability to cope with a perturbation such as the one of PIG.
Then, a user can better choose a clustering algorithm for
PIG and can get a good and at the same time private clus-
tering result. Second, we want to develop adaptation tech-
niques for each category: Slightly adapting the graph clus-
tering algorithm could result in more robustness against the
perturbation of PIG.

8. REFERENCES
[1] Gaydar Project at MIT, 2013. last accessed December 30,

2013.

[2] R. Bhaskar et al. Discovering Frequent Patterns in
Sensitive Data. In KDD, 2010.

[3] C. Dwork. Differential Privacy. In Automata, Languages
and Programming, volume 4052. 2006.

[4] C. Dwork et al. Calibrating Noise to Sensitivity in Private
Data Analysis. In Theory of Cryptography, volume 3876.
2006.

[5] M. Ester et al. A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In KDD,
1996.

[6] D. Feldman et al. Private Coresets. In STOC, 2009.
[7] A. Gupta et al. Differentially Private Approximation

Algorithms. CoRR, abs/0903.4510, 2009.
[8] M. Hay et al. Accurate Estimation of the Degree

Distribution of Private Networks. In ICDM, 2009.
[9] S.-S. Ho and S. Ruan. Differential Privacy for Location

Pattern Mining. In SPRINGL, 2011.
[10] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright. A

New Privacy-Preserving Distributed k-Clustering
Algorithm. In SDM, 2006.

[11] S. Jha, L. Kruger, and P. McDaniel. Privacy Preserving
Clustering. In Computer Security (ESORICS), volume
3679. 2005.

[12] V. Karwa et al. Private Analysis of Graph Structure.
Proceedings of the VLDB Endowment, 4(11), 2011.

[13] S. Kasiviswanathan et al. Analyzing Graphs with Node
Differential Privacy. In A. Sahai, editor, Theory of
Cryptography, volume 7785. 2013.

[14] L. Kaufman and P. Rousseeuw. Clustering by Means of
Medoids. Reports of the Faculty of Mathematics and
Informatics. Delft University of Technology. 1987.

[15] K. Kumar and C. Rangan. Privacy Preserving DBSCAN
Algorithm for Clustering. In Advanced Data Mining and
Applications, volume 4632. 2007.

[16] A. Lancichinetti and S. Fortunato. Benchmarks for Testing
Community Detection Algorithms on Directed and
Weighted Graphs with Overlapping Communities. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics),
80(1), 2009.

[17] N. Li et al. PrivBasis: Frequent Itemset Mining with
Differential Privacy. Proceedings of the VLDB Endowment,
5(11), July 2012.

[18] J. McAuley and J. Leskovec. Learning to Discover Social
Circles in Ego Networks. In Advances in Neural
Information Processing Systems 25, 2012.

[19] D. Mir and R. Wright. A Differentially Private Graph
Estimator. In ICDMW, 2009.

[20] Y. Mülle. Sanitizing Graph Clustering and Community
Detection Results Through Differential Privacy. Master’s
thesis, Karlsruhe Institute of Technology (KIT), 2014.

[21] E. Müller et al. Ranking Outlier Nodes in Subspaces of
Attributed Graphs. In ICDEW, 2013.

[22] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
Sensitivity and Sampling in Private Data Analysis. In
STOC, 2007.

[23] M. J. Rattigan, M. Maier, and D. Jensen. Graph clustering
with network structure indices. In ICML, 2007.

[24] A. Sala et al. Sharing Graphs Using Differentially Private
Graph Models. In IMC, 2011.

[25] E. Shen and T. Yu. Mining Frequent Graph Patterns with
Differential Privacy. In KDD, 2013.

[26] J. Vaidya and C. Clifton. Privacy-Preserving k-Means
Clustering over Vertically Partitioned Data. In KDD, 2003.

[27] Y. Wang et al. On Learning Cluster Coefficient of Private
Networks. In ASONAM, 2012.

[28] X. Xu et al. SCAN: A Structural Clustering Algorithm for
Networks. In KDD, 2007.

	Introduction
	Related Work
	Foundations
	Graph Clustering
	Differential Privacy

	Graph Clustering Meets Differential Privacy
	Neighboring Graphs
	Perturbation Mechanisms

	PIG
	Evaluation
	Conclusions
	References

