
Big Graph Privacy

Hessam Zakerzadeh
University of Calgary

hzakerza@ucalgary.ca

Charu C. Aggarwal
IBM T.J. Watson Research

Center
charu@us.ibm.com

Ken Barker
University of Calgary

kbarker@ucalgary.ca

ABSTRACT
Massive graphs have become pervasive in a wide variety of data
domains. However, they are generally more difficult to anonymize
because the structural information buried in graph can be lever-
aged by an attacker to breach sensitive attributes. Furthermore,
the increasing sizes of graph data sets present a major challenge to
anonynization algorithms. In this paper, we will address the prob-
lem of privacy-preserving data mining of massive graph-data sets.
We design a MapReduce framework to address the problem of at-
tribute disclosure in massive graphs. We leverage the MapReduce
framework to create a scalable algorithm that can be used for very
large graphs. Unlike existing literature in graph privacy, our pro-
posed algorithm focuses on the sensitive content at the nodes rather
than on the structure. This is because content-centric perturbation
at the nodes is a more effective way to prevent attribute disclo-
sure rather than structural reorganization. One advantage of the
approach is that structural queries can be accurately answered on
the anonymized graph. We present experimental results illustrating
the effectiveness of our method.

1. INTRODUCTION
Network data has become increasingly important in recent years

because of the greater importance of various application domains
such as the Web, social networks, biological networks, and com-
munication networks. The semantics and the interpretation of the
nodes and the links may vary significantly with application domain,
e.g. in a social network nodes can represent individuals and their
connections capture friendship, while in a gene regulatory network
nodes are genes and connections refer to their interactions. These
graph data carries valuable information and are analyzed in various
ways to extract new knowledge. For example, social networks pro-
vide significant insight about psychological behavior of individuals
or gene regulatory networks are widely studied to elucidate mech-
anism of diseases.

A major problem with the release of various social networks is
that the nodes are often associated with sensitive information about
the individual, such as their posts, tweets, interests, hobbies or their
political opinions. Individuals might be willing to share such infor-
mation with their friends, close circles or a particular community

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.
PAIS ’15 Brussels, Belgium
.

but not necessarily with the broader public. An example is the so-
cial network published by [18] which captures the sexual contacts,
shared drug injections and HIV status of individuals. In such cases,
a straightforward elimination of only the directly identifying infor-
mation, such as the name or the Social Security Number (SSN)
is usually used. However, such an approach, referred to as naive
anonymization, is generally not successful in protecting privacy for
graph data[5, 12], as the case for multidimensional data.

The structural pieces of information (e.g. friendship links) in a
social network are usually either far less sensitive than the personal
information of a user or are publicly available. An example is a
co-authorship network in which links are publicly available, how-
ever each author may consider details of his/her ongoing research
sensitive. On the other hand, for a social network release to be truly
useful, such content-centric information needs to be released along
with the social network structure.

In the context of graphs, a major challenge is that the structural
information embedded in graphs such as the node degrees are often
highly revealing information. Such information can be leveraged
by an adversary to launch privacy attacks. In general, attacks on
graph data are categorized as either active or passive [5]. In active
attacks, an adversary has the ability to influence the structure of
the graph, such as the social network. In such cases, the adversary
may construct a highly distinguishable pattern (subgraph), and es-
tablish carefully chosen connections with target victim nodes. The
adversary can then leverage their actively created subgraph to effi-
ciently determine the identity of the targeted nodes in the released
network, even when it is anonymized. In passive attacks, the adver-
sary does not have the ability to influence the structure of the graph.
The released graph is only “passively” available to the adversary.
The adversary may then use all the publicly available background
information to learn more about sensitive information belonging
to the individual. This can result in privacy violation. Passive at-
tacks are more realistic because attackers can usually access the
network modification platform in only a local or limited way, and
consequently are not able to significantly alter the overall graph
structure.

The privacy of individuals (nodes) in graphs can be breached in
three different ways. The first is referred to as identity disclosure.
This refers to the fact that the identity of individuals associated with
graph nodes are disclosed. The second is that of link disclosure. In
this case, relationships between individuals are considered sensi-
tive and an adversary aims at disclosing the relationship between
victims. The identity and link disclosure attacks are generally re-
lated because the disclosure of a sensitive link requires the identi-
fication of the node identities as an intermediate step. Both forms
of privacy are fully related to structural anonymization, and do not
even assume that content is released along with the graph. The fi-

nal setting is that of attribute disclosure. In this case, an attacker
aims at finding out sensitive content attribute(s) associated with a
victim. In this setting, content attributes are always released along
with graph nodes, and a user may not wish to disclose this infor-
mation. The structural information about the graph increases the
ease of making content-centric attacks in this case. Even though
this kind of disclosure poses a more significant problem, it remains
almost completely unaddressed in the literature. This is the main
focus of this paper.

Many privacy models[14, 24, 26, 23, 8] have recently been de-
signed for private release of network data. The models make dif-
ferent assumptions about the background information of the adver-
sary. For example, Liu and Terzi[14] proposed a model, namely
k-degree, to prevent identity disclosure against an attacker who has
knowledge about the victim node’s degree. The k-neighborhood
model[24] prevents identity disclosure against an attacker enriched
with knowledge about the immediate neighbors of a target victim.
Algorithms to enforce these privacy models typically suffer from
two problems. First, they are expensive and particularly difficult
to implement for very large graphs. This is important, because the
sizes of graphs have continued to increase significantly in recent
years. Secondly, all recent methods focus almost exclusively on
structural anonymization, with little or no focus on the interplay
between content and structure in the context of sensitive attribute
disclosure of nodes. The latter is usually much more sensitive. In-
dividuals do not wish their views, controversial opinions, and pro-
clivities to be released in the open without their knowledge. Struc-
tural anonymization dramatically degrades the graph structure, and
provides little attribute-wise protection in return for this large loss
in utility. It is important to point out that different graph domains
have different levels of relative sensitivity of links and attributes.
For example, in some domains, the sensitivity of attribute disclo-
sure is much greater than link disclosure. Generally, graph data is
sufficiently complex that it is impractical to prevent all forms of
disclosure with a single anonymization approach. In such cases,
it makes little sense to perturb the structure of the graph. Rather,
the use of traditional attribute-centric modification is sufficient as
long as the graph structure is taken into account during attribute
perturbation. Taking the structure into account during attribute per-
turbation ensures that important real-world properties of graphs,
such as homophily and content-structure locality, are preserved by
the anonymization process.

In this work, we devise the first approach to cope with these
content-centric issues in the context of very large graphs. Our ap-
proach is a simple, yet efficient algorithm to prevent attribute dis-
closure attacks in the passive scenario, while publishing the full
graph structure. Our anonymization technique is best suited to the
big-graph scenarios where there are millions or billions of nodes
and edges. The existing works which prevent different types of dis-
closure either fail or suffer from long running time when applied on
such graphs. Hence our proposed algorithm, which is a MapReduce
algorithm, is the first attempt to address the privacy of big graphs.
1.1 The Problem

An attacker may obtain different kinds of structural background
knowledge about victim nodes. Hay et al. [12] systematically cap-
tures three prominent types of background knowledge: vertex knowl-
edge, subgraph knowledge and hub fingerprint knowledge. Ver-
tex knowledge refers to node degrees, while subgraph and hub
fingerprint knowledge describe (partial) subgraphs around nodes
and their distances from hub nodes, respectively. However, some
types of background knowledge are more difficult to acquire so the
precise kind of knowledge available depends on the problem set-
ting. Some existing proposals [24, 26] consider very powerful ad-

Figure 1: Example of two published graphs. Nodes sensitive
attributes are shown by each nodes. The graph in (a) does
not provide any protection against attribute disclosure attack,
while the graph in (b) satisfies 2-diversity.

(a) Vulnerable graph (b) Satisfying 2-diversity
versaries with subgraph or hub fingerprint knowledge. Our work
currently considers adversaries with vertex knowledge (i.e. victim
nodes degrees) in the context of big graphs, because this represents
a large class of potential attackers and a readily available form of
background knowledge. We anticipate considering more sophisti-
cated attack models in future work. We assume that node-degree
information is known to the attacker and their goal is to determine
sensitive attribute(s) values associated with victim node(s). In other
words, the adversary is undertaking an attribute disclosure attack
with node-degree information. Figure 1 illustrates an anonymized
graph in which the identity of a person is anonymized with respect
to the degree. However, an attacker, supplied with nodes degrees,
can easily conclude that individuals with node-degree value of 2
are suffering from HIV.

To prevent this attack, we leverage the privacy models in rela-
tional data and mandate that the values of sensitive attributes of
nodes with the same degree should be well-represented. Although
our proposed MapReduce algorithm is capable of adopting all types
of diversity (e.g., recursive `-diversity, t-closeness), depending on
different requirements on sensitive value distribution, we only con-
sider distinct `-diversity in this work because of its simplicity and
fundamental nature. Therefore, we enforce the relative frequency
of each sensitive value for the set of nodes with the same degree to
be at most 1

`
.

The `-diversity concepts in the relational setting can be gener-
alized to graphs as follows. Each record corresponds to an indi-
vidual in the relational model, while nodes represent individuals in
the graph data. The quasi-identifiers are a subset of attributes in
relational data and records having the same value for their quasi-
identifiers form an equivalence class. On the other hand, the node-
degree is the quasi-identifier and nodes with the same degree form
an equivalence class in graph data. Figure 1b illustrates a published
graph satisfying 2-diversity in which degree-based diversification
of sensitive attributes assures a confidence of at least 1

2
.

We consider the problem of attribute disclosure attack in the con-
text of big graph data with the use of the `-diversity model. Pre-
serving the privacy of such a graph can be enabled with the use of
distributed frameworks such as MapReduce. Therefore, we address
the following question in this work:
“How to prevent attribute disclosure attacks using the `-diversity
privacy model in big graphs?".

2. RELATED WORK
The problem of privacy preservation was first studied in [3]. This

approach was based on noise-based perturbation of the underlying
data. Subsequently and starting with Samarati’s seminal work[19],
a significant amount of research has been done on the problem of
privacy preservation and numerous privacy-preserving models (e.g.
k-anonymity[19], `-diversity[15], t-closeness[13], δ-presence [16],
or differential privacy[9, 10]) have been proposed to protect pub-
lished data against attackers. Each privacy model can prevent par-

ticular types of attacks and makes some assumptions about the at-
tacker’s background knowledge. Besides, each type of data, e.g. re-
lational data, streaming data or graph data, poses its own unique re-
quirements and challenges and mandates a different privacy model.

Backstorm et al. [5] were the first to point out that simply re-
moving identifier information from nodes in a graph does not pre-
vent identity disclosure. The re-identification can occur through
structural information that an attacker can obtain through various
sources. Hay et al. [12] systematically modeled major variants of
adversary structural background information.

Starting with the work of [5], graph privacy received increasing
attention. The models generally aim to prevent three categories of
attacks: identity disclosure attack, link disclosure attack, and at-
tribute disclosure attack. The identity disclosure attack has been
studied in works such as [14, 24, 26]. Liu and Terzi[14] consid-
ered an adversary armed with node-degree information and pro-
posed an edge addition/deletion technique for anonymization. The
solution alters an input graph such that for every node v, there exist
at least k − 1 other nodes with the same degree as v in the pub-
lished graph. Zhou and Pei[24] assumed that the attacker is aware
of subgraph constructed by immediate neighbors (1-neighborhood
subgraph) of a victim node. They proposed an algorithm which or-
ganizes nodes into groups, according to their neighborhoods, and
then anonymizes the neighborhoods of vertices in the same group.
In [26], the authors adopted a more general assumption and inves-
tigated a scenario where the attacker knows any subgraph around
a victim node (d-neighborhood subgraph). The authors then aimed
to construct a graph in which there exist at least k isomorphic sub-
graphs, in the published graph, to each given subgraph in the input
graph.

Other works such as [23, 20, 21] focused on the link disclo-
sure attacks. Zheleva and Getoor[23] devised and investigated the
effectiveness of several strategies to hide sensitive links within a
graph. The work in [20] investigated the interplay between addi-
tion/deletion and edge switch techniques and the graph spectrum.
The authors have also proposed a spectrum preserving algorithm
to prevent link disclosure attacks. Potential disclosure of sensitive
links in graph generation algorithms was also examined in [21].

The attribute disclosure attack is explored in a few works[25,
22]. The authors in [25] extended the k-neighborhood privacy such
that the `-diversity is preserved over the sensitive attribute of nodes
within each group. Yuan et al.[22] considered three gradually in-
creasing levels of attacker’s background information. Their pro-
posed solution alters the graph structure by adding fake edges and
nodes along with generalizing the sensitive values to provide per-
sonalized protection. In addition, the graph nodes and their sen-
sitive attributes or a rich social network, in general, can be mod-
eled as a bipartite graph and be anonymized using the techniques
proposed by Cormode et al.[7]. However, all the proposed works
manipulate the graph structure to provide a certain level of pri-
vacy. Structural modification dramatically affects the utility that a
graph structure provides. In this paper, we put forward an algorithm
to prevent the attribute disclosure attack without manipulating the
graph structure.

3. PROBLEM DEFINITION
Let the quadruplet G(V,E, S, f) be a simple graph in which V

represents a set of nodes (vertices), E is the set of edges, S is the
set of sensitive values and f : V → S is a mapping function that
relates each node to its sensitive value. Table 1 summarizes the
list of commonly-used notations in this work. Next we define the
notion of `-diversity for a set of nodes.

DEFINITION 1 (`-DIVERSITY PRIVACY CONDITION). A sub-

Table 1: List of notations
notation explanation

vi ithvertex

f(vi) function returning the sensitive value of vi
deg(vi) degree of vertex vi

eqd set of nodes with degree d (an equivalence class)

Ni set of immediate neighbors of vi
SX set of sensitive values of set of nodes X

|.| size of a set

set of nodes Vj ⊂ V in graphG(V,E, S, f) satisfies the `-diversity
privacy condition if and only if ∀vi ∈ Vj and multiset of sensitive
values (SVj , g) where SVj = {f(vi)|vi ∈ Vj} and g(·) returns the
frequency of each sensitive value in Vj , ∀x ∈ SVj the inequality

g(x,Vj)∑
y∈SVj

g(y,Vj)
≤ 1

`
holds.

Next, we generalize the notion of `-diversity for a subset of nodes
to the full graph G.

DEFINITION 2 (`-DIVERSIFIED GRAPH). A graphGwith de-
gree set D is called an `-diversified graph if and only if ∀d ∈ D,
the set of nodes eqd with degree d satisfies the `-diversity privacy
condition.

This is the generalization of the distinct `-diversity model[15] to
the graph data model. It is possible to define stricter conditions such
as recursive or entropy `-diversity. Furthermore, related notions
such as t-closeness can be defined.

Our contribution in this work is the proposal of the first MapRe-
duce algorithm to create `-diversified big graphs, particularly social
networks, so that an attacker supplied by degree information cannot
succeed in launching attribute disclosure attacks. The algorithm re-
leases the graph structure intact and in its entirety, thus structural
queries can be accurately answered using the published graph. In
addition, the algorithm is fully scalable and capable of anonymiz-
ing big graphs.

4. MapReduce-BASED PRIVACY ALGORI-
THMS

As discussed in the social networking literature[6, 11], many big
graphs (e.g., social networks, biological networks) are scale-free
networks and their degree distribution follow a power-law distribu-
tion. This behavior is illustrated in Figure 5. As a rule of thumb,
many nodes in a big social network satisfy the privacy condition
for practical values of the privacy parameters (e.g. `). Therefore,
it is more reasonable to first filter the privacy-condition-satisfying
nodes out and not involve them in further processing. This dramat-
ically reduces the complexity of privacy preservation process. Al-
gorithm 1 illustrates the steps required to enforce the privacy con-
dition on a big graph. The output of this algorithm is the original
graph in which the sensitive values of some nodes are released in
group.

In this algorithm, nodes vi are initially assigned to equivalence
classes according to their degrees. In other words, EQ = {eqd|d ∈
D} and eqd = {vi ∈ V |deg(vi) = d} where D is the graph
degree set. The privacy condition is then checked for each equiv-
alence class eq in EQ, and nodes in equivalence classes not sat-
isfying the `-diversity condition are appended to a list of violat-
ing nodes. These privacy-violating nodes are then clustered such
that the nodes within each cluster satisfy the `-diversity condition.
To cluster nodes, we use an agglomerative clustering in which two
clusters are merged in each iteration. However, the merging process
must be designed for satisfying the privacy condition. A suitable

Algorithm 1 Big Graph Anonymization Steps
1: AnonymizationScheme(G)
2: //G is a simple graph of form (V ,E,S,f)
3: EQ= assign nodes with degree d to equivalence class eqd

and form equivalence classes set
4: foreach (eq in EQ)
5: if (eq does not satisfy the `-diversity condition)

append nodes vi ∈ eq to the violating nodes set V N
6: C=cluster nodes vj ∈ V N such that each cluster c ∈ C

satisfies the `-diversity condition
7: define function f ′ : V → S × N such that
8: foreach (vi in V)
9: if (vi not in V N)

10: f ′(vi) = (f(vi), 1)
11: else
12: f ′(vi) = the multiset of sensitive values of nodes in

cluster c ∈ C|vi ∈ c
13: publish G′(V,E, S, f ′)

merging criterion is the entropy of sensitive values. Two clusters
ci and cj are selected when the constituent nodes are connected by
at least one edge and cause the maximum change in entropy as a
result of the merging. The entropy criterion is stated as follows.

argmax
ci,cj

d(ci, cj) = H(ci ∪ cj)−H(ci)−H(cj)

where function H(X) denotes the entropy function.
The set of all formed clusters are referred to as C. At the end, the

full graph structure is published. However, the sensitive value of
node vj not originally satisfying the privacy condition is replaced
by the multiset of sensitive values of nodes in cluster c ∈ C that
contains vj (vj ∈ c). In other words, sensitive values of privacy-
violating nodes are released at the cluster level instead of the node
level.

Figure 2: Illustration of 2-diversification process of a graph.
This process leaves nodes initially satisfying the 2-diversity con-
dition intact and only generalizes sensitive values of 2-diversity-
violating nodes.

(a) A 2-diversity violating
graph

(b) 2-divertised version of
(a)

In the clustering step (line 6, Algorithm 1), satisfying the `-
diversity condition for each cluster mostly depends on frequencies
of sensitive values, which is defined as the function g(f(vi), c) :
S → N. This definition of g() results in a Sensitive Value Fre-
quency aWare (SVFW) clustering. However, g() can be defined in
a more relaxed way g(f(vi), c) : S → 1, which basically ignores
the frequency of sensitive values within each cluster and turns the
process into a Sensitive Value Frequency aGnostic (SVFG) clus-
tering. As soon as the number of distinct sensitive values reaches
` within a cluster, further merging is no longer performed on that
cluster in SVFG, while it may not be case in SVFW. In fact, the
SVFG is a relaxed version of SVFW, and apparently an `-diversity-
satisfying cluster under SVFW is an `-diversity satisfying cluster
under SVFG too, whereas the vice versa may not hold. It is easy

to show that SVFG satisfies the `-diversity condition as each node
within a given cluster can be related to any of the sensitive values.

Pathological cases might exist in both SVFW and SVFG in which
the clustering ends up with a cluster not satisfying the privacy con-
dition. Under such circumstances, sensitive values of nodes be-
longing to the cluster must be suppressed. Figure 2a demonstrates
a graph in which nodes with degrees one, three and four do not sat-
isfy 2-diversity. Applying the anonymization steps in Algorithm 1
results in the 2-diversity-satsifying graph shown in Figure 2b. In
this anonymized graph both SVFW and SVFG result in the same
anonymized graph as each sensitive value occurs only once in the
formed cluster.

A data user, after obtaining the published anonymized graph
must instantiate a graph from it. Instantiation means randomly as-
signing a sensitive value to those nodes whose sensitive values are
released as a multiset. A query can be more accurately answered
by averaging over multiple instantiations. Figure 3 exemplifies two
possible instantiated graphs from the 2-diversity satisfying graph
shown in Figure 2b.

Section 4.2 describes how Algorithm 1 can be converted into
MapReduce jobs to satisfy the `-diversity condition on big graphs.
However, before proceeding further, we provide a very brief intro-
duction to the MapReduce framework.

Figure 3: Two possible instantiations of 2-diversified graph
shown in Fig. 2b

(a) Instantiation 1 (b) Instantiation 2

4.1 MapReduce
MapReduce is a programming framework proposed by Google

to enable efficient data processing. As implied by its name, the
approach uses distributed Map step, followed by a Reduce step.
These steps must be designed by the application programmer. The
MapReduce framework splits the data into equal-size chunks, and
feeds each chunk to a separate mapper. Each mapper processes its
own chunk, and outputs (key, value) pairs. Pairs with the same
key are transferred to one reducer by the framework. The set of all
reducer outputs are used to construct the final result. An arbitrary
function combiner can also be defined to reduce the amount of data
transfer between mappers and reducers by aggregating the values
belonging to each key. There is also a user (driver) program that
executes/runs the MapReduce program. Figure 4 illustrates the data
flow of a MapReduce job. We do not define the combiner function
in our MapReduce jobs as its effect in reducing the data transfer is
not significant, considering the mapper output.

4.2 Privacy Algorithm Transformation to Ma-

pReduce Jobs
Algorithm 1 consists of two phases, which are referred to as the

pruning phase and the clustering phase, respectively. The prun-
ing phase corresponds to lines 1-5 and the clustering phase to the
line 6 in the algorithm. Lines 7-13 involve publishing the resulting
anonymized graph, and can also be carried out by a separate job,
as will be explained shortly. Here, we demonstrate how each phase
can be converted into MapReduce jobs.

As a de facto standard, we assume edges and attribute informa-

Figure 4: The data flow of a MapReduce job

tion of a graph are stored in two separate files: the relationship and
the meta-info file. Each line in the relationship file shows an edge
and each line in the meta-info file corresponds to one node and con-
tains the values of different attributes of that node. Minor modifica-
tion is required for other sorts of graph representations. Besides, for
the sake of simplicity, we assume that each node contains only one
sensitive attribute, however extension to multi sensitive attributes is
straightforward.

4.2.1 Pruning Phase
The pruning phase comprises two MapReduce jobs. The first

job discovers the immediate neighbors of each node and the second
one does the actual filtering (pruning) task based on whether an
equivalence class satisfies the `-diversity condition or not.

MapReduce Job for Neighborhood Discovery
This job discovers neighbors of each node. The input to this job is
both the relationship and the meta-info files. The mapper and the
reducer of this job are as follows:

Mapper: As there are two different input files, mappers are dif-
ferentiated according to the data chunk they are fed with and their
outputs differ depending on whether a mapper gets a chunk of the
relationship or meta-info file. If the chunk is coming from the re-
lationship file, then for each record “vi,vj” (corresponding to an
edge), the mapper outputs two pairs <vi,vj> and <vj ,vi>. How-
ever, providing that the mapper is fed by a chunk of meta-info file,
it outputs the vertex as the key and its sensitive value as the value.

Algorithm 2 Neighborhood Discovery Job
1: Mapper(k,v)
2: // v can be either of form (vi,vj) or (vi,f(vi))
3: if (input chunk belongs to the relationship file)
4: emit(vi,vj)
5: emit(vj ,vi)
6: else
7: emit(vi,f(vi))

Reducer: All neighbors of a given vertex (let’s say vi) as well as
its sensitive value (f(vi)) are brought together in a reducer. Thus,
the reducer receives pair <vi, Ni+f(vi)> whereNi is the set of all
vi’s immediate neighbors. The ’+’ sign is a simple string concate-
nation operator. Each reducer then emits the pair <vi/f(vi), Ni>.
The output file of this job is fed into the second MapReduce job as
input.
MapReduce Job for Filtering
This MapReduce job filters out nodes originally satisfying the `-
diversity condition and leaves us with only violating nodes. As
discussed earlier, it can be modified for other types of `-diversity
or even t-closeness.

Algorithm 3 Neighborhood Discovery Job
1: Reducer(k,V)
2: // k is a vertex and V contains all neighbours and the sensitive

value f(k)
3: emit(k/f(k),V)

Mapper: Each mapper reads a data chunk which has been output
from the reducer in the first job. The value of each input record
in the chunk is of form (vi/f(vi),Ni)1. The mapper then emits
a pair where the key is the degree of vi, |Ni|, and the value is
<vi/f(vi), Ni>. Ni will be used in the clustering phase later.

Algorithm 4 Filtering Job
1: Mapper(k,v)
2: //v is of form (vi/f(vi), Ni)
3: emit(|Ni|,<vi/f(vi), Ni>)

Reducer: All vertices with the same degree (eqd) as well as
their sensitive values Sd are transferred to the same reducer. The
reducer can then simply decide on whether the equivalence class
eqd satisfies the `-diversity or not. If so, all vertices in eqd are
ruled out, otherwise they are output. Therefore, each line in the
the reducers’ output file contains a privacy-violating node and its
sensitive value. The output file(s) will be used as input for the next
MapReduce job in the clustering phase.

Algorithm 5 Filtering Job
1: Reducer(k,V)
2: //V is a list of (vi/f(vi), Ni) where deg(vi) = d
3: violation=false
4: foreach (vi/f(vi), Ni) ∈ V
5: if (freq(f(vi),S

d)

|Sd| > 1
`

)
6: violation=true
7: break
8: if (violation)
9: foreach (vi/f(vi), Ni) ∈ V

10: emit(vi/f(vi), Ni)

4.2.2 Clustering Phase
The clustering phase has only one MapReduce job. This job

groups the privacy violating vertices and forms clusters in which
the sensitive values are well-represented. An agglomerative hier-
archical clustering algorithm can be used for the clustering. How-
ever, merging two clusters must enable `-diversity satisfaction. To
achieve this goal, we consider the similarity measure between two
neighbor clusters ci and cj to be the difference in entropy of sen-
sitive values in the resulting cluster and the original clusters, i.e.
H(ci ∪ cj) − H(ci) − H(cj)

2. A cluster is removed from fur-
ther merging as soon as it satisfies the `-diversity condition. The
sensitive values of vertices in the remaining cluster may need to be
suppressed when they do not satisfy the `-diversity condition.

MapReduce Job for Clustering
The clustering job is in charge of clustering vertices according to
sensitive values entropy.

Mapper: Each mapper is fed a chunk consisting of privacy vio-
lating vertices (output by the Filtering job). It buffers all the input
nodes and clusters them according to entropy increase criterion.
1Note that by default the key for each record in the mapper is the
record’s offset in the input file.
2If ci and cj are not connected, their similarity will be zero. This
can be determined using Ni.

Note that the clustering is influenced by the number of mappers
and size of the chunks as violating nodes are split among different
mappers. That means a better clustering, in terms of fewer sup-
pressed sensitive values, is expected with fewer mappers or larger
chunk size. One mapper operating over all the violating nodes is
the ideal case, however it may become a bottleneck in case of hav-
ing large number of violating nodes.

The output of the Clustering MapReduce job is referred to as the
Generalized Sensitive Value (GSV) file(s). Each line in the GSV
file contains a node name along with the multiset of the cluster
sensitive values to which the node belongs. Algorithm 6 shows the
pseudocode of this job. Function multiset(c) takes a cluster and
returns the multiset of its constituent node sensitive values.

Algorithm 6 Clustering Job
1: Mapper(k,v)
2: // v is of form (vi/f(vi), Ni)
3: append each pair (vi/f(vi), Ni) to buffer
4: if (no more pair)
5: C = cluster(buffer) //either SVFW or SVFG clustering
6: for (c in C)
7: for (vj in c)
8: emit(vj , multiset(c))

There is no reducer required for this MapReduce job and the
mapper’s output should be considered as the job’s output. To pub-
lish the final anonymized graph (lines 7-13, Algorithm 1), the rela-
tionship file must be released as original, nonetheless the sensitive
values of originally-privacy-violating nodes in the meta-info file
must be swapped with their corresponding values in the GSV file.
There exist two alternatives to carry out the swap:

1. A MapReduce job which caches GSV file and takes the meta-
file as input. It then goes through the meta-info file and sim-
ply does the swaps. This alternative is suitable when the GSV
file is of small size.

2. A MapReduce job which joins the meta-info and the GSV
files and changes the sensitive values of violating nodes in
the meta-info with the corresponding value from the GSV
file. This approach is more appropriate for a large GSV file.

The new meta-info file must also be released at the end.

5. DATA TRANSFER ANALYSIS
As shown in Figure 4, each MapReduce job involves two data

transfers. The first involves data transfer between mappers and
combiners. The second involves data transfer between combiners
and reducers. Since each mapper and its corresponding combiner
run on one node, the first data transfer is local. However, the sec-
ond data transfer may occur across the network and become a bot-
tleneck. As we have not specified a combiner in this work, we only
analyze the amount of data transferred in the second case here.

First MapReduce Job, Pruning Phase
The mapper in the first job doubles the size of the relationships
file because it outputs two pairs per input record of the relation-
ships file, but leaves the size of meta-info file unchanged. |E|
and |V | show the number of input records from the relationships
and the meta-info files, respectively and let b denote the number
of bytes required to store a node name (or a sensitive value). So,
the mapper’s input and output data are of size 2b.|E|+ 2b.|V | and
4b.|E|+ 2b.|V |.

The reducer then outputs one record per node in which there is
the node name, its sensitive value and the list of node’s neighbors.
The average size of each record is (2 + µ).b where µ is the average

node degree in the input graph. As shown in the social networks lit-
erature [4, 6], degree distribution in many social networks follows a
power law probability distribution p(x) ∼ x−λ where 2 < λ < 3.
Newman[17] also proved that the average degree in a graph fol-
lowing power law distribution is µ = λ−1

λ−2
(given λ > 2). Thus,

the reducers’ output will be of average size (2 + λ−1
λ−2

).b.|V |. In
summary, the asymptotical data transfers are:

mapper’s input:
O(|E|+ |V |)

mapper’s output (reducer’s input):

O(|E|+ |V |)

reducer’s output:

O(
λ− 1

λ− 2
.|V |)

Hereafter we only consider the asymptotical analysis of the data
transfer.
Second MapReduce Job, Pruning Phase
The second MapReduce job is fed by the output of the first job
which is of size O(λ−1

λ−2
.b.|V |). It then outputs one pair for each

input record in which the key is the node’s degree and the value
consists of node’s name, its sensitive value and neighbors. Thus,
the mapper’s output has the same magnitude of the input which is

O(
λ− 1

λ− 2
.|V |)

Afterwards, the reducer prunes out nodes originally satisfying
the privacy condition and outputs privacy-condition-violating nodes
as well as their sensitive values. Number of output nodes is highly
dependant to the sensitive values distribution within different equiv-
alence classes and cannot be easily estimated. However, consider-
ing the power law for degree distribution, we can estimate the lower
bound of output nodes. The number of nodes for a given degree
(let’s say x) as follows:

n

|V | ∼ x
−λ → n ∼ |V |.x−λ

Provided that the number of nodes for a given degree (x) is less
than the privacy level (`), nodes with degree x are output by the
reducer3. To find an estimated lower bound for x we must have:

|V |.x−λ > `→ x ? λ

√
|V |
`

so the estimated size of reducer’s output is

Ω(
λ− 1

λ− 2
.|V |.

∑
x=

λ
√

|V |
`

x−λ)

Third MapReduce Job, Clustering Phase
The input to this MapReduce job is the output of the previous job
and has the same magnitude. For each input record, which is formed
of a node name along with its sensitive value, one pair consisting of
the node name and its multiset of sensitive values is output. There-
fore, the output size is

O(|V |.
∑

x=
λ
√

|V |
`

x−λ)

6. EXPERIMENTAL RESULTS
In this section, we will study the effectiveness, efficiency, and

running time characteristics of the anonymization algorithm. The
3Although existence of at least ` nodes with degree x is not enough
for `-diversity condition to satisfy, it is a necessary condition.

experiments were carried out on Hadoop 1.0.44, an open source im-
plementation of the MapReduce framework, on the Hadoop clus-
ters running on ACENet5. It has 32 nodes connected through a
Gigabit Ethernet connection, each having 16 cores and 64 GB of
RAM running Red Hat Enterprise Linux 4.8. Table 2 lists the
Hadoop parameters in our experiments6.

Recall Section 2 stated there is no existing work that prevents at-
tribute disclosure attacks with the fairly limited restrictions associ-
ated with our assumptions regarding attacker’s background knowl-
edge. For example, Zhou and Pei [25] consider an attacker with
1-neighborhood background knowledge and Yuan et al. [22] as-
sumes knowledge about node labels is also available to an attacker.
Unfortunately, divergent assumptions about the knowledge held by
attackers makes the comparison with our solution impossible. We
also note that our goal is to address big graphs while the solutions
proposed by other, due to the increased complexity associated with
protecting against sophisticated attacks, means these alternative ap-
proaches have only been shown to work on comparatively small
graphs.

Our anonymization algorithm does not change the graph struc-
ture, so all graph properties remain intact and structural queries can
be answered accurately using the anonymized graph. However, the
sensitive values for some nodes are released as a multiset and in
cluster level. This ambiguity introduces some error in answering
queries involving the sensitive values, however can be ameliorated
by averaging over multiple instantiations. To measure the effect
of sensitive values ambiguity, we measure the change of certain
queries’ results between the original and the anonymized graphs.
We considered three types of queries:

• Pair query (one hop query): this type of query involves pairs
of nodes which are connected. It demonstrates how many
nodes from one subpopulation have relation with nodes from
another subpopulation in the graph. An example query in
this type is "how many users of 19 years old are friends with
users of 28 years old?".
• Trio Query (two hop query): these queries involve three

connected nodes in the graph. it in fact counts triples that sat-
isfy a given condition. A sample query of this type is "how
many users of 19 years old are friends with users of 28 years
old who are friends with users of 50 years old?"
• Triangle queries: this sort of query counts the number of

triangles (cliques of size three) that holds a query condition.
For instance, "how many users of 19 years old are friends
with users of 28 and 70 years old who are friends with each
other?".

The utility loss is measured by the average relative query er-
ror for each type of query over multiple instantiations. For an
anonymized graph and set of n queries {q1, q2, ..., qn}, the aver-
age relative error is calculated as 1

n

∑n
i=1

|qi(a)−qi(o)|
qi(o)

where qi(a)

and qi(o) denote the results of running query qi on the anonymized
and the original graphs, respectively.

The anonymization process only affects a (small) portion of nodes
in the big graph. That is, the result of executing these three types
of queries on a great portion of the anonymized graph is exactly
the same as the original graph. Therefore, to better show the im-
pact of anonymization on each type of query, we extract subgraph
which results in different answer for a given type of query between
the original and the anonymized graphs and only report the error of
executing queries on the subgraph. It is worth noting that the total
4http://www.hadoop.com
5http://www.ace-net.ca
6The rest of the parameters have the default value.

Table 2: Parameters of Hadoop
Parameter Name Value
fs.block.size 64MB
io.sort.mb 1024MB

io.sort.factor 50
dfs.replication 3

Figure 5: Degree distribution in the Patent and LastFM data
sets

0 100 200 300
0

0.5

1

1.5

2

2.5
x 10

5

Degree

F
re

q
u

e
n

c
y

(a) Patent data set

0 200 400
0

2000

4000

6000

Degee

F
re

q
u

e
n

c
y

(b) LastFM data set

error (the error on the entire graph) will be much smaller than the
reported one because the total error must be calculated on the whole
graph in which most nodes remained intact. This subgraph for the
pair and triangle queries is the subgraph formed by the initially-
privacy-violating nodes and their immediate neighbors (neighbors
with distance one). For trio queries, this subgraph is constructed
by the initially-privacy-violating nodes and as well as nodes within
distance one and two from them. Besides, the running time was
measured in terms of the wall-clock time (milliseconds). This pro-
vides a good indicator of the overall scalability of the method.

6.1 Data Sets
We used two real big graphs described below:

• US Patent Citation Graph: The citation graph includes all
citations made by patents granted between 1975 and 1999
and is maintained by National Bureau of Economic Research[2].
This data set contains over 2.9 million nodes and 16.5 million
edges. Although it is a directed graph, we consider it as undi-
rected since there is no pair of nodes citing each other. The
meta-file also contains the patents’ year which is considered
as a sensitive attribute.
• LastFM co-Group Graph: Last.fm is a popular music web-

site which recommends music to users according to their mu-
sic taste. An anonymous random walk crawl of Last.fm is
released by Networking group at UC Irvine [1]. The data
set contains up to 177K users (nodes) and more than 10M
friendship relations (edges) among them. Besides, the meta-
file includes users’ ages which we consider as the sensitive
attribute.

Although these two data sets might fit in the RAM of a commod-
ity PC, they are among the biggest graph data sets publicly available
with nodes’ attributes. So we utilized them to show the behavior of
our proposed solution. As shown in Figure 5, the degree distribu-
tion in these graphs follow a power-law distribution. For the sake
of clarity, these figures only show the tail and the central part of the
degree distribution and the head part is mostly removed.
6.2 Results

Each anonymized graph was instantiated 30 times and 50 ran-
dom queries generated by uniformly sampling from the set of sen-
sitive values. The generated queries ran on each instantiated graph
and the reported error is averaged over all 1500 queries for each
anonymized graph. We set the number of mappers and reducers to
30 and the running time is averaged over three runs. The number
of mappers in the clustering phase have also been set to 1 for the

Patent and 10 for the LastFM data set. The selection is due to
the number of nodes involved in the clustering. The diversity level
(`) also ranges from 2 to 6 in the experiments.

The average relative errors in answering different types of queries
on the Patent and LastFM data sets versus the diversity level
are shown in Figure 6 through 8. These figures reveal that typi-
cally the SVFG technique results in smaller error in answering dif-
ferent types of queries than SVFW technique. We conjecture that
this phenomenon is mainly due to fine grain clusters formed in the
SV FG technique which can largely eliminates the randomness in
the instantiation process. Besides, these figures show that no rela-
tion exists between the diversity level and average error.

As Figure 9 confirms, the running time and the number of nodes
involved in the diversification process have a direct relationship.
The increase in the running time is mainly due to the clustering part
and can be alleviated by executing more mappers in the clustering
phase.

Figure 6: Average relative error of one-hop queries vs. `

2 3 4 5 6
0

0.1

0.2

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(a) Patent data set

2 3 4 5 6
0

0.1

0.2

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(b) LastFM data set
Figure 7: Average relative error of two-hop queries vs. `

2 3 4 5 6
0

0.1

0.2

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(a) Patent data set

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(b) LastFM data set
Figure 8: Average relative error of triangle queries vs. `

2 3 4 5 6
0

0.1

0.2

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(a) Patent data set

2 3 4 5 6
0

0.1

0.2

0.3

0.4

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(b) LastFM data set

7. CONCLUSION
Even though publishing social networks between individuals or

entities provides various benefits, it poses serious privacy concerns
for the underlying individuals or entities. Therefore, the social net-
work must undergo a non-trivial anonymization process before it is
released. Anonymization techniques typically alter the graph struc-
ture to protect privacy, however the structure manipulation may dra-
matically degrade the utility of the published graph and turns to be
counter intuitive. In addition, the existing anonymization solutions
do not scale up and are not practically applicable on real big social
network graphs. This work is the first attempt to protect the privacy
of individuals in big graphs with no structure manipulation by tak-
ing advantage of MapReduce paradigm. This approach publishes a

Figure 9: Running time vs. `

2 3 4 5 6
0

1

2

3

4
x 10

5

diversity level (l)

R
u

n
n

in
g

 t
im

e
 (

m
s
)

SVFW

SVFG

(a) Patent data set

2 3 4 5 6
0

2

4

6

8

10

x 10
5

diversity level (l)

R
u

n
n

in
g

 t
im

e
 (

m
s
)

SVFW

SVFG

(b) LastFM data set

graph in which sensitive attributes are protected and also is capable
of answering structural queries as accurate as the original graph. As
our future work, we plan to consider more powerful attackers and
also leverage MapReduce to design fully scalable anonymization
techniques to protect other sorts of sensitive information within big
social networks such as sensitive links.

8. REFERENCES
[1] Lastfm data set. http://odysseas.calit2.uci.edu/doku.php. Accessed: Feb 2014.
[2] Patent data set. http://www.nber.org/patents/. Accessed: Feb 2014.
[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. ACM Sigmod

Record, 29(2):439–450, 2000.
[4] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks.

Reviews of modern physics, 74(1):47, 2002.
[5] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x?:

anonymized social networks, hidden patterns, and structural steganography. In
WWW, 2007.

[6] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.

[7] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Class-based
graph anonymization for social network data. 2009.

[8] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing bipartite graph
data using safe groupings. VLDB, 2008.

[9] C. Dwork. Differential privacy. In ICALP, 2006.
[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to

sensitivity in private data analysis. In TTC. 2006.
[11] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the

internet topology. In ACM SIGCOMM Computer Communication Review, 1999.
[12] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting structural

re-identification in anonymized social networks. In VLDB, 2008.
[13] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond

k-anonymity and l-diversity. In ICDE, 2007.
[14] K. Liu and E. Terzi. Towards identity anonymization on graphs. In SIGMOD,

2008.
[15] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.

l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge
Discovery from Data (TKDD), 1(1):3, 2007.

[16] M. E. Nergiz, M. Atzori, and C. Clifton. Hiding the presence of individuals
from shared databases. In SIGMOD, 2007.

[17] M. E. Newman. Power laws, pareto distributions and zipf’s law. Contemporary
physics, 46(5):323–351, 2005.

[18] J. Potterat, L. Phillips-Plummer, S. Muth, R. Rothenberg, D. Woodhouse,
T. Maldonado-Long, H. Zimmerman, and J. Muth. Risk network structure in the
early epidemic phase of hiv transmission in colorado springs. Sexually
transmitted infections, 2002.

[19] P. Samarati. Protecting respondents identities in microdata release. IEEE
TKDE, 13(6):1010–1027, 2001.

[20] X. Ying and X. Wu. Randomizing social networks: a spectrum preserving
approach. In SDM, 2008.

[21] X. Ying and X. Wu. Graph generation with prescribed feature constraints. In
SDM, 2009.

[22] M. Yuan, L. Chen, and P. S. Yu. Personalized privacy protection in social
networks. VLDB, 2010.

[23] E. Zheleva and L. Getoor. Preserving the privacy of sensitive relationships in
graph data. In Privacy, security, and trust in KDD. 2008.

[24] B. Zhou and J. Pei. Preserving privacy in social networks against neighborhood
attacks. In ICDE, 2008.

[25] B. Zhou and J. Pei. The k-anonymity and l-diversity approaches for privacy
preservation in social networks against neighborhood attacks. Knowledge and
Information Systems, 28(1):47–77, 2011.

[26] L. Zou, L. Chen, and M. T. Özsu. K-automorphism: A general framework for
privacy preserving network publication. VLDB, 2009.

