
Private Computation of the Longest Increasing
Subsequence in Data Streams

Luca Bonomi
Dept. of Mathematics and Computer Science

Emory University
Atlanta, GA

lbonomi@emory.edu

Li Xiong
Dept. of Mathematics and Computer Science

Emory University
Atlanta, GA

lxiong@emory.edu

ABSTRACT
In this paper, we study the problem of privately computing ordered
statistics with the goal of monitoring sequential data streams. De-
spite the broad series of techniques for time-series monitoring, only
few works provide provable privacy guarantees employing the for-
mal notion of differential privacy. While these solutions are well es-
tablished, their focus is mostly limited to count based statistics (e.g.
number of distinct elements, heavy hitters). In this paper, we con-
sider a more general problem of privately computing the length of
the longest increasing subsequence (LIS) in the data stream model.
This important statistic can be used to detect trends in time-series
data (e.g. finance) and perform approximate string matching in
computational biology domains. Our proposed approaches employ
the differential privacy notion which provides strong and provable
privacy guarantees. Our solutions estimate the length of the LIS us-
ing block decomposition and local approximation techniques. We
provide a rigorous analysis to bound the approximation error of our
algorithms in terms of privacy level and length of the stream.

1. INTRODUCTION
Sequential data are central in a broad range of domains and appli-

cations, such as biomedical, financial and health-care setting where
data are continuously collected for monitoring purpose or for min-
ing behavioral patterns. For example, individual household power
consumption data may be collected by smart meters to provide
billing information or for monitoring purpose. Despite the impor-
tance of these tasks, the release of the real data value may disclose
sensitive user information. Therefore privacy preserving solutions
are employed to compute the required statistics while providing
privacy for users. Among them, the popular notion of differential
privacy [6] is used to construct privacy preserving algorithms. The
privacy is achieved by bounding the adversary inference ability in
determining the presence of any event in the data stream [7, 10,
9, 4]. Despite the strength of such a privacy model, the current
solutions are limited to count based statistics.

In this paper, we study the problem of privately computing or-
dered statistics with the goal of enabling applications to monitor
sequential data streams. Consider for example, a user who may

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-
nd 4.0

wish to be advised in his/her financial decisions without incurring
the risk of disclosing his/her financial information. In such a set-
ting, it is crucial to design effective solutions that enable third-party
to detect user’s financial trends while preserving the sensitive infor-
mation. To address this problem, we propose to study the privacy
preserving computation of longest increasing subsequence (LIS) in
the stream model.

The computation of the LIS provides useful information about
the sortedness of the data stream and it can be used to detect trends
in time-series data. In general, the task of computing the sortedness
of a data stream is receiving considerable attention from the com-
puter science community [16, 12, 1, 13, 5, 19, 11]. The sortedness
of data stream has important implications from both practical and
theoretical perspectives. Many applications rely on ranked data and
the massive amount of information dynamically generated cannot
be processed in an off-line fashion requiring solutions to have small
update time and memory requirements.

The computation of the LIS in the data stream model rises new
challenges compared to the traditional privacy setting. First of all,
privacy requirements in protecting sensitive information for this
ordered statistic have a greater impact on the final utility. Count
based statistic over a stream are typically computed by decomposi-
tion which leads to a considerable reduction of perturbation noise
required by the privacy mechanism. However, ordered statistics are
generally not easy to approximate via decomposition since they re-
quire a global view of the entire stream. Second, the LIS has higher
memory requirements compared to standard counting based statis-
tics (e.g. counts, heavy hitters). In fact, it has been shown in [12]
that there exists a space lower bound of Ω(T) for any randomized
algorithm that computes the LIS exactly over a stream of length
T . This strong separation between count based functions and LIS
impacts both efficiency and utility of the solutions for this problem.

To address these challenges, we propose a series of solutions for
privately computing the LIS while minimizing the error introduced
by the perturbation and approximation. The detailed contributions
are reported below.

Our Contributions. In this paper, we study the problem of pri-
vately computing the LIS in a time-bounded stream of length T .
1) Our proposed solutions compute the length of the LIS provid-
ing strong and provable privacy guarantees based on the notion of
differential privacy. 2) We propose a decomposition framework for
approximating the length of the LIS using local information in the
stream. This technique allows us to reduce the error due to per-
turbation noise from the privacy mechanism. Using the Patience
Sorting algorithm [15] as a black box for locally computing the
exact length of the LIS, we provide an error bound for our frame-
work. 3) We conduct an output-sensitive utility analysis for two
cases based on the length of the output LIS. In particular, we as-

Algorithm 1 Patience Sorting

1: procedure PATIENCE SORTING(σ)
Input: event stream σ
Output: LIS(σ) length of the longest increasing subsequence

2: P (j)← ∅ for j = 0, 1, . . . ,m− 1
3: for (any new element σ(i)) do
4: Find the largest P (j) such that P (j) ≤ σ(i)
5: P (j + 1) = σ(i)
6: Output the largest j such that P (j) 6= ∅
7: end for
8: end procedure

Figure 1: Running example of the Patience Sorting algorithm over the
stream σ = 3, 4, 1, 2, 5, 7, 6.

sume LIS(σ) =
√
T/β, where T is the length of the input stream

σ, and β is a parameter in the range [1/
√
T ,
√
T]. For each so-

lution, we bound the approximation error in the case of long and
short LIS respectively depending on the value of β. 4) We propose
a new streaming approach which computes the LIS using a hierar-
chy structure of the stream. Our algorithm achieves a (1 − T−b

T+b
)-

approximation to the length of the LIS in the worst case, where the
parameter b controls both the perturbation noise to achieve the de-
sired level of privacy and the accuracy. 5) We provide a discussion
about possible extensions of our solutions to address time-series
stream monitoring and string matching problems. To the best of
our knowledge, we are the first to investigate the problem of pri-
vately computing the longest increasing subsequence.

The rest of the paper is organized as follows. Section 2 provides
the problem definition and presents the privacy model. Section 3
illustrates our decomposition schema and Section 4 describes our
hierarchy solution. In Section 5, we provide a summary of our re-
sults and also describe some possible extensions. Finally, Section 6
concludes the paper.

2. PRELIMINARIES
Given a sequence σ of elements σ(i) = ai defined over a finite

alphabet Σ = {0, 1, . . . , N − 1}, an increasing sequence of length
k in σ is a subsequence {i0, i1, . . . , ik−1} such that i0 < i1 <
· · · < ik−1 and ai0 ≤ ai1 ≤ · · · ≤ aik−1 . Furthermore, let
σ[i, j] denote the contiguous sequence σ(i)σ(i+ 1) . . . σ(j) in the
stream σ, and let LIS(σ) be the length of the longest increasing
subsequence in σ.

The problem of computing the LIS has received much attention
in the streaming setting (see [2] for a survey of results), where the
sequence σ is given an element at a time. In such model, data
arrive continuously and at every time i algorithmic solutions are
required to reportLIS(σ[0, i]) by using a small amount of memory
and performing only few passes over the stream. In the rest of the
section, we briefly summarize the non-private techniques present in
literature by categorizing them as exact and approximate solutions.

Exact Solution. The study of LIS in the streaming setting was ini-
tiated by Liben-Nowell et al. in [16], where the authors developed
an exact one pass algorithm that requires O(k) space for deciding
if the length of longest increasing subsequence is at least k. In ad-
dition to this technique, the classical algorithm for computing the
LIS is based on the Patience Sorting procedure [15]. This approach
can be interpreted as a one pass streaming algorithm for computing
the exact LIS inO(T) space and it requiresO(logLIS(σ)) update

time. Since we use this approach to build our solutions, we briefly
describe this algorithm here.

In the Patience Sorting procedure, the length of the longest in-
creasing subsequence is computed using a set of sorted pilesP (0) <
P (1) < · · · < P (m) each storing an element of the stream σ.
For any new element σ(i) that appears in the stream, the algorithm
places σ(i) in the leftmost pile P (j) such that P (j) > σ(i). The
number of non empty piles represents the length of the LIS at any
time point. An overview of the Patience Sorting algorithm is illus-
trated in Algorithm 1. Below, we describe a running example of
this algorithm.

EXAMPLE 1. Let σ = 3, 4, 1, 2, 5, 7, 6 be a stream in input.
The algorithm starts with a set of empty pilesP (j) for j = 0, . . . ,m−
1. When the first element arrives in the stream it is placed in the
first pile P (0). After the arrival of the second element, the situation
in the piles is illustrated in Figure 1 (a). The number of piles de-
notes the length of the longest increasing subsequence at each time.
Therefore, in this case the length of the LIS is two. When the third
element σ(2) = 1 arrives in the stream, the algorithm places this
element in P (0), as shown in Figure 1 (b). Following the steps of
the algorithm, the final set of piles is reported in Figure 1 (c). At the
end of the stream the length of the longest increasing subsequence
is four.

Despite the simplicity of this procedure, the Patience Sorting al-
gorithm is optimal from the space complexity perspective. In fact,
Gopalan et al. [12] showed a space lower bound of Ω(n) for any
randomized algorithm that computes the LIS exactly.

Approximate Solution. In [12] the authors proposed a (1 + ε)-
approximation for the LIS computation using O(

√
T/ε) space. A

series of works have been developed to estimate the length of the
LIS using the number of inverted elements in the stream. In this
direction, Ajtai et al. [1] proposed a (1 + ε)-approximation which
requires O(1

ε
log log T) space to estimate the number of inverted

pairs. Later this result has been improved by Gupta and Zane [13].
Cormode et al. [5] proposed a series of algorithmic solutions based
on distance preserving embeddings. Recently in [19], the authors
investigated the problem of computing the LIS in asymmetric edit
distance setting.

2.1 Differential Privacy
Differential privacy [6] is a recent notion of privacy that aims

to protect the disclosure of information when data statistics are re-
leased. In the streaming setting, due to the dynamics of the data,
the classical differential privacy notion has been redefined such that
the privacy is guaranteed at event-level [7, 10, 9, 4]. In other words,
the privacy goal is to protect the presence or absence of any single
event in the stream. The formal definition of the differential privacy
notion adopted in our work is reported below.

DEFINITION 1 (DIFFERENTIAL PRIVACY [4, 9]). Two streams
σ and σ′ of the same length are neighboring streams if they differ
exactly in one element at time t. A privacy mechanism M gives α-
differential privacy if for any two neighboring streams σ, σ′, and
for any set of outcomes S ⊆ Range(M),

Pr[M(σ) ∈ S] ≤ eα × Pr[M(σ′) ∈ S] (1)

The parameter α is called the privacy parameter and it defines the
privacy level of the mechanism. Higher values of α lead to lower
level of privacy, while smaller values pose a stronger privacy guar-
antee. Intuitively, a mechanism is differentially private if an adver-
sary is unable to determine whether an event of interest took place
or not by observing the output of the mechanism over the stream.

Our goal consists in designing a mechanism that, at any time t in
the stream, reports the length of the longest increasing subsequence
while achieving differential privacy. In addition, we would like the
mechanism to be useful, that is, its output well approximates the
real length of the LIS. To evaluate our solutions, we introduce the
following utility notion.

DEFINITION 2 ((ε, δ)-USEFUL). A streaming algorithm A is
(ε, δ)-useful, if for any input stream σ and query q, with prob-
ability at least 1 − δ, the relative distance between the approxi-
mate answer from A and the real answer of q is within ε, formally
P
[
‖A(σ)−q(σ)‖

q(σ)
< ε
]
≥ 1− δ

To achieve differential privacy, one well established technique is
the Laplace Mechanism [8]. Dwork et al. [8] showed that to obtain
a α-differentially private solution it is sufficient to perturb the real
output of the function by adding a random variable (noise) from a
Laplace distribution with probability density function pdf(x|λ) =
1
2λ
e−|x|/λ, where the parameter λ is determined by α and the sen-

sitivity of the function to compute. The sensitivity measures the
contribution of any single element on the final output. We will use
the Laplace mechanism and some other statistical tools to design
our privacy preserving solutions.

Statistical tools. In our approaches, we make use of the Laplace
Mechanism to achieve differential privacy and sequential composi-
tion property of differential privacy. Furthermore, in our construc-
tion the noise may not come from a single Laplace distribution, but
rather is composed by a sum of independent Laplace distributions.
Therefore, here we state two useful results for sum of independent
Laplace distributions.

THEOREM 1 (LAPLACE MECHANISM [8]). For a function f :
DT → Rd, let GS(f) be the sensitivity of f defined as

GS(f) = max
D,D′

‖f(D)− f(D′)‖1 (2)

whereD′ andD are neighbouring, then the algorithm that outputs:
f̃(D) = f(D) +Lap(GS(f)/α)d satisfies α-differential privacy.

THEOREM 2 (SEQUENTIAL COMPOSITION [17]). LetMi be
a non-interactive privacy mechanism which providesαi-differential
privacy. Then, a sequence of Mi(D) over the database D provides
(
∑
i αi)-differential privacy.

LEMMA 1 (SUM OF LAPLACE DISTRIBUTIONS [4]). Let Y =∑n
i=1 li be the sum of l1, . . . , ln independent Laplace random vari-

ables with zero mean and parameter bi for i = 1, . . . , n, and
bmax = max{bi}. Let ν ≥

√∑n
i=1 b

2
i , and 0 < λ < 2ν2

bmax
.

Then Pr[Y > λ] ≤ exp{− λ2

8ν2
}

COROLLARY 1 (MEASURE CONCENTRATION [4]). Let Y , {bi}i,
λ and bmax defined as in Lemma 1. Suppose 0 < δ < 1 and ν >

max{
√∑

i b
2
i , bmax

√
2 ln 2

δ
}. Then Pr[|Y | > ν

√
8 ln 2

δ
] ≤ δ

2.2 Differentially Private Computation of the
LIS - A Baseline Approach

In the rest of the paper, we present our solutions for computing
the length of the LIS in the stream. Our approaches require the
stream to be time-bounded, we assume in fact that the length of the
stream is T and it is given a priori.

Here we consider a baseline approach that solves the problem
of privately computing the length LIS by perturbing directly its

Figure 2: Block Decomposition example at time i: expired blocks (solid
lines), active blocks (gray) and the future blocks (dashed lines).

real value at every time point. In particular, for every new ele-
ment σ(i) = ai in the stream, the algorithm first computes the real
LIS(σ[0, i]) (e.g. using any non-private solution, Patience Sort-
ing in this case) and then it adds a perturbation noise ηi. Given
the privacy parameter α, due to the composition property of dif-
ferential privacy, to obtain an overall mechanism of α-differential
privacy, the baseline approach applies the Laplace mechanism at
each time point with parameter α′ = α/T . For each new incom-
ing element, it samples a Laplace variable ηi ∼ Lap(1/α′) which
will be used to perturb the real value of LIS(σ[0, i]). Therefore, at
every time i, the algorithm will answer the LIS query by returning
l̃(σ[0, i]) = LIS(σ[0, i]) + ηi. We can observe that the sensitivity
for the LIS function is 1, since replacing an element from the stream
may change the length of the longest increasing subsequence by at
most 1. Therefore, perturbing the real value of LIS(σ[0, i]) with
ηi is sufficient to achieve privacy. The utility of this approach is
reported in the following theorem.

THEOREM 3 (BASELINE UTILITY). The baseline algorithm is
(β
√
T

α
ln 1

δ
, δ)-useful for computing the longest increasing subse-

quence.

PROOF. The released length of the LIS at each time i is obtained
by perturbing the real length of the LIS with Laplace noise. There-
fore, at every time step in the stream we have that the additive error
from the noise can be bounded as follows:

Pr[|ηi| > γ] ≤ 2

∫ ∞
γ

α

2T
e−xα/T dx = e−γα/T (3)

Hence, with probability at most δ the additive error is at least
T
α

ln 1
δ

. The final result follows by normalizing the error by the
LIS(σ) =

√
T/β.

Space and Time Analysis. The memory and time complexity for
this approach are the same as the non-private algorithm used to
compute the real length of the LIS. Therefore, using the Patience
Sorting algorithm for example, the space and update time required
are O(LIS(σ)) and O(logLIS(σ)) respectively.

3. DECOMPOSITION FRAMEWORK
The baseline approach introduces an additive error that grows

linearly with the length of the stream. Therefore, for small LIS
this error could dramatically degenerate the utility of this solution.
The reason for this large perturbation noise is due to the fact that
each individual element in the stream could affect all the possible
outputs of the algorithm over the entire stream. This phenomenon
could also occur for more sophisticated streaming algorithms that
compute the LIS by using a small sketch of stream ([12, 19] for
example). Although such solutions could reduce the space require-
ments, the use of a sketch does not directly reduce the error due to
the perturbation noise since an element of the stream could still
affect a large number of outputs (e.g. linear with the length of
stream).

To overcome this problem, we decompose the computation of
the LIS over segments of the stream. This intuition follows the

idea proposed by Chan et al. [4] where a linear and binary decom-
position frameworks are employed to privately compute the num-
ber of non-zero elements in a binary stream. Despite the similarity
in these decompositions, the computation of the longest increasing
subsequence is harder to achieve than the simple count function.
For this reason, we study the utility loss in approximating the LIS
inflicted by using the local information of the stream. Due to space
limitation, we consider only an extension of the binary decomposi-
tion since it provides better utility with respect to the linear decom-
position proposed in the original paper [4].

In our work, we investigate the implications of decomposing the
LIS computation over blocks (i.e. stream segments) both from the
utility and complexity perspective. It is important to note that the
nature of the decomposition should be data-independent to avoid
additional privacy cost. In principle, any algorithmALIS that com-
putes the LIS (either exact or approximate way) can be used as a
building block to compute the LIS on each stream segment so that
the perturbation noise required by the privacy mechanism can be
reduced with respect to the direct use of ALIS . On the other hand,
by limiting our computation on segments we introduce an approxi-
mation error.

In the rest of the section, we use the Patience Sorting algorithm [15]
as a simple building block. We prove the reduction in the pertur-
bation noise and the approximation error of our solution. We focus
on this particular algorithm because it allows us to have an internal
procedure that computes the exact length of the LIS over segments
of the stream. In this way, we can directly measure how our de-
composition impacts the exact solution. Since the original Patience
Sorting algorithm computes not only the length of the LIS but also
the elements forming the sequence, we use a modified version that
only keeps the top element of the piles in the data structure as illus-
trated in the Algorithm1. In this way, we can compute the length of
the LIS but using only O(LIS(σ)) space.

Before presenting our technique, we illustrate some concepts that
will be useful in explaining our algorithm. A block B = σ[j, j +
b − 1] of size b represents a continuous segment of b symbols in
the stream σ. Due to the dynamics of the data in the stream, a
block assumes three different states over stream depending on the
current time. At time i, the block B can be in one of the following
states: expired hence the new arrival does not affect the block B
(i.e. j + b − 1 < i), active when the new arrival is contained
in the block B (i.e. j ≤ i ≤ j + b − 1) and future hence B
contains only upcoming elements (i.e. j > i). An example of block
decomposition of the stream is illustrated in Figure 2. The life cycle
of a blockB consists of starting as a future block, becoming active,
and finally the block expiration.

3.1 Binary Decomposition
We start observing that in general the decomposition of the LIS

over blocks may incur large approximation error. In fact, by sim-
ply dividing the stream into blocks and combining the length of
their LIS as a answer could lead to an approximation error that is
proportional to the number of blocks used in the decomposition. To
reduce this error, we develop a decomposition using variable length
blocks, where the number of blocks in the stream decomposition is
O(log T). We organize the blocks in a binary tree where at time
i the tree has log i levels. Each level l = 0, . . . , log i in the tree
partitions the stream into disjoint blocks of length i/2l. Figure 3
illustrates an example of binary decomposition of the stream.

Using this representation, each node k in the tree is associated
with a block Bk and it stores the perturbed value of the LIS(Bk).
At any time i the algorithm updates the noisy LIS of the active
blocks in the binary tree, and it answers the query LIS(σ[0, i]) as

Figure 3: Binary Decomposition example. At time 5 (six symbols), the
algorithm updates the active blocks (in gray). It computes the answer to the
LIS query by summing the contributions of B2 and B4 containing the 2
and 4 most recent symbols respectively.

Algorithm 2 Binary Decomposition

1: procedure BINARY DECOMPOSITION(T, α, σ)
Input: upper bound on the stream length T ; privacy parameter α; event stream σ

Output: l̃(σ) released longest increasing subsequence

2: for (i = 0, 1, . . . , T − 1) do
3: for (every activeB at time i) do
4: UPDATE PILES(B, σ(i))
5: end for
6: for (every blockB that will expire at time i+ 1) do
7: LIS(B)← number of piles for the blockB
8: l̃(B)← LIS(B) + Lap(2 log T/α)
9: end for
10: Let i1 < i2 < · · · < im be the positions of non-zeros in the binary

representation of i+ 1

11: l̃(σ)← 0
12: k ← i
13: for (j = i1, i2, . . . , im) do
14: B ← σ(k − 2j + 1) · · ·σ(k) . Retrieve the block to reconstruct

the LIS
15: k ← k − 2j

16: l̃(σ)← l̃(σ) + l̃(B) . Sum the noisy contributions of the expired
blockB

17: end for
18: Output l̃(σ)
19: end for
20: end procedure

illustrated in Algorithm 2.

Algorithm Description. In the loop at lines 3-5, the algorithm
updates the piles for the active blocks associated with the time i.
In particular, the procedure Update Piles implements the Pa-
tience Sorting algorithm as in Algorithm 1, where in this case the
update is performed independently on each active block B for any
new coming element σ(i). At lines 6-9, the noisy length of the LIS
for each block that will expire is computed. At line 10, we compute
the binary representation of i+1 and let i1 < i2 < · · · < im be the
positions of non-zeros in such representation. Then the answer for
LIS(σ[0, i]) is computed by summing up the length of the LIS for
the blocks containing the most recent 2i1 , 2i2 , . . . , 2im elements
respectively. Therefore at each time i, the output result is obtained
by adding the contributions of at most Θ(log i) blocks in the loop
at lines 13-17.

Privacy Analysis. We can observe that each element affects at
most log T blocks; therefore, perturbing the LIS of each block with
a random variable from Lap(log T/α) is sufficient to satisfy the
privacy requirement.

THEOREM 4 (BINARY DECOMPOSITION PRIVACY). The Bi-
nary Decomposition achieves α-differential privacy.

PROOF. In this decomposition, each element σ(i) participates
in the LIS of at most log T active blocks. Therefore, for any two
neighboring streams the difference in L1-norm of their outputs can

be bounded by log T . Therefore using Theorem 1, it is sufficient to
add to each LIS of each block a random variable from a Laplace
distribution with parameter log T/α to satisfy the privacy require-
ment.

Utility Analysis. This decomposition with variable length blocks
allows us to reduce the perturbation error due to the privacy mech-
anism. However, in this way we introduce an approximation er-
ror that depends on the number of blocks. We can observe that at
most O(log T) blocks of variable length are needed to answer a
LIS query. The utility results for this decomposition are reported
below.

LEMMA 2 (BINARY BLOCK ERROR BOUND). Let σ be a stream
of T symbols, and let LIS(σ) =

√
T
β

, where β is positive. With-
out loss of generality we assume T = 2t − 1, and we consider a
partition of the stream σ into B0, B1, . . . , Bt−1 non-overlapping
blocks, where each block Bk is of size 2k. Then in reporting the
sum of the longest increasing subsequence in each block, lis(σ) =∑t−1
k=0 LIS(Bk), we incur the following approximation error.

LIS(σ) ≤ lis(σ) ≤
{

log T · LIS(σ) β ≥ 1

(1 + log β
√
T) · LIS(σ) β ∈ [1/

√
T , 1)

(4)

PROOF. First, we start noticing the following lower-bound lis(σ) ≥
LIS(σ). In fact, the part of the real longest increasing subse-
quence which is contained in each block is at most the length of the
longest increasing subsequence in the stream segment represented
by the block. Second, we prove the two cases separately. For short
value of LIS(σ) (β ≥ 1), we consider the case where each seg-
ment in each block is monotonic but none of them can be concate-
nated to form an increasing sequence in the entire stream. Then, we
have that LIS(σ) ≥ LIS(Bk), for k = 0, . . . , t− 1, which leads
to log T · LIS(σ) ≥

∑t−1
k=0 LIS(Bk) = lis(σ). For the case of

long value of LIS (β ∈ [1/
√
T , 1)), we proceed as follows. Let j

be a positive integer such that 2j−1 <
√
T/β ≤ 2j . Therefore, for

all the blocks Bk with k ≥ j we have that LIS(Bk) ≤
√
T/β,

otherwise there exists a monotonic sequence which is longer than
the longest increasing subsequence, hence we have a contradiction.
Furthermore, due to the binary tree decomposition the sum of the
length of the LIS for the blocks Bk with k = 0, . . . , j − 1 can be
bounded as follows.

j−1∑
k=0

LIS(Bk) ≤
j−1∑
k=0

2k = 2j − 1 ≤ 2
√
T/β (5)

Therefore, the reported lis(σ) can be upper bounded with the value
below.

lis(σ) =

t−1∑
k=0

LIS(Bk) ≤
j−1∑
k=0

LIS(Bk) +

t−1∑
k=j

LIS(Bk)

≤ 2
√
T/β + (t− j)

√
T/β

≈
√
T/β(1 + log β

√
T) (6)

This concludes the proof of the Lemma.

THEOREM 5 (BINARY DECOMPOSITION UTILITY). The bi-
nary decomposition algorithm for computing the length of the longest
increasing subsequence achieves the following utility results.{

((log T − 1) + β log3/2 T

α
√
T

ln 1
δ
, δ)-useful β ≥ 1

(log β
√
T + β log3/2 T

α
√
T

ln 1
δ
, δ)-useful β ∈ [1/

√
T , 1)

PROOF. This decomposition has the advantage that the num-
ber of blocks combined in estimating the length of the LIS is only
logarithmic which leads to an approximation error as shown in
Lemma 2. This decomposition introduces a perturbation noise which
is a sum of at most O(log T) i.i.d. Laplace random variables with
parameter O(log T/α). Let ξ =

∑
k ηk denote the error due to

the sum of the Laplace random variables, we can use the result in

Corollary 1 to bound this quantity. Choosing ν =
√∑

k
log T
α

√
2 ln 2

δ

with probability at least 1−δ, the quantity ξ is at mostO(log3/2 T
α

ln 2
δ
).

Therefore, the final utility follows using the results from Lemma 2
and by normalizing this value by the LIS(σ).

Space Analysis. The space requirement for this approach is related
to the number of active blocks that need to be updated and to the
space complexity of the internal procedure. Due to the nature of
the binary decomposition at any time i there are Θ(log T) blocks
that are active. Using a similar argument as in Theorem 5, we can
show that the space complexity is O(LIS(σ) ln(β2LIS(σ))).

THEOREM 6 (BINARY DECOMPOSITION SPACE COMP.). Let
LIS(σ) be the length of the longest increasing subsequence in
the stream σ, then the Binary decomposition framework has space
complexity O(LIS(σ) ln(β2LIS(σ))).

PROOF. We begin by recalling that the internal procedure for
computing the length of the LIS is the Patience Sort algorithm,
where we keep only the top of the piles. At any time i in the stream,
log T blocks are active, one in each level of the tree structure. Fur-
thermore, let j be a positive integer such that 2j−1 < LIS(σ) ≤
2j . Therefore for the blocks in any level i > j in the tree, we can
upper bound their space requirements withLIS(σ)(log T−j+1),
since LIS(σ) is the current length of the longest increasing subse-
quence. On the other hand, due to the nature of the binary tree the
space required by the blocks below the level i is 2j − 1. Therefore
the space complexity for this approach is O(LIS(σ)(log T − j +

1)). Using the notion thatLIS(σ) =
√
T/β and j = log(LIS(σ)),

the previous requirements can be rewritten asO(LIS(σ) ln(β2LIS(σ))).

Time Analysis. The total update time for this solution is related
to the updates of the active blocks. Since at every time i there are
Θ(log T) active blocks, the update time is O(log T logLIS(σ))
using Patience Sorting algorithm.

4. HIERARCHY MECHANISM
In the previous section, we showed that the binary decomposi-

tion considerably reduces the perturbation noise in the final output
compared to the baseline approach. However, such technique suf-
fers from the fact that the computation of the LIS is generally hard
to be decomposed in blocks leading in some cases to a large ap-
proximation error. To overcome this problem, we propose a new
algorithm which computes the LIS over the stream by simulating
the behavior of the Patience Sorting algorithm. In contrast to our
previous approaches, this solution computes the length of the LIS
by smoothing the impact of each element with the purpose of re-
ducing the perturbation noise while achieving a good approxima-
tion ratio.

The main idea is to reduce the impact of those elements that stay
too long in the LIS so that the total noise required by the privacy
mechanism is decreased. Given an integer b > 0, we construct a se-
ries of m = Θ(ln T

b
) layers l0, l1, . . . , lm−1 with b buckets each,

where at layer i each bucket contains 2i elements. Given the se-
ries of elements with index {1, 2, . . . , T} in the stream, each layer

Figure 4: Running example of the Hierarchy mechanism on the input stream 4, 5, 1, 6, 2, 3, 7, 8, b = 4 and m = 2.

simulates the behavior of the Patience Sorting algorithm where in
this case the original piles are replaced with buckets that can con-
tain multiple elements. In fact, at layer i the elements in the range
[(j − 1)2i + 1, j2i] can be placed into the same bucket j. Intu-
itively, each layer has a different granularity, in fact l0 keeps the
exact top elements in the most recent b piles in the Patience Sorting
algorithm, while l1 keeps an approximation of the next 2b piles and
so forth for the other layers. As the original algorithm, our pro-
cedure computes the length of the LIS by counting the number on
non-empty buckets. In our case multiple elements may fall in the
same bucket; therefore, we use a scaling factor equal to the length
of the bucket to compute the contribution of each layer. Further-
more, in addition to insertion and replacement moves allowed in the
Patience Sorting algorithm, we introduce an expiration move that
forces elements that stay in a bucket at layer li for more than 2ib
iterations to be moved up to layer li+1. The algorithm computes
the length of the LIS in the stream by adding the contribution at
each layer. The code for this procedure is reported in Algorithm 3.

Algorithm Description. The algorithm starts initializing a set of
m layers containing b buckets each, at lines 2-3. Within a layer i,
each bucket is denoted with Pi(j), for j = 1, . . . , b and it has size
2ib. In the main loop, lines 4-21, each new element coming in the
stream is inserted in the first layer using the the same rule as the
Patience Sorting algorithm, lines 5-7. In the inner loop at lines 9-
13, the algorithm checks layer by layer to find the expired elements.
When an expired element p in a pile Pi(j) is found, the algorithm
removes p and inserts it in the next layer. At line 14, the number
of non-empty buckets for each layer is computed by normalizing
the number of elements within each bucket with the corresponding
bucket’s size. In the loop at lines 16-19, the perturbation noise is
applied to each count and finally the length of the LIS is returned.

We illustrate our hierarchy mechanism in the example below.

EXAMPLE 2. Consider the situation in Figure 4. When the first
element arrives in the stream it is placed in the first bucket at l0
as shown in (a). The second element that arrives is 5, since it is
larger than 4 it is placed in the next bucket (b). The third element
in the stream is 1. Since the insertion of the elements in the buck-
ets follows the same rules as the Patience Sorting algorithm, we
find the bucket that contains the smallest element larger than 1 and
insert this element in that bucket. Therefore, in our case, 1 over-
writes 4 in the first bucket (c). At this point the length of the LIS
is 2, as represented by the number of non empty buckets in l0. The
algorithm proceeds in a similar manner of the next three incoming
elements (d),(e) and (f). After these new elements, the element 1 in
l0 is moved up to l1 since it has been present in l0 for more than
b steps and the new incoming element 7 is inserted in l0 (g). In
the next step, the element 2 is moved up, and it is inserted in the
same bucket with the element 1. At the same time the new element
8 is inserted in l0 (e). The reported length of the LIS is obtained by
summing the contribution of each layer. Layer l0 contributes with
Ne0 = 3 and l1 contributes with Ne1 = 1. Hence the algorithm
reports a length of the LIS of 4 while the exact length is 5.

Algorithm 3 Hierarchy Mechanism

1: procedure HIERARCHY MECHANISM(T, α, σ, b)
Input: upper bound on the stream length T ; privacy parameter α; event stream
σ; accuracy parameter b
Output: l̃(σ) released longest increasing subsequence

2: m = Θ(ln T
b)

3: Initialize each layer li = [Pi(1), . . . , Pi(b)] i = 0, . . . ,m − 1 with b
empty buckets

4: for (i = 0, 1, . . . , T − 1) do
5: Insert σ(i) in l1
6: Find the largest P1(j) such that P1(j) ≤ σ(i)
7: P1(j + 1) = σ(i)
8: for (i = 0, . . . ,m− 1) do
9: Let p be the element that expires at li
10: Remove p from li and insert it in li+1

11: Find the largest element in Pi+1(j) such that Pi+1(j) ≤ p
12: Pi+1(j + 1) = p
13: end for
14: LetNei be the number of non-empty buckets at layer li
15: l̃(σ)← 0
16: for (i = 0, 1, . . . ,m− 1) do
17: N̂ei ← Nei + Lap(mb/α)

18: l̃(σ)← l̃(σ) + N̂ei . Sum the noisy contribution of each layer
19: end for
20: Output l̃(σ)
21: end for
22: end procedure

Privacy Analysis. In this algorithm the contribution of each ele-
ment on the LIS is progressively decreased according to the layer
in which the element appears. The privacy result for our hierarchy
mechanism is reported in the following theorem.

THEOREM 7 (HIERARCHY MECHANISM PRIVACY). The Hi-
erarchy Mechanism achieves α-differential privacy.

PROOF. Given any two neighboring streams, we can observe
that each element can affect at mostm layers over the entire stream.
In particular, at l0 an element contributes to the LIS with a factor 1
for b times, at l1 contributes with factor 1/2 for 2b and at the gen-
eral level li contributes with factor 1/2i for 2ib times. Let Ne be
the vector of contributions for each layer for the input stream σ =
a1, . . . , ai . . . , aT . Then, ∀i ∈ [1, T] and σ′ = a1, . . . , a

′
i . . . , aT

we have that

‖Ne(σ)−Ne(σ′)‖ ≤ mb (7)

Then adding a random Laplace noise with parameter mb/α to the
contribution of each layer i, is sufficient to satisfies α-differential
privacy. Furthermore, using Corollary 1 we can see that the addi-
tive error introduced by noise is onlyO(b

α
log3/2(T

b
) log(2

δ
)).

Approximation Error. Our algorithm smooths the contribution
of each element in the stream according to its layer leading to an
underestimated value for the length of the LIS. The following The-
orem summarizes the approximation ratio in the worst case.

THEOREM 8 (HIERARCHY APPROXIMATION ERROR). Let σ
be a stream of length T , and b be the number of buckets in each

Table 1: Summary of results for LIS query over entire stream.

Method Error Memory Update Time
Baseline O(β

√
T
α ln 1

δ) O(LIS(σ)) O(log
√
T
β)

Binary
O((log T − 1) + β log3/2 T

α
√
T

ln 1
δ) where β ≥ 1

O(log β
√
T + β log3/2 T

α
√
T

ln 1
δ) where β ∈ [1/

√
T , 1)

O(LIS(σ) ln(β2LIS(σ))) O(log T log
√
T
β)

Hierarchy O((1− T−b
T+b) + bβ√

Tα
log3/2(Tb) log(2

δ)) O(LIS(σ)) O(log b log T
b)

layer of our algorithm. Then, the hierarchy mechanism returns a
(1− T−b

T+b
)-approximation of the length of LIS.

PROOF. Let k be the length of the LIS over the entire stream. We
begin by showing that this algorithm never overestimates the length
of the LIS and then proceed by showing the error in the underesti-
mate. To understand why this algorithm always reports a length of
the LIS less or equal to the real length we consider the following
case. Let us assume that there exists an element σ(j) in a bucket
at level i > 0 in our algorithm that differs from the Patience Sort.
Since this element is extra in our algorithm it means that there is
an element σ(j′), j′ > j that replaces σ(j) in the exact Patience
Sort. Since σ(j′) < σ(j), we have that in our structure σ(j′) has
replaced another element σ(j′′). Due to the nature of our algo-
rithm this operation could only occur in a layer i′ < i, hence in
replacing σ(j′′) with σ(j′) in our algorithm we have a larger loss
of contribution than replacing σ(j). Therefore we cannot have an
overestimate length of the LIS.

Now, we examine the error in underestimating the length of the
LIS. Consider a worst case scenario where only the first k sym-
bols in σ contribute to the LIS, while the rest of the stream does
not increase the length of the LIS. In this situation, as the stream
proceeds the elements of the LIS that initially are in layer 0 are
progressively moved up introducing a small additive error. Below,
we quantify this error. Let m = log(T

b
+ 1) − 1 be the number

of layers in our structure, then the maximum additive errors on the
LIS is achieved when all the elements forming the LIS are in layer
m. This quantity is computed as follows.

m∑
i=1

k

2i
= k

(
T − b
T + b

)
(8)

Hence the returned value from our algorithm is lower bounded by
LIS(σ)(1 − T−b

T+b
). This shows that our returned length l̃(σ) sat-

isfies the following inequality.

LIS(σ)

(
1− T − b

T + b

)
≤ l̃(σ) ≤ LIS(σ) (9)

Therefore, our algorithm provides a (1 − T−b
T+b

)-approximation of
the length of LIS.

Space Analysis. Since this algorithm simulates the Patience Sort-
ing algorithm by keeping only the top of the piles forming the LIS,
it follows that the space complexity is linear with the length of the
LIS in the stream O(LIS(σ)).

Time Analysis. For any new incoming element in the stream, the
total running time is given by the cost required for updating each
pile. There are at most m − 1 buckets, one for each level, that
need update, where each operation requires O(log b) time. Since
m = Θ(log T

b
), the update time is O(log b log T

b
).

This solution points out a strong connection between the approx-
imation ratio and the noise required to achieve privacy. We can see

that increasing b has a beneficial effect on the approximation ratio
but on the other hand increases the privacy cost. In fact, as an ex-
treme case using b = T the algorithm returns the exact length of
the LIS but incurs a large perturbation noise. Compared with our
decomposition framework, this algorithm provides the user with a
way to balance the approximation ratio and the noise due to the
privacy mechanism.

5. SUMMARY OF RESULTS
Table 1 summarizes the utility results of our proposed solutions.

We can see that both our strategies outperform the baseline ap-
proach in many perspectives. We notice that the baseline approach
incurs a large perturbation error which could dramatically compro-
mise the utility. Specifically, the additive error in the baseline strat-
egy grows linearly with the length of the stream. For the binary
decomposition instead, we provide output-sensitive utility results
showing the benefits of this technique for different lengths of LIS.
Due to the use of disjoint blocks, this approach incurs a consider-
ably smaller perturbation error with respect to the baseline solution.
In fact, the dependency of the error with respect to the perturbation
noise is only polylogarithmic in this case. Furthermore, we can ob-
serve that the decomposition framework has small space require-
ments and update time. In principle, the space and time complexity
of this solution could be further improved by using more sophis-
ticated algorithms (e.g. [12, 19]) as internal procedure instead of
relying on the Patience Sorting. For count based statistic the bi-
nary decomposition has been shown very effective; however due
to the nature of the LIS, this strategy incurs an approximation er-
ror. Our hierarchy approach specifically addresses the LIS problem
by directly simulating the Patience Sorting algorithm. This pro-
cedure incurs a smaller computational time and it has small mem-
ory requirements. Comparing the worst case performance of this
technique with the binary decomposition, we can observe that the
decomposition framework is still superior leading to a smaller ad-
ditive error with the same approximation ratio. This result is due to
the fact that the hierarchy strategy suffers when the LIS constitutes
the initial part of the stream. In fact, as the execution proceeds the
elements in the sketch are moved in higher level increasing the ap-
proximation error over the stream. However, we can notice that in
real scenarios such situation is unlikely to occur because in many
applications we can assume that the stream presents trends over
time.

5.1 Extensions
In this section, we describe how to employ our developed tech-

niques to solve real world problems.

Detecting trends in time-series data. Our proposed techniques
can be extended to effectively detect trends in time-series data by
restricting the computation of the LIS over windows in the stream.
In fact, in monitoring applications, recent data is more important
than distant data; therefore, using a sliding windowW , we limit the
computation of the LIS on the most W recent data. For example, a
sudden increase of price in financial data will lead to an increment

in the length of the LIS in the current window. Constraining the
computation of the LIS on a sliding window of length W is ben-
eficial both from the utility and complexity perspective. In fact, it
has been shown in [3] that for the binary mechanism the use of a
sliding window reduces the impact of the privacy to a factor that is
independent from the length of the stream but it is only related to
the size of the window W . A similar result can be also derived for
the hierarchy mechanism, where in this case, the number of layers
in the data structure depends only on the length of W rather than
the entire stream.

Approximate String Matching. The problem of computing the
LIS is a classical string matching problem that has been extensively
studied in computational biology [14]. However, only few solu-
tions have been proposed to privately match biological sequences.
Generally, these approaches provide privacy and security in match-
ing strings by applying cryptographic techniques [18]. However,
due to their high complexity these approaches may not be effec-
tive in real scenarios. In this setting, we believe that our solutions
can be very promising by providing formal privacy guarantee and
incurring a small computational overhead. Since the problem struc-
ture of the LIS is similar to other popular problems for computing
string similarity measures (e.g. edit distance), we believe that our
hierarchy approach could be a first step toward the design of effi-
cient privacy preserving algorithms for matching strings.

6. CONCLUSIONS
In this paper, we considered the problem of privately detecting

trends in stream data. Specifically, we addressed the problem of
computing the length of the LIS while protecting the presence of
single event in the stream. We developed two different solutions
that provide formal guarantee of privacy. The first approach ap-
proximates the length of the LIS by assembling local information
computed on segments of the stream. The second approach con-
structs a small sketch of the stream by exploiting the structure of the
problem. Using a rigorous analysis, we showed that these strategies
provided significant benefits over the baseline approach.

For the future, we consider to investigate two possible research
directions. First, we plan to further develop our extensions and
turn our theoretical results into concrete algorithms to be applied to
solve time-series monitoring and string matching problems. Sec-
ond, our proposed solutions provide important insights about the
privacy implications for computing complex ordered statistics. There-
fore, we plan to better understand what kind of privacy sketching
algorithms can benefit in this setting.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-

ence Foundation under Grant No. 1117763.

8. REFERENCES
[1] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and D. Sivakumar.

Approximate counting of inversions in a data stream. In
Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, STOC ’02, pages 370–379. ACM,
2002.

[2] David Aldous and Persi Diaconis. Longest increasing
subsequences: From patience sorting to the
baik-deift-johansson theorem. Bull. Amer. Math. Soc,
36:413–432, 1999.

[3] Jean Bolot, Nadia Fawaz, S. Muthukrishnan, Aleksandar
Nikolov, and Nina Taft. Private decayed predicate sums on

streams. In Proceedings of the 16th International Conference
on Database Theory, ICDT ’13, pages 284–295, New York,
NY, USA, 2013. ACM.

[4] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and
continual release of statistics. ACM Trans. Inf. Syst. Secur.,
14(3), November 2011.

[5] Graham Cormode, S. Muthukrishnan, and Süleyman Cenk
Sahinalp. Permutation editing and matching via embeddings.
In Proceedings of the 28th International Colloquium on
Automata, Languages and Programming,, ICALP ’01, pages
481–492, 2001.

[6] Cynthia Dwork. Differential privacy. In ICALP, 2006.
[7] Cynthia Dwork. Differential privacy in new settings. In

SODA, pages 174–183, 2010.
[8] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam

Smith. Calibrating noise to sensitivity in private data
analysis. In TCC 2006.

[9] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N.
Rothblum. Differential privacy under continual observation.
In Proceedings of the Forty-second ACM Symposium on
Theory of Computing, STOC ’10, pages 715–724, New York,
NY, USA, 2010. ACM.

[10] Cynthia Dwork, Moni Naor, Toniann Pitassi, Guy N.
Rothblum, and Sergey Yekhanin. Pan-private streaming
algorithms. In ICS, pages 66–80, 2010.

[11] Funda Ergun and Hossein Jowhari. On distance to
monotonicity and longest increasing subsequence of a data
stream. In Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’08, pages
730–736, 2008.

[12] Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and
Ravi Kumar. Estimating the sortedness of a data stream. In
Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’07, pages 318–327, 2007.

[13] Anupam Gupta and Francis X. Zane. Counting inversions in
lists. In Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’03, pages
253–254, 2003.

[14] Dan Gusfield. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, New York, NY, USA, 1997.

[15] J. M. Hammersley. A few seedlings of research. In
Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability, pages 345–394,
Berkeley, Calif., 1972. University of California Press.

[16] David Liben-Nowell, Erik Vee, and An Zhu. Finding longest
increasing and common subsequences in streaming data. In
Proceedings of the 11th annual international conference on
Computing and Combinatorics, COCOON’05, pages
263–272, 2005.

[17] Frank D. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In SIGMOD
’09.

[18] S. Rane and Wei Sun. Privacy preserving string comparisons
based on levenshtein distance. In Information Forensics and
Security (WIFS), 2010 IEEE International Workshop on,
pages 1–6, Dec 2010.

[19] Michael Saks and C. Seshadhri. Space efficient streaming
algorithms for the distance to monotonicity and asymmetric
edit distance. In SODA, pages 1698–1709, 2013.

	Introduction
	Preliminaries
	Differential Privacy
	Differentially Private Computation of the LIS - A Baseline Approach

	Decomposition Framework
	Binary Decomposition

	Hierarchy Mechanism
	Summary of Results
	Extensions

	Conclusions
	Acknowledgments
	References

