

Towards a Model-Driven Dynamic Architecture

Reconfiguration Process for Cloud Services Integration

Miguel Zuñiga-Prieto, Javier Gonzalez-Huerta, Silvia Abrahao, Emilio Insfran

ISSI Research Group, Department of Information Systems and Computation

Universitàt Politècnica de Valencia

Camino de Vera, s/n, 46022, Valencia, Spain

{mzuniga, jagonzalez, sabrahao, einsfran}@dsic.upv.es

Abstract. Cloud computing is a paradigm that is transforming the computing in-

dustry and is receiving more attention from the research community. The incre-

mental deployment of cloud services is particularly important in agile develop-

ment of cloud services, where successive cloud service increments must be inte-

grated into existing cloud service architectures. This requires dynamic reconfig-

uration of software architectures, especially in cloud environments where ser-

vices cannot be stopped in order to apply reconfiguration changes. This paper

presents a model-driven dynamic architecture reconfiguration process to support

the integration of cloud services. Models are used to represent high-level archi-

tecture reconfiguration operations as well as adaptation patterns. Adaptation pat-

terns allow us to describe reconfiguration operations independently of a specific

cloud platform technology. On the other hand, model transformations are used:

i) to support compatibility checking of increments; ii) to generate software adap-

tors that solve incompatibilities between architectures; and iii) to generate recon-

figuration plans specific of cloud provider, that include reconfiguration actions

to be applied on cloud service instances at runtime. The proposed process is il-

lustrated with a dealer network system development example, where cloud ser-

vices are deployed in an incremental way.

Keywords: Model Driven Development, Model Transformations, Cloud Com-

puting, Dynamic Reconfiguration, Model Based Evolution

1 Introduction

Cloud computing is a software engineering paradigm that has the potential of change

large part of the IT industry; becoming a research topic with innovative proposals to

design, develop and deploy cloud-based systems [1]. Cloud applications are delivered

as services over the Internet. Among distinguishable characteristics of cloud computing

parading are measured service and rapid elasticity and scalability [2]. The former al-

lows billing based on real usage of resources. The later allows acquiring more resources

during a peak of demand and releasing them once they are no longer required. In addi-

tion, services can be redeployed on different provider-specific platforms depending on

Quality of Service (QoS), Service Level Agreement (SLA) or other business criterion.

52

Service-oriented architecture approach is a way of designing, developing and de-

ploying loosely coupled distributed applications using coarse-grained services. Devel-

oping service-oriented applications (such as cloud services) facilitates reconfiguration

of software architectures at runtime, what is known as dynamic architecture reconfigu-

ration. Organizations that adopt this approach will be able to i) manage business evo-

lution and/or upgraded services can be introduced with minimum impact on existing

systems, and ii) implement loosely-coupled integration approaches [3]. As stated be-

fore, cloud services could be deployed in different provider-specific platforms; which

often leads to tight coupling of developed cloud services to a specific cloud provider

technology. In order to avoid the dependence on cloud providers, the cloud service

architectural design must facilitate the use of different environments for execution [4].

Model-Driven Development (MDD) is an approach for developing software systems

that promotes a new form of building systems based on the construction and mainte-

nance of models at different levels of abstraction to drive the development process. In

this approach, a software system is developed by refining models and it is implemented

through model to text transformations.

Software adaptation patterns represent generic and repeatable solutions to manage

change in recurring architectural adaptation problems, and prescribe the steps needed

to dynamically adapt a software system at runtime from one configuration to another

[5]. The use of adaptation patterns is a trend to support reuse in evolution for dynamic

adaptive software architecture [6]. Adaptation of software architectures is not only sup-

ported by change management proposals, but also by proposals for solving the prob-

lems that arise when the interacting entities do not match properly. Software adaptation

promotes generation of software adaptors to bridge incompatibilities among services

(e.g., different names of methods and services, different message ordering, etc.) in an

nonintrusive way [7,8, 9]. Generation techniques for software adaptors are beginning

to be used in cloud environments [10].

Cloud applications integrate and compose different cloud services. The cloud ser-

vices to be integrated may come from the delivering of a software increment in an in-

cremental development approach, or just may be product of maintenance/evolution

phases. The integration/update of increments may trigger the dynamic reconfiguration

of the existing cloud service architecture. Dynamic reconfiguration creates and destroys

architectural elements instances at runtime; being particularly important for cloud ser-

vices be able to manage instances in different cloud platforms and continue working

while reconfiguration takes place. However almost no or little attention has been paid

on supporting this reconfiguration at runtime, and only in recent years software engi-

neering research started focusing on these issues [11]. In addition, as far as we know,

the incremental and dynamic deployment of cloud services into existing services in the

cloud has not been studied yet.

In this paper, we introduce a process to support the dynamic reconfiguration of cloud

service architectures due to the integration of software increments. This process will

allow software developers to specify how the integration of the architecture of a soft-

ware increment affects the current cloud service architecture. Additionally, after apply-

ing model-driven techniques, software developers will obtain the software artifacts

needed to dynamically reconfigure the current cloud service architecture. We define the

53

architecture of a software increment as a portion of an architecture that corresponds to

the architectural description of the increment whose integration into current architec-

ture triggers the current architecture reconfiguration.

The remainder of the paper is structured as follows. Section II discusses related work

on proposals to support the dynamic architecture reconfiguration. Section III presents

our dynamic architectural reconfiguration approach. Finally, Section IV presents our

conclusions and future work.

2 Related work

Software evolution based on reconfiguration of software architectures is an active area

of research; however, there are gaps that still need to be covered. Some of these gaps

where identified in a systematic literature review performed by Jamshidi et al. [6]. The

authors took into account the stage of the software lifecycle where evolution mecha-

nisms were active; findings showed lack of support during the integration and provi-

sioning stage, but also during deployment stage. In our work, we give support to the

dynamic reconfiguration of software architectures at the deployment stage of the soft-

ware life cycle.

In this section, we analyze how researchers and practitioners address the dynamic

reconfiguration of software architectures to support the development of cloud/service

applications. The most relevant works [11, 12, 13] we have found are analyzed below.

Baresi et al.[12] propose a methodology for deriving service-oriented architectures

from high-level business-oriented architecture descriptions. They use formal represen-

tations to describe both application specific types as well as runtime configurations of

concrete instances. They also, use graph transformations rules and define refinement

relation from a generic style of component-based systems to the SOA style.

 MOdel-based SElf-adaptation of SOA systems (MOSES) [13], proposes a method-

ology aimed at driving the self-adaptation of a SOA system to fulfill non-functional

QoS requirements. This framework uses linear programing to formulate the identifica-

tion of the most suitable adaptation according to the detected changes in the environ-

ment.

Self-architecting Software Systems (SASSY) [14] uses the application requirements

captured by domain experts to derive automatically a base software architecture. Then,

SASSY derives an optimized architecture from the base architecture by selecting the

most suitable service providers and by applying QoS architectural patterns. In addition,

for each QoS architectural pattern, they apply adaptation patterns that specify how the

system self-adapts to incorporate the pattern into the configuration. Unlike previous

cited approaches, SASSY deploys the coordination logic.

All the works described above i) take into account structural and behavioral aspects

for reconfiguration; ii) use SLA or QoS negotiation to discover and select the most

suitable service implementation (instance); and iii) apply dynamic binding for recon-

figuration. This means that reconfiguration improves non-functional qualities through

perfective changes. However, adaptive changes (e.g., software increments due to new

functionalities) that require architecture reconfiguration are not taken into account.

54

They abstract models of business requirements or derive high level architectures ; how-

ever, they do not take into account the importance of architectural aspects in agile/in-

cremental development processes [15]. Despite the fact that cited approaches propose

consistency or compatibility checking task, they do not provide solutions to support the

deployment in different cloud platforms.

In summary, as far as we know, there is a lack of support to incremental and dynamic

deployment of cloud services into existing cloud service architecture. Our approach

allows incremental reconfiguration of software architectures, and promotes compatibil-

ity between the architecture of software increments with the existing cloud architecture,

according to cloud specific deployment platform.

3 A Process for Dynamic Architecture Reconfiguration of

Cloud Services

In this section, we introduce our motivation example and continue with the reconfigu-

ration process description.

3.1 Motivating Example

The proposed motivation example is based on “Acme Manufacturing” dealer network

system scenario [16]. Acme is a manufacturer company, which wants to improve service

to its dealers and partners. With this purpose in mind, Acme considers building and

deploying cloud services in an incremental way. The first increment aims to do a better

job of fulfilling dealers’ orders and provides cloud services for dealers to place and

manage their orders. This allows a direct interaction between customer’s I.T. systems

and Acme’s systems. Acme also needs to improve its shipping process to increase de-

livery speed, and thus, in a second increment provides its local transport partner with

cloud services. The transport partner uses cloud services to retrieve orders that need to

be shipped as well as to inform dealers about shipping status. This second increment

also updates the cloud services deployed in the first increment, providing dealers with

information about last bought of items included in the order. Finally, after the third

increment Acme needs to be able to manage international deliveries. However, since

the international partner has its own custom systems based on exposed web services

Acme uses the partner’s web service to make shipping requests.

3.2 Reconfiguration Process

The model-driven Dynamic Incremental Architectural Reconfiguration (DIARy) pro-

cess has been defined using model-driven and adaptation techniques. This process aims

to support software developers during the deployment phase, on activities related to

integration of software increments into existing services in the cloud. We support the

integration process from an architectural point of view. DIARy proposes activities to

support the management of dynamic reconfiguration of existing cloud services archi-

tectures, produced due to the integration of architectural elements. The main activities

55

of DIARy process are: i) Specify Increments; ii) Check Increment Compatibility; and

iii) Reconfigure Architecture. Fig. 1 shows the activities of the DIARy process.

Specify Increments. DIARy may be incorporated into existing development processes

and this activity serves as a glue that allows its incorporation. Software Architects per-

form this activity not only to specify the architecture that corresponds to the architec-

tural description of the increment to be deployed, but also the impact that the integration

of the increment has on current architecture. The latter is specified describing how the

elements of the architecture of the software increment collaborate to reconfigure the

current architecture in order to provide the required functionality. This activity gener-

ates as output the Increment’s Architecture Model; uses as inputs artifacts the Current

Architecture, Design Artifacts, and SLAs. Additionally, uses Increment Description

Guidelines as guide and an architecture description language to describe both the cur-

rent architecture as the architecture of the software increment. Each of these artifacts

is explained below:

Fig. 1. Overview of the DIARy approach

1. Current Architecture Model (CurAM): This model allows representing the current

architecture (i.e., before increment deployment) using design artifacts. CurAM in-

cludes information about services, connectors, configuration as well as cloud soft-

ware architecture related information. CurAM evolves after each increment integra-

tion; however, in this activity it is used only as input, helping Software Architects to

identify elements of the current architecture to be affected by the integration.

2. Design Artifacts: This input artifact represents design artifacts generated during the

development process. Depending on the development process to which DIARy is

applied, this artifact could be i) the original system architecture designed during the

development process; ii) any form of architecture description that describes the in-

crement; iii) Architectural backlogs generated during an agile development process.

This artifact helps Software Architects to identify the elements of the current archi-

tecture that will be affected by the integration.

Yes

No

Is Compatible?

Increment
Architecture Model

in

Increment
Description
Gudelines

guide

Cloud
Adaptors

out

out

Actual System
Architecture

Current
Architecture

Model

in

Specify
Increments

1

Reconfigure
Architecture

3

Adaptation
Pattern

Repository

Cloud-Platform
Specific Adaptation

Operations

in
In-out

In-out

2
Check Increment

Compatibility

2

in

Design
Artifacts

in

Reconfiguration Plan
Specific of Cloud

Provider

out

in

SLA

56

3. Service Level Agreements (SLA): This artifact contains the conditions and parame-

ters that compromise the service provider to meet certain levels of quality. Software

Architects use it to take design decision during specification.

4. Increment’s Architecture Model (IAM): Software Architects participate in generat-

ing this output artifact. IAM allows representing the architecture of the software in-

crement and includes information about services, connectors, and configuration.

Furthermore, IAM allows represent how the elements of the architecture of the soft-

ware increment collaborate to reconfigure the current architecture. To do this, IAM

includes references to CurAM elements. Software Architects use references to point

out the elements of current architecture affected by the increment (elements added,

updated or deleted) as well as the elements used as Integration Points (IP). We call

IP to the interfaces of the current architecture elements that interact with interfaces

of the elements of the architecture of a software increment in order to allow interac-

tion and provide the required functionality. Finally, in order to support reconfigura-

tion on cloud environments, IAM includes information related aspects of Cloud Soft-

ware Architectures [17]. For instance, the IAM associated to the second increment

of motivating example (see section 3.1) will include:

(a) Information about Shipping Request Service, Ship Status Service and connec-

tions that need to be added.

(b) References to the interfaces of Place Order service and its interaction protocol

(i.e., both elements need to be updated in order to satisfy the new requirement that

establish that: the Place Order service must provide information about last bought of

items included in order).

(c) References to the service interfaces required and provided by/to the current ar-

chitecture that will serve as IP.

(d) Information related to cloud software architecture such as interaction pattern be-

tween dealer and transport partner (e.g., publish/subscribe connector, request/re-

sponse connector).

5. Increment Description Guidelines: Help Software Architects: i) to identify impact of

increment integration on current architecture and; ii) to take design decisions. These

guidelines give support about how to specify increments using IAM and CurAM. In

addition, we have begun to work in an Increment Description Language (IDL). This

language will allow Software Architects to use high-level architecture reconfigura-

tion operations to specify impact of the integration on current cloud service archi-

tecture. Service Oriented Architecture Modeling Language (SoaML) [18] leverages

Model Driven Architecture (MDA) and provides a UML profile and meta-model for

the specification of services. However, SoaML does not allow to represent how the

architecture of a software increment affects the existing cloud architecture nor to

specify information related to cloud software architectures. IAM and CurAM are part

of this IDL and their meta-models will extend the SoaML meta-model.

IAM and CurAM artifacts are input for the next activity, which is described below.

Check Increment Compatibility. This activity helps to verify whether the architec-

ture of a software increment can be integrated into the current architecture. Its main

objective is to reduce the risk of incompatibilities between service interfaces that could

57

avoid integration (e.g., different names of methods and services, different message or-

dering, etc.). Despite the fact that in previous activity Software Architects specified the

impact of the increment integration on current architecture, in practice, we cannot ex-

pect that any given software component perfectly matches the needs of a system nor

that the components being assembled perfectly fit one another [7]. The same may hap-

pen during the integration of the increment, where incompatibilities may exist between

IAM and CurAM elements.

We will apply software adaptation techniques to correct incompatibilities, generat-

ing software adaptors when needed. We have chosen to follow Cámara et al. approach

[19] because i) it is a model driven approach; ii) it gives support the automatic creation

of adaptors from abstract specifications; iii) and, it provides tools that fully support the

adaptation approach from start to finish (including compatibility checking). To follow

this approach we need to provide service interfaces described by signatures (operation

names and types) and interaction protocol. The former must be described as a WSDL

representation and the latter as an Abstract BPEL (ABPEL) representation. Integration

Designers will specify model transformations to obtain these representations from the

increment’s architecture (IAM) as well as from the current architecture (CurAM).

This activity results in generation of software adaptors to be used in a specific cloud

platform (CloudAdaptors) using CurAM and IAM as input. CloudAdaptors allow cor-

recting incompatibilities between services interaction protocols (i.e., incompatibilities

among IP operations). If discrepancies exist, Software Architects apply model-to-text

(M2T) transformations to generate skeletons of CloudAdaptors. Then, Software Devel-

opers complete CloudAdaptors skeletons, implementing code to solve discrepancies

according to deployment platform. Depending on cloud platform, CloudAdaptors may

be scripts, configuration files, packages, services, or any cloud platform specific arti-

fact. For instance, regarding to our motivating example (see Section 3.1), in order to

allow interaction with web services provided by international transport partner, the in-

tegration of the third increment will require i) compatibility verification of interfaces

requested by manufacturer and interfaces provided by international transport partner.

The first interfaces are already deployed and belong to CurAM; whereas the latter, that

are going to be deployed, are described in IAM; ii) generation of CloudAdaptors. As-

suming that the deployment platform is Windows Azure, the generated CloudAdaptors

will be a cloud service Worker Role.

Reconfigure Architecture. This last activity supports the execution of the integration

operations, resulting in incorporation of the architecture of the software increment into

current architecture and the corresponding dynamic architecture reconfiguration (see

Fig. 2). This activity is composed of the following main steps:

Select Adaptation Pattern. In this step, Software Architects participate in the selection

of the adaptation patterns best suited to integrate the architecture of the software incre-

ment into the current architecture. This step results in the generation of a List of Patterns

Model, using CurAM and IAM information to select patterns from Adaptation Pattern

Repository Model. The Output artifact and input AdaPRepM are explained below:

58

1. Adaptation Pattern Repository Model (AdaPRepM): Integration Designers use this

to represent prescriptions at a high level of abstraction of steps required to integrate

architectural elements into current architecture. Integration Designers define adap-

tation patters for possible integration scenarios. We consider scenarios where the

elements of the architecture of a software increment: i) do not need interconnection

with any current architecture element; ii) require establish interconnection with cur-

rent architecture elements without updating them; and iii) require establish intercon-

nections and update current architecture elements. Adaptation patterns is a research

field by itself, in our work we will extend current proposals to define the AdaPRepM

meta-model. To be specific, we will extend the Meta-model for Adaptation Pattern

Composition proposed by Ahmad et al. [20].

Fig. 2. Reconfigure Architecture Activity

2. List of Patterns Model (LisPatM): This output provides a list with the most suited

adaptation patterns that must be applied to integrate the elements of the architecture

of the software increment into current architecture.

Define Reconfiguration Plan. This activity aims to generate a plan with the sequence

of reconfiguration operations needed to integrate the elements of the architecture of the

software increment into the current architecture. For doing this, a two-step models

transformation strategy must be applied. On the first step, Integration Designers specify

M2M transformations that generate a Reconfiguration Plan Independent of Cloud Pro-

vider technology. This plan includes high-level reconfiguration actions needed to

change cloud service architectures. In the second step, Integration Designers specify

M2T transformations to operationalize reconfiguration actions into Reconfiguration

Plans Specific of Cloud Provider. Software Architects execute these transformations

and Software Developers complete the generated plans if required. This activity has as

inputs IAM, AdaPRepM, LisPatM and Platform Specific Adaptation Operations Model.

Apply
Reconfiguration

Current Architecture Model Actual System Architecture

In-out

in
in

Select
Adaptationn

Pattern

in

Increment
Architecture

Model

1

List of Patterns

Out
in

Reconfiguration Plan
Specific of Cloud

Provider

in

in

in

Reconfigure
Architecture

3

Adaptation
Pattern

Repository

Cloud-Platform Specific
Adaptation Operations

In-out

Out

in
in

in

2

Cloud
Adaptors

Define
Reconfiguration Plan

59

1. Cloud-Platform Specific Adaptation Operations Model: This model represents at a

high level of abstraction cloud artifacts and reconfiguration operations inde-

pendently of a specific cloud platform technology. This model and LisPatM are used

to generate a Reconfiguration Plan Independent of Cloud Provider.

2. Reconfiguration Plan Specific of Cloud Provider: This artifact is specific of a cloud

provider technology. This artifact includes sequence of commands that create, up-

date, or destroy architectural elements instances and their links at runtime. Examples

are scripts, packages, configuration files and so on.

Apply reconfiguration. In the last step, the Cloud Specialist, expert in deployment, in-

tegrates the increment into the current architecture by deploying CloudAdaptors and by

using dedicated services to apply the Reconfiguration Plan Specific of Cloud Provider

artifacts in the corresponding cloud platform. Integration dynamically reconfigures in-

stances of the running Actual System Architecture.

4 Conclusions and Future Work

We introduced the DIARy process to support the dynamic software architecture recon-

figuration triggered by the deployment of new cloud services. DIARy uses model-driven

and adaptation techniques to allow integration of cloud services into current architec-

ture at runtime. We believe this process provides a solution to cover the lack of support

to incremental and dynamic deployment of cloud services into existing cloud service

architecture. DIARy shows the steps that software developers must follow to specify

how the architecture of a software increment will affect the existing cloud architecture.

In addition, model transformations are used for: i) promoting the compatibility between

the architecture of the increment with the existing cloud architecture; and ii) generating

cloud-platform specific reconfiguration plans that apply adaptation patterns to recon-

figure existing cloud architecture. Activities and artifacts included in DIARy were de-

scribed, and a motivation example was used to illustrate some related aspects.

At this moment, we experimented with several small examples to test the viability

of the approach. As further work, we plan to empirically validate DIARy through con-

trolled experiments and case studies with medium-sized real-world projects. We are

also working on: i) the definition of an Increment Description Language to specify in-

crement’s architectures and their impact on actual system architecture; ii) the definition

of a reference architecture to support the reconfiguration process, and iii) the imple-

mentation of different model transformations to automate the DIARy process.

Acknowledgments. This research was supported by the Value@Cloud project

(MICINN TIN2013-46300-R); the Scholarship Program Senescyt, Ecuador; the Fac-

ulty of Engineering, University of Cuenca, Ecuador; and the ValI+D program

(ACIF/2011/235), Generalitat Valenciana.

60

5 References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. Commun. ACM. 53,

50–58 (2010).

2. Motta, G., Sfondrini, N., Sacco, D.: Cloud Computing: An Architectural and Technological

Overview. Int. Joint Conf. on Service Sciences. pp. 23–27. IEEE, Shanghai (2012).

3. Bastida, L., Berreteaga, A., Cañadas, I.: Adopting Service Oriented Architectures Made

Simple. Springer, London (2008).

4. Fehling, C., Leymann, F., Retter, R.: An Architectural Pattern Language of Cloud-Based

Applications. 18th Conf. on Pattern Languages of Programs. pp. 1–11. ACM Press, New

York (2011).

5. Gomaa, H., Hashimoto, K., Kim, M., Malek, S., Menascé, D.: Software Adaptation Patterns

for Service-Oriented Architectures. ACM Symposium on Applied Computing. pp. 462–469.

ACM, New York (2010).

6. Jamshidi, P., Ghafari, M., Ahmad, A., Pahl, C.: A Framework for Classifying and

Comparing Architecture-Centric Software Evolution Research. 17th European Conference

on Software Maintenance and Reengineering. pp. 305–314. IEEE, Genova (2013).

7. Canal, C., Poizat, P., Salaun, G.: Model-Based Adaptation of Behavioral Mismatching

Components. Softw. Eng. IEEE Trans. 34, 546–563 (2008).

8. Yellin, D.M., Strom, R.E.: Protocol Specifications and Component Adaptors. ACM Trans.

Program. Lang. Syst. 19, 292–333 (1997).

9. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: Towards an

Engineering Approach to Component Adaptation. Springer Berlin Heidelberg (2006).

10. Miranda, J., Guillen, J., Murillo, J.M., Canal, C.: Assisting Cloud Service Migration Using

Software Adaptation Techniques. 6th Int. Conf. on Cloud Computing. pp. 573–580 (2013).

11. Baresi, L., Ghezzi, C.: The Disappearing Boundary Between Development-time and Run-

time. FSE/SDP Workshop on Future of software Engineering Research. pp. 17–21 (2010).

12. Baresi, L., Heckel, R., Thöne, S., Varr´o, D´.: Style-Based Modeling and Refinement of

Service-Oriented Architectures. Softw. Syst. Model. 5, 187–207 (2006).

13. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: QoS-Driven Runtime

Adaptation of Service Oriented Architectures. Proc. 7th Jt. Meet. Eur. Softw. Eng. Conf.

ACM SIGSOFT Symp. Found. Softw. Eng. 131–140 (2009).

14. Menascé, D.A., Gomaa, H., Malek, S., Sousa, J.P.: SASSY: A Framework for Self-

Architecting Service-Oriented Systems. Software, IEEE. 28, 78–85 (2011).

15. Babar, M.A., Brown, A.W., Mistrik, I.: Making Software Architecture and Agile

Approaches Work Together: Foundations and Approaches. Agile Software Architecture:

Aligning Agile Processes and Software Architectures. pp. 1–22. Morgan Kaufmann (2013).

16. Casanave, C.: Enterprise Service Oriented Architecture Using the OMG SoaML Standard.

Model Driven Solut. Inc., White Pap. 1–21 (2009).

17. Hamdaqa, M., Livogiannis, T., Tahvildari, L.: A Reference Model for Developing Cloud

Applications. CLOSER. pp. 98–103. Citeseer (2011).

18. Object Management Group: Service Oriented Architecture Modeling Language (SoaML),

http://www.omg.org/spec/SoaML/.

19. Cámara, J., Martin, J.A., Salaun, G., Cubo, J., Ouederni, M., Canal, C., Pimentel, E.: Itaca:

An Integrated Toolbox for the Automatic Composition and Adaptation of Web Services.

31st Int. Conf. on Software Engineering. pp. 627 – 630. IEEE, Vancouver, BC (2009).

20. Ahmad, A., Babar, M.A.: Towards a Pattern Language for Self-Adaptation of Cloud-Based

Architectures. Proc. WICSA Companion Volume. pp. 1–6. ACM Press, New York (2014).

61

