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Keynote

From Model Evolution to Evolution Models

Gerti Kappel

Vienna University of Technology

Inspired by the seminal paper on ”Model Transformations? Transformation
Models!” [1] we will have a fresh look on the evolution of model evolution. Model
evolution is more and more seen as part of change management in general with
change as first class principle in the whole software product lifecycle. Thus, a
descriptive notion of evolution in terms of evolution models is necessary. In this
talk, we will shed some light on current research endeavors pathing the way to
a more systematic management of evolution.

Gerti Kappel is a full professor at the Institute for Software Technology and Interac-

tive Systems at the Vienna University of Technology, heading the Business Informatics

Group. Until 2001, she was a full professor of computer science and head of the Depart-

ment of Information Systems at the Johannes Kepler University of Linz. She received

the Ms and PhD degrees in computer science and business informatics from the Uni-

versity of Vienna and Vienna University of Technology in 1984 and 1987, respectively.

From 1987 to1989 she was a visiting researcher at Centre Universitaire d’Informatique,

Geneva, Switzerland.

She has been involved in national and international joint projects, both governmental

and industry funded, as well as sponsored by the EU. From 2004 to 2007, she was also

dean of student affairs for business informatics.

[1] Jean Bzivin et al., Model transformations? Transformation Models!, In: Proceed-
ings of the 9th international Conference on Model Driven Engineering Languages
and Systems (MoDELS’06), O. Nierstrasz et al. (eds.), Springer LNCS 4199, pp.
440-453
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A Systematic Taxonomy of Metamodel Evolution
Impacts on OCL Expressions∗

Angelika Kusel1, Juergen Etzlstorfer2, Elisabeth Kapsammer1,
Werner Retschitzegger1, Johannes Schoenboeck3, Wieland Schwinger1, and

Manuel Wimmer2

1 Johannes Kepler University Linz, Austria
[firstname.lastname]@jku.at

2 Vienna University of Technology, Austria
[lastname]@big.tuwien.ac.at

3 University of Applied Sciences Upper Austria, Campus Hagenberg, Austria
[firstname.lastname]@fh-hagenberg.at

Abstract. Metamodel evolution is prevalent in Model-Driven Engineering, ne-
cessitating the co-evolution of dependent artifacts like models and transforma-
tions. Whereas model co-evolution has been extensively studied, the co-evolution
of transformations and especially its substantial ingredient in terms of OCL ex-
pressions has received little attention up to now. Thus, the goal of this paper is a
systematic analysis of potential impacts of metamodel evolution on OCL expres-
sions in model transformations. For this, a complete and minimal set of atomic
metamodel changes has been derived from Ecore, which is analyzed with respect
to its effects on structural complexity and information capacity. This analysis
builds the basis for investigating the impacts concerning syntactical conformance
and scope of affected OCL expressions. Finally, we report on lessons learned
gained from establishing the set of changes and examining the impacts thereof.

1 Introduction

Model-Driven Engineering (MDE) proposes the use of models to conduct software de-
velopment on a higher level of abstraction [1]. Thereby, model transformations play a
vital role for systematic transformations of models conforming to different metamodels
(MMs). Just like any other software artifact, MMs evolve, necessitating the co-evolution
of dependent artifacts like models and transformations [10].

While the automated co-evolution of models has been subject to extensive research
in the past (cf., [9] for a survey), the automated co-evolution of transformations has
been less examined so far (cf., e.g., [4–6, 13]). Especially the co-evolution of Object
Constraint Language (OCL) [18] expressions has not been a major focus up to now,
despite the fact that OCL expressions are used to perform complex queries on the input
models [2, 22]. Therefore, they represent a substantial ingredient in rule-based model
transformation languages, such as ATL [11] or QVT [17].
∗ This work has been funded by the Austrian Federal Ministry for Transport, Innovation and

Technology (BMVIT) grant FFG BRIDGE 832160 and FFG FIT-IT 825070 and 829598, FFG

Basisprogramm 838181, and by ÖAD grant AR18/2013 and UA07/2013.
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To tackle this limitation, this paper focuses on the co-evolution of OCL expres-
sions in model transformations by first proposing a complete and minimal set of atomic
changes focusing on structure, which has been systematically derived from the Ecore4

meta-MM, enabling the definition of arbitrary evolutions of Ecore-based MMs. All
changes of this set are subsequently analyzed concerning their effects on the MM with
respect to structural complexity, i.e., the number of instantiable MM elements, and in-
formation capacity, i.e., the potential number of instances of the MM, since these two
criteria are significant for the impacts on OCL expressions which will be revealed in the
remainder of this paper. Second, the potential impacts of these changes on OCL expres-
sions are investigated by systematically analyzing the impacts of each of these changes
concerning affected OCL expressions, revealing non-breaking and breaking impacts [7]
with respect to syntax and scattering of impacts considering their scope, being local, in
case that OCL expressions use the changed MM element itself, or global, if they use
inherited versions thereof. Thus, this investigation builds the foundation for identifying
resolution actions to co-evolve syntactically broken OCL expressions and serves as ba-
sis for implementing an impact analysis tool, constituting the first and fundamental step
towards the automated co-evolution of OCL expressions in model transformations.

Outline: Section 2 systematically analyzes the impacts of MM evolution on OCL
expressions. While lessons learned are presented in Section 3, related work is surveyed
in Section 4. Finally, Section 5 concludes the paper with an outlook to future work.

2 Systematic Impact Analysis

In this section, role and importance of OCL in model transformations are highlighted,
before the complete and minimal set of changes as well as the investigation of impacts
of each change on OCL expressions are presented. Although OCL might also be used in
other contexts, e.g., to specify MM constraints restricting the instantiability of the MM,
we focus on the co-evolution of OCL in model transformations. Nevertheless, this work
might also be applied to other application contexts. A detailed investigation of impacts
on OCL constraints in MMs is, however, left to future work.

2.1 Role and Importance of OCL in Model Transformations

In order to illustrate the role and importance of OCL, Figure 1 shows an excerpt of the
well-known Class2Relational transformation5, serving as a running example through-
out the paper. From the example one might see that OCL expressions are used in two
indispensable roles [13]. First, OCL is used in bindings to query elements of the source
model, which are used to produce the target model (cf., e.g., “cl.package+’ ’+cl.id” cal-
culating the values for the target attribute Table.name). Second, OCL is utilized in con-
ditions to steer the control flow (cf., e.g., “cl.abstract=false” to transform non-abstract
classes, only). Through these two essential roles, OCL expressions constitute large parts
of transformation definitions [2, 22], and thus, it is of utmost importance to consider
OCL in detail in the context of transformation co-evolution.

4 http://eclipse.org/modeling/
5 For a complete example see: http://www.eclipse.org/atl/atlTransformations/
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abstract rule Element2Named { 
  from elem : Class!Element 
  to named : Relational!Named ( 
    name <- elem.id ) 
} 
rule Class2Table extends Element2Named { 
  from cl : Class!Class (cl.abstract = false) 
  to table : Relational!Table ( 
    name <- cl.package  
            + '_'  
            + cl.id, 
    col <- cl.attr, 
    key <- cl.attr->first() 
     ) 
} 
rule Attribute2Column extends Element2Named { 
  from attr : Class!Attribute  
  to col : Relational!Column ( 
    type <- attr.type )  
} 

Conceptual  Transformation 
Metamodel (excerpt) OCL Metamodel (excerpt) 

Source Metamodel Transformation between Metamodels 
Target 

Metamodel 

Table 
 

Column 
type:String 

col 

Named 
name:String 

Class 
package:String 
abstract:Boolean 

Attribute 
type:String 
 

Element 
id:String 
 

attr 
[ordered, 
unique] 

Attribute 
type:String 
multivalued:Boolean 

Element 
name:String 

       attr             
[ordered=false,       

unique] 

1 

4 

impacts 

Metamodel 
Evolution 

Changes  
      Rename Attribute  
      Delete Attribute 
      Change Ordered 
      Create Attribute 

1 
2 
3 

1 

2 

4 

Class2Relational Transformation Definition0 Class Metamodel0 

Class Metamodel1 

Relational 
Metamodel 

No 
Impact 

Global 
Breaking 
Impact 

Local 
Breaking 
Impact 

Impacts 
Changes might impact (i) the 
syntax of OCL expressions and 
have (ii) local or global scope 

w.r.t. affected OCL expressions 

4 Local 
Breaking 
Impact 

3 

3 

VariableExp 

OclExpression 

FeatureCallExp 

OperationCallExp 

PropertyCallExp 

Ecore Meta-Metamodel 

Rule 

InPattern OutPattern 

Binding 

conforms to conforms to 

StringLiteralExp 

Class 
package:String 
abstract:Boolean 

2 

Condition 

conforms to 

conforms to 

domain 
conforms to 

co-domain 
conforms to 

key 

MM0: OrderedSet 
MM1: Set 

conforms to 

Collection 

Bag 

Set 

Sequence 

OrderedSet 

* 

* + 

- 

Δ 

Δ 

Fig. 1. Running Example: Class2Relational

In general, model transformations depend on three distinct MMs, being (i) the
source MM, (ii) the target MM, and (iii) the transformation MM (cf. Fig. 1). Thereby,
OCL expressions depend on the source MM by means of a so-called “domain conforms
to”-relationship [15] and the OCL MM as part of the transformation MM by means
of a “conforms to”-relationship [11]. This is, since OCL expressions are used to query
source models and do not refer to concepts of the target MM. Therefore, this paper fo-
cuses on the evolution of the source MM and its impact on OCL expressions. For this, a
systematic set of changes is needed, which will be the focus of the next two subsections.

2.2 Complete and Minimal Set of Changes

A systematic set of changes, as a prerequisite for investigating impacts, has to fulfill
two criteria – completeness to allow for any possible change and minimality to avoid the
analysis of redundant changes. To fulfill both, we focus on atomic changes, transferring
the MM from one consistent state, i.e., conforming to Ecore [20], to another one.

Example. Before proposing the systematic set of atomic changes, four exemplary
atomic changes (cf. Fig. 1) with their effects on structural complexity and information
capacity of the MM are discussed. First, the attribute Element.id has been renamed to
name (cf. 1 in Fig. 1), being updative, i.e., a state change, by nature. Although this
causes neither a change in structure nor a change in information capacity, OCL ex-
pressions are affected. Second, the attribute Class.package has been deleted (cf. 2 in
Fig. 1), being destructive by nature, thus, decreasing structural complexity and informa-
tion capacity, which impacts OCL expressions significantly, since the deleted element

4



- Delete EENumLiteral 

ETypedElement 
ordered:boolean 
unique:boolean 
lowerBound:int 
upperBound:int 

EClassifier 
... 

ENamedElement 
name:String 

EDataType 
... 

EAttribute 
... 

 EEnum 
... 

EEnumLiteral 
value:int 

EClass 
abstract:boolean 

Δ Update Name 

Δ Update Ordered 

Δ Update Unique 

Δ Update Lower-
Bound/Upperbound 

Δ Update 
abstract 

eContainingClass 

eSuperTypes 

eAttributeType 
Δ Update 

eAttributeType 

EStructuralFeature 
... 

EReference 
containment:boolean Δ Update 

Containment 

eEnum 

Δ Update eContainingClass 

Δ Update eEnum 

eReferenceType 
Δ Update eReferenceType 

+ Create EClass 

+ Create EAttribute 

+ Create ERereference 

+ Create EDataType 

- Delete EClass 

- Delete EAttribute 

- Delete ERereference 

- Delete EDataType 

Legend: +... Constructive  -... Destructive  Δ...  Updative 

Δ Update 
eOpposite 

eOpposite 

Δ Update eSuperType 

Δ Update Value 

EPackage 
... 

+ Create EPackage 
- Delete EPackage 

+ Create EENumLiteral 

+ Create EEnum 

- Delete EEnum 

eSuperPackage 

Δ Update 
eSuper-
Package 

ePackage 

Δ Update ePackage 

Fig. 2. Derived Set of Atomic Changes for Ecore-based MMs

must not be accessed anymore. Third, the reference Class.attr has been changed from
ordered to unordered (cf. 3 in Fig. 1), being again updative by nature, leaving struc-
tural complexity and information unaffected, but, however, affecting OCL expressions.
Finally, the attribute Attribute.multivalued of type Boolean has been created (cf. 4 in
Fig. 1), being constructive by nature, therefore increasing both, structural complexity
and information capacity, since this attribute might now be instantiated with true or
false, without, however, affecting OCL expressions.

Systematic Set of Changes. Going beyond these four exemplary changes, Figure 2
shows the relevant excerpt of Ecore, including all elements for defining structure, while
disregarding (i) properties for code generation (e.g., volatile), (ii) derived properties
(e.g., required), since they may be led back from other properties (e.g., lowerBound),
and (iii) operations (e.g., EOperation), since the focus is on MMs defining structure and
not behavior. For deriving all constructive and destructive changes, one has to resort to
all concrete meta-classes, e.g., EClass. For receiving all updative changes, i.e., state
changes of features, one has to refer to all meta-features, e.g., EClass.abstract. The
resulting set of atomic changes is shown in Figure 2 as well as in Table 2.

Criteria. Before analyzing the impacts of the changes on OCL expressions, their ef-
fects with respect to (i) structural complexity and (ii) information capacity are analyzed,
being increasing, neutral, or decreasing. Changes affecting structural complexity indi-
cate impacts in accessing MM elements in OCL expressions and might be evaluated by
counting the number of instantiable MM elements [19]. In contrast, changes concerning
information capacity indicate impacts on the results of OCL expressions and might be
evaluated by counting the potential number of all valid instances of a MM [16].

Evaluation. In the following, the set of changes is evaluated (cf. Table 2).
Constructive/Destructive Changes: All constructive changes have an increasing ef-

fect on both, structural complexity and information capacity, since they increase the
number of instantiable MM elements and by this also the potential number of valid
instances. In contrast, all destructive changes have the exact opposite effect.

Updative Changes: Whereas all constructive as well as destructive changes behave
equally with respect to our criteria, updative changes do not and might be further sub-
divided into four groups according to their behavior.
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Group 1 Renaming Updates: The first group includes updates on ENamedEle-
ment.name and EEnumLiteral.value, i.e., renames, being neutral with respect to both,
structural complexity and information capacity.

Group 2 Moving Updates: This group regards updates on containment references,
i.e., EPackage.eSuperPackage, EClassifier.ePackage, EStructuralFeature.eContaining-
Class, as well as EEnumLiteral.eEnum, which enable the movement of a feature from
one container to another one. Such updates increase structural capacity in the target
container, but decrease structural complexity in the source container. Since the features
are still available in the MM, yet at another position, the effect on the information
capacity is neutral, i.e., not affecting the number of valid instances.

Group 3 Restricting/Relaxing Updates: The third group considers updates on re-
stricting or relaxing the instantiability of MM elements, comprising the features ab-
stract of EClass, upperBound, lowerBound, and unique of ETypedElement as well as all
features of EAttribute and EReference. Their effect on structural complexity is neutral,
but their effect on information capacity is either increasing or decreasing, depending on
the concrete state change. For instance, in case of an increase of feature lowerBound,
the number of valid instances decreases, since more values are required. In contrast, a
decrease of lowerBound has the opposite effect. Furthermore, type specialization has
decreasing effect on information capacity, since the set of valid instances decreases. In
contrast, type generalization has increasing effect on information capacity. Please note
that feature ETypedElement.ordered has neutral effect on both, structural complexity
and information capacity, but impacts the underlying OCL datatype (cf. Sect. 2.3).

Group 4 Constructive/Destructive Updates: Finally, this group considers updates
on types, i.e., EClasses themselves, or the datatypes of EStructuralFeatures. This group
may be further subdivided into two categories according to their effects. First, the ad-
dition of eSuperTypes and pulling up of EStructuralFeatures have increasing effect on
information capacity, while their effect on structural complexity is increasing for the
addition of eSuperTypes and both, increasing and decreasing for EStructuralFeatures,
analogously to moving updates. Second, the deletion of eSuperTypes and pushing down
of EStructuralFeatures has decreasing effect on information capacity, while their effect
on structural complexity is decreasing for the removal of eSuperTypes and again both,
increasing and decreasing for EStructuralFeatures.

2.3 Impact Analysis

In the following, impacts of MM evolution on OCL expressions are exemplified and on
basis of this, dedicated criteria are derived, which are finally evaluated with respect to
the complete and minimal set of changes.

Example. To reveal impacts of MM evolution on OCL expressions, the running ex-
ample is utilized again: first, the renaming of the attribute Element.id (cf. 1 in Fig. 1)
has no effect with respect to structural complexity and information capacity, but break-
ing impact on the syntax of all OCL expressions accessing the element either directly or
indirectly via inherited versions thereof, i.e., the impact scatters. Second, the deletion
of the attribute Class.package (cf. 2 in Fig. 1) naturally has breaking impact on all
OCL expressions accessing this element, since the structure has been changed in a de-
structive way, and since belonging to a leaf class, the impact does not scatter. Third, the

6



Bag Sequence Set OrderedSet

upperBound = 1 unique/ordered not applicable 

unique = true and ordered = true 

unique = true and ordered = false 

unique = false and ordered = true 

unique = false and ordered = false 

upperBound > 1

Ecore Meta-Feature

lowerBound

Scalar 
Type

OCL Type

Collection

no impact on OCL type

Table 1. Resulting OCL Types out of Ecore Settings

change of the reference Class.attr from ordered to unordered, i.e., ordered=false (cf. 3
in Fig. 1), has breaking impact, although the structural complexity is unaffected, i.e., the
feature is still accessible. However, it causes a change of the internally employed OCL
collection type from OrderedSet to Set and by this, invalidates the usage of now unde-
fined operations such as first(). In this context, Table 1 shows the possible Ecore settings
related to collections and the resulting OCL collection type. Finally, the creation of the
attribute Attribute.multivalued (cf. 4 in Fig. 1) naturally has no impact.

Criteria. As one might see from the exemplary discussion above, changes may
have potential impact on the syntax of OCL expressions being either non-breaking or
breaking. Moreover, a change exhibits a certain scope, i.e., the scattering of the impact,
being local, i.e., OCL expressions using the MM element itself, or global, i.e., on OCL
expressions using inherited versions thereof.

Evaluation. In the following, all changes are systematically evaluated with respect
to these criteria. Please note that the evaluation assumes that changed MM elements
have been used by at least one OCL expression and the worst case scenario is consid-
ered, i.e., changes are evaluated as breaking, if there exists at least one case that breaks
the OCL expression. Since the vast majority of changes have local impact regarding the
scope as long as they concern elements in leaf classes, this criterion is discussed for
exceptional cases, only. The detailed results of the evaluation may be found in Table 2.

Constructive/Destructive Changes: Constructive changes do not have any impact
on OCL expressions, since newly created elements can not have been referred to. In
contrast, destructive changes always have breaking impact on OCL expressions, since
having a destructive effect on the structure.

Updative Changes: Updative changes are evaluated on basis of the groups intro-
duced in Section 2.2, in the following.

Group 1 Renaming Updates: Although renames do neither affect structural com-
plexity nor information capacity, their impact is nevertheless breaking, since renamed
elements are no longer accessible under their original name.

Group 2 Moving Updates: Since moves change the structure of instances by chang-
ing the position of elements, the impact on OCL is always breaking.

Group 3 Restricting/Relaxing Updates: Although these updates leave the structural
complexity unaffected, they impact information capacity, which may also break the syn-
tax of OCL expressions. This is since different settings of features such as ETypedEle-
ment.ordered result in different OCL datatypes (cf. Table 1). For example, changing
the feature ordered from true to false implies a change from the OCL collection type
OrderedSet to Set, thereby invalidating, e.g., the usage of the operation first().

Group 4 Constructive/Destructive Updates: This group is divided into two cate-
gories concerning their effect with respect to information capacity as already mentioned
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EPackage Create EPackage n.a. n.a. + +
EClass Create EClass n.a. n.a. + +
EAttribute Create EAttribute n.a. n.a. + +
EReference Create EReference n.a. n.a. + +
EDataType Create EDataType n.a. n.a. + +
EEnum Create EEnum n.a. n.a. + +
EEnumLiteral Create EEnumLiteral n.a. n.a. + +
EPackage Delete EPackage n.a. n.a. - - x x
EClass Delete EClass n.a. n.a. - - x x
EAttribute Delete EAttribute n.a. n.a. - - x x
EReference Delete EReference n.a. n.a. - - x x
EDataType Delete EDataType n.a. n.a. - - x x
EEnum Delete EEnum n.a. n.a. - - x x
EEnumLiteral Delete EEnumLiteral n.a. n.a. - - x x
ENamedElement 
(inherited by: 
EClass, EPackage, 
EAttribute, 
EReference, 
EDataType, EEnum 
EEnumLiteral)

Update Name name oldName → newName 
and oldName <> 
newName

① o o x x x

EPackage Update 
ESuperPackage

eSuperPackage oldeSuperPackage → 
neweSuperPackage + - o x x

EClassifier
(inherited by: 
EClass, EDataType, 
EEnum)

Update EPackage ePackage oldePackage → 
newePackage + - o x x

true → false o + x x x
false → true o - x x x
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remove - - x x x
x → y, x>1, y>x o + x x x
1 → >1 o + x x
x → y, y>1, y<x o - x x x
>1 → 1 o - x x
x → y, x>0, y>x o - x x x
0 → >0 o - x x x
x → y, y>0, y<x o + x x x
>0 → 0 o + x x x
false → true o o x x
true → false o o x x
false → true o - x x
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remove o + x x x

Update Value value oldValue <> newValue ① o o x x x
Update EEnum eEnum oldeEnum <> 

neweEnum ② + - o x x
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ScopeSyntax

③

n.
a.

④

③

Update Containment

State Change of 
Meta-Feature

②

③

④

Update AbstractEClass

Ecore Meta-Class Name of Atomic 
Change Meta-Feature 

n.
a.

abstract

EReference

unique

ordered

upperBound

lowerBound

Update EOpposite 

eContainingClassEStructuralFeature
(inherited by: 
EAttribute, 
EReference)

Update 
EContainingClass

eAttributeType

eReferenceType

containment

Update Ordered

Update Unique

Update LowerBound

Update 
EReferenceType

Abst  
Syn

C
on

st
ru

ct
iv

e
D

es
tr

uc
tiv

e
U

pd
at

iv
e

Update ESuperType eSuperType

Update UpperBound

EEnumLiteral

EAttribute

ETypedElement
(inherited by: 
EAttribute, 
EReference)

Update 
EAttributeType

eOpposite

Legend:  x ... True  n.a. ... Not applicable  1 ... Always true when changed in superclass  +... Increase  o... Neutral  -... Decrease 
 

Group:    ①... Renaming updates  ②... Moving updates  ③... Restricting/relaxing updates  ④... Constructive/destructive updates 

Group: 
 
1 rename:      struktur n, capacity n 
2 move:        structure + und -, capcaity n 
3 constraints: structure n, capacity + oder - 
4 inheritance: structure x oder -, capacity + oder - 

Table 2. Set of Atomic Changes and their Impacts on OCL Expressions
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above. First, updates increasing information capacity are comparable to constructive
changes and thus, non-breaking. Second, updates decreasing information capacity are
comparable to destructive changes and are thus, breaking. The scope of these updates
is local, unless eSuperTypes are removed, affecting inheriting elements and therefore,
having global impact.

3 Lessons Learned

This section discusses lessons learned gained from (i) establishing the complete and
minimal set of changes as well as from (ii) investigating impacts.

Universal Applicability of Change Set Derivation Procedure. Although we fo-
cused on one specific meta-MM, i.e., Ecore, the approach of deriving constructive and
destructive changes from concrete meta-classes as well as updative changes from all
meta-features is universally applicable since it might be applied to any meta-metamodel.

Atomic Changes Allow for Non-redundant Impact Analysis. Since the employed
change set is minimal comprising atomic changes, only, it allows for non-redundant im-
pact analysis. In contrast, a set of composite changes might include overlaps, e.g., “Ex-
tract Class” and “Extract Superclass” both include the change “Create EClass”. Com-
posite changes, however, might held more information to be exploited for co-evolution.

State-Changes of Meta-Features are Pivotal. As might be seen in Table 2, all
changes of meta-features have been broken down into several cases, explicating differ-
ent state changes. This has been necessary, since different state changes entail different
effects on structural complexity and information capacity and, consequently, impact
OCL expressions differently, e.g., the state change of upperBound from 1 to > 1 has
breaking impact, whereas the state change from > 1 to another number > 1 has not.

Increase of Structural Complexity Breaks Models, but not OCL. All construc-
tive changes as well as updates with constructive effects (cf. part of group 4 ) that in-
crease structural complexity never break OCL expressions. This is in contrast to model
co-evolution where the introduction of required elements has breaking impact on mod-
els, since models rely on a different kind of relationship to their MM, i.e., “conforms
to”, while transformations “domain conform to” their source and target MMs.

Changes not Affecting Structural Complexity may Break OCL. Impact analysis
revealed that changes not affecting structural complexity, e.g., updates of group 3 ,
may nevertheless induce a syntactical breakage of OCL expressions in certain cases as
explicated above. This is, since changes of group 3 may induce implicit type changes
of the underlying OCL datatypes and by this, change the set of valid operations.

4 Related Work

Subsequently, related work is evaluated with respect to its focus, supported changes,
impact analysis on OCL, and support by a prototypical implementation (cf. Table 3).

Regarding the focus of co-evolution in a specific technical space, two groups of
approaches exist. Most closely related, the first group of approaches targets the co-
evolution of transformations employing OCL expressions [5, 6, 13] in the technical
space of Ecore, whereby the co-evolution of the OCL-part is considered particularly
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García et al. [6] ~ (ATL)   ~ ~ ~  (23 atomic & composite changes)  ~   10 13    ~
Garcés et al. [5]  (ATL)   ~ ~ ~  (number of atomic & composite changes unkown)      ~
Kruse [13]  (ATL)   ~ ~ ~  (16 atomic & composite changes)     14 2    ~
Hassam et al. [8]   ~ ~ ~  (17 atomic & composite changes)     6 11  n.a. n.a. n.n.
Markovic et al. [14]     ~  (6 atomic & composite changes)     1 5  n.a. n.a. n.n.
Kosiuczenko [12]   ~ ~ ~  (number of atomic & composite changes unkown)     ~ (As basis for composites, only) Number unknown  n.a. n.a. 
Correa et al. [3]   ~  ~  (number of atomic & composite changes unkown)      n.a. n.a. n.n.
Own work  (ATL)      (30 atomic changes)    Future work 30 Future work   

 

C

Kind and Number of Supported Changes

Complete Set Minimal 
Set

Impact 
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OCL

Number unkown

Number unkown

Technical 
Space

Approach

Supported Changes

Co-Evolution of
Classes of 
Supported 
Changes

Focus of Work

Imple-
menta-

tion

Legend: ✓ ... true   ... false  ~ ... partially true  

Table 3. Comparison of Related Approaches

by one of them [6], only. More widely related since not basing on Ecore and by this
entailing a different set of changes, but nevertheless facing similar challenges, the sec-
ond group concentrates on the co-evolution of OCL constraints as parts of UML class
diagrams [3, 12, 14], with one exception basing on MOF [8].

Considering the supported changes, six approaches [3, 5, 6, 8, 12, 13] partially al-
low for constructive changes, five of those [5, 6, 8, 12, 13] partially consider destructive
changes, and updative changes are partially supported by all approaches. Thus, no ap-
proach covers a complete change set. However, the surveyed approaches additionally
consider composite changes, which will be one line of future work as detailed below. By
concentrating on composite changes, no approach presents a minimal change set, which
is different to our work providing a systematically derived, minimal set of changes.

Regarding the impact on OCL, four approaches [6, 8, 13, 14] consider breaking and
non-breaking impacts on the syntax, whereby one of them [6] considers impacts par-
tially, only. Considering the scope of impact on OCL, no approach regards this. Finally,
six approaches [3, 5, 6, 8, 13, 14] provide an implementation, while a sole approach is
conceptual, only, like the work presented in this paper.

In summary, one might see that the work presented in this paper is unique with
respect to the complete and minimal set of changes and a systematic in-depth investi-
gation of impacts. This is in contrast to related approaches, which rather concentrate on
fully supporting co-evolution for smaller sets of selected composite changes.

5 Conclusion & Future Work

This paper provided a systematic investigation of impacts of MM evolution on OCL
expressions in model transformations. Basing thereupon, several lines of future work
remain open. First, resolution actions to resolve violations caused by MM evolution
have to be identified. Their goal will be to perform local repairing by establishing a
view simulating the old MM version, e.g., in case of decreasing the upperBound from
> 1 to 1, the now single-valued feature will be wrapped into a collection. In case that
multiple changes have been performed on a single MM-element, the resolution actions
should be chained analogous to the idea presented in [21]. This chaining will represent
a first step towards the support for composite changes out of atomic changes, which will
be the next step in our research agenda. Moreover, we plan to investigate impacts and
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resolution actions for complete transformation definitions, i.e., not only parts written
in OCL, thereby also focusing on impacts caused by an evolution of the target MM.
Finally, we will implement the conceptual approach presented in this paper.
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Sánchez Cuadrado, J., Guerra, E., De Lara, J.: Reusing Model Transformations across
Heterogeneous Metamodels. In: Int. Workshop on Multi-Paradigm Modeling (2011)

22. Wimmer, M., Martı́nez, S., Jouault, F., Cabot, J.: A Catalog of Refactoring for Model-to-
Model Transformations. JOT 11(2) (2011)

11



A Generic Framework for Analyzing
Model Co-Evolution

Sinem Getir1, Michaela Rindt2 and Timo Kehrer2

1Reliable Software Systems, University of Stuttgart, Germany
sinem.getir@informatik.uni-stuttart.de

2Software Engineering Group, University of Siegen, Germany
{mrindt,kehrer}@informatik.uni-siegen.de

Abstract. Iterative development and changing requirements lead to
continuously changing models. In particular, this leads to the problem of
consistently co-evolving different views of a model-based system. When-
ever one model undergoes changes, related models should evolve with
respect to this change. Domain engineers are faced with the huge chal-
lenge to find proper co-evolution rules which can be finally used to assist
developers in the co-evolution process. In this paper, we propose an ap-
proach to learn about co-evolution steps from a given co-evolution history
using an extensive analysis framework. We describe our methodology and
provide the results of a case study on the developed tool support.

Keywords: Model-driven engineering, model evolution, multi-view
modeling, model co-evolution, model synchronization, model differencing

1 Introduction

The multi-view paradigm is a well-established methodology to manage complex-
ity in the construction of large-scale software systems. In Model-driven Engineer-
ing (MDE), this paradigm leads to the concept of multi-view modeling; different
modeling notations are used to describe different aspects such as structure, be-
havior, performance, reliability etc. of a system.

Iterative development and changing requirements lead to continuously chang-
ing models. Consequently, this entails the special challenge to consistently co-
evolve different views of a system [12]. In practice, this challenge usually appears
as a synchronization problem; different (sub-)models, each of them representing
a dedicated view on the system, are usually edited independently of each other.
This occurs if they are assigned to different developers or due to the fact that a
developer concentrates on a single aspect at a specific point of time [13]. Thus,
changes to one model must be propagated to all related models in order to keep
the views synchronized and to avoid inconsistencies.

We assume a setting as shown by the bottom-left part of Figure 1, the termi-
nology is partly adopted from related work on model synchronization and model
co-evolution [5, 6]: A source model Msrc,n is related to a target model Mtgt,n

via traces. A source model is the model that undergoes changes and a target
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Fig. 1. Overview of the overall co-evolution process

model is the model to which these changes have to be propagated. Finally, a
trace is a relationship between elements in these two different models. Forward
propagation (fwPrpg) denotes the migration of the target model in response to
changes occurring in the source model. Backward propagation (bwPrpg) denotes
the migration of the source model in response to changes occurring in the tar-
get model. We refer to both kinds of propagations as co-evolution steps. From
a technical point of view, co-evolution steps can be (semi-)automated via bidi-
rectional model transformations. We call the transformation rules from which
propagation rules can be derived as co-evolution rules.

However, due to the multitude of different modeling notations, the manual
specification of co-evolution rules is a tedious and challenging task. Domain
engineers, who have to find proper co-evolution rules, are faced with two essential
questions: (1) Do certain changes on a source model correlate with changes on
the target model? (2) If so, how are the changes coupled with each other? There
are several domains for which no simple and straightforward co-evolution exists.
The only viable solution is to pre-define possible co-evolution rules which can be
offered to developers as possible options. For instance, this is the case for software
architecture and quality of service models [4]. In Section 2, we introduce software
architecture models and state charts as another example of co-evolving models
which demonstrates the aforementioned research questions. We use the same
example to serve as a running example throughout the paper.

This paper reports on our ongoing work on the semi-automated co-evolution
of models of arbitrary source and target domains. The general process is illus-
trated by Figure 1. We propose to observe the co-evolution history in order to
learn about developer decisions and to finally predict the co-evolution steps with
a certain degree of probability. The more evolution steps are analyzed, the more
accurate prediction results are expected. The contribution of this paper is the co-
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evolution analysis framework which serves as a foundation for this co-evolution
process. The analysis results can be used to generate co-evolution rules for a rec-
ommender system to interactively support model co-evolution. We describe our
approach in Section 3. Tool support and early evaluation results which demon-
strate the feasibility of our approach are briefly discussed in Section 4. Related
work is analyzed in Section 5. We draw some conclusions and give an outlook
on future work in Section 6.

2 Co-Evolution of Multi-View Models

Component diagrams and state charts are widely used notations to model struc-
ture and behavior in component-based software engineering. Intuitively, there
are several relations between model elements of both views. For example, every
state usually has a relation to a component, not necessarily the other way round.
Transitions between states somehow reflect the interfaces and connections of the
corresponding components in the component diagram. The hierarchy of compos-
ite states is expected to correspond to the hierarchical structure of components
and their respective sub-components. Despite those rather intuitive relationships,
consistently co-evolving both views is not a straight forward process, which is
illustrated by the following example.

Reservation

Book Room Pay the billCheck Room
[Available/Yes]

[Available/No]

Cancel

Customer

Reservation

Payment Booking

Cancellation

Trace

Trace

Trace

Trace

1

2

3

4

5

6 ?

Fig. 2. Sample hotel reservation system modeled from two different viewpoints

Figure 2 shows a simple hotel reservation system modeled from two differ-
ent viewpoints. The initial version of the system architecture consists of three
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components, namely Customer, Booking and Payment. Relations between corre-
sponding states and components are explicitly given by trace links. The system
evolves at some point of time because it requires a new function to cancel a
reservation process. In general, we assume that models are edited by means of
a set of language-specific edit operations. An edit step invokes an edit operation
and supplies appropriate actual parameters, which are also referred to as argu-
ments. In our example, the revised version of the component model is obtained
in three edit steps, namely the creation of the component Cancellation and two
connectors. The new component and its connections to other components are
highlighted in Figure 2 by doubled lines.

State chart elements printed in doubled lines indicate the developer’s inten-
tion of co-evolution steps in response to the changes in the component diagram
(1,2). We discuss several additional co-evolution steps which are possible on the
state chart (Mtgt) in response to the changes in the component diagram (Msrc).
Note that these co-evolution steps are only assumptions which are based on
domain knowledge, they are not meant to be a result of an empirical analysis.

Elements printed in dotted lines represent expected co-evolution steps which
are, however, not intended by the user (3,4,5). Finally, a dotted line with spiral
indicates an unexpected co-evolution step which is nonetheless intended by the
user (6). We do not claim the set of possible options (1)-(6) to be complete.
Nevertheless, it demonstrates the huge challenge of predicting the proper co-
evolution steps:

– As the component Cancellation is added as a sub-component of reservation,
a new state called Cancel is expected to be created as a sub-state of the
corresponding composite state Reservation.

– The creation of transition (1) is expected due to the creation of port and
interface relations of the corresponding components in the component model.

– Although there is no explicit relation between the components Cancellation
and Customer, the creation of transition (2) is expected. Because the newly
created relation between the composite component Reservation and the top-
level component Customer, as a result of the creation of Cancellation. How-
ever, the new component may lead to an interaction between the components
Booking and Customer indirectly via interfaces as well, therefore we should
also consider the transition (3) with a small expectation.

– The required information for the proposed transitions (4) and (5) cannot be
gathered from the component diagram. However, taking general state chart
semantics into account, they can be presented to the developer as a possible
option.

– Finally, we point out transition (6). The developer wants to create a loop
between the states Book Room and Cancel which cannot be clearly antici-
pated from the component diagram since we observe only one direction for
communication. Nonetheless, this option can be offered to the developer with
a low probability.

We can conclude that each edit step on the component model may lead to
many arbitrary co-evolution steps on the state chart. Some forward propagations

15



can be expected with a high probability based on the changes in the component
diagram, others can only be offered as a set of possible choices.

3 Co-Evolution Analysis Framework

In Section 2, we have demonstrated a running example as a motivation of our
analysis framework. We have presented possible co-evolution steps and observed
that there are highly expected, less expected and unexpected changes for state
charts when the component diagram evolves.

To study such changes and their relations, our co-evolution analysis frame-
work takes a co-evolution history as illustrated by Figure 1 as input. Each pair
of successive versions i→ i+ 1 from the given history is referred to as evolution
scenario evi→i+1. We assume that the co-evolution history includes consistent
views for every evolution scenario. We further assume a model differencing en-
gine to be available, which, given a set of possible edit operations for instances
of a meta-model MM and successive model versions Mi and Mi+1, calculates a
difference diff(Mi, Mi+1). A difference diff(Mi, Mi+1) is defined to be a partially
ordered set of edit steps s1 . . . sk. We finally offer two kinds of analysis func-
tions; the correlation analysis is described in Section 3.1, the additional coupling
analysis is presented in Section 3.2.

3.1 Correlation Analysis

We use the well-known Pearson correlation coefficient to assess the dependency
between edit operations which are applicable to the source and target models.
The basic processing steps of our correlation analysis are shown by Figure 3.
For each evolution scenario evi→i+1 of the co-evolution history, we first compute
the differences diff(Msrc,i,Msrc,i+1) and diff(Mtgt,i,Mtgt,i+1). Subsequently, we
count the edit steps contained by each of the obtained differences and group
them by evolution scenarios and edit operations invoked by the respective edit
steps. The sets of edit operations, which are available for instances of MMsrc

and MMtgt, are given as additional input parameters of the correlation analysis.
Based on the calculated differences, we basically construct two matrices. For

source model changes, we construct an e-×-s matrix where e denotes the number
of evolution scenarios in the history (i.e., e = n−1), s denotes the number of edit
operations available for instances of MMsrc. A variable ai,j (i ∈ {1, ..., e}, j ∈
{1, ..., s}) represents the number of edit steps of type j (i.e. edit steps invoking
edit operations represented by j, e.g. createComponent in our running example)
in evolution scenario i. Analogously, an e-×-t matrix is being constructed for
target model changes, where t denotes the number of edit operations available
for instances of MMtgt.

Let X = 〈x1, x2, ..., xe〉 be a column vector of the e-×-s matrix, and Y =
〈y1, y2, ..., ye〉 be a column vector of the e-×-t matrix. Then we can compute the
Pearson correlation coefficient rX,Y for each combination of column vectors X
and Y in order to quantify the linear relationship between edit operations that
have been applied to the source and target models.
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Fig. 3. Correlation analysis: basic proceeding, input and configuration parameter

3.2 Coupling Analysis

The correlation analysis has the advantage that it only requires the source and
target models of each evolution scenario evi→i+1. Thus, this approach can also
be applied to study the co-evolution history in cases where no explicit trace
links between the observed source and target model exist. However, a correla-
tion between edit operations does not imply that the respective edit steps are
actually coupled. In other words, they can have a dependency by coincidence
such that none of the involved arguments are actually related by a trace. Hence,
we also provide a second analysis function which is capable of identifying coupled
changes. Such an analysis can provide knowledge about user’s modeling inten-
tions enhancing correlation analysis results, for example learning of the loop
intention by the user, as provided in Figure 2 with transition (6).

Fig. 4. Coupling analysis: basic proceeding, input and configuration parameter

In general, a coupled change identifies a pair of edit steps which have hap-
pened in the same evolution scenario. It also identifies the changed model ele-
ments which are connected (either directly or indirectly) to each other and were
not just coincidentally changed in the same evolution scenario. We assume here
that trace links identify related model elements of the source and target model.

17



These are, together with the model differences for each evolution scenario, pro-
vided as additional input parameters of the coupling analysis (see Figure 4).

Let args(s) be the set of arguments of an edit step s. Basically, a pair of edit
steps (ssrc, stgt) is considered to be a coupled change, if we can find a pair of
arguments (asrc, atgt), with asrc ∈ args(ssrc) and atgt ∈ args(stgt), which are
connected via a trace link.
Additionally, domain-specific trace impact

Trace

Trace

cc st

Fig. 5. Example of a trace impact
pattern

patterns can be specified as optional inputs of
the coupling analysis. These patterns allow
to extend the search for coupled edit steps
to the “neighborhood” of elements which are
directly connected by a trace link. Consider
for instance our running example shown in
Figure 2. Here, trace links are only provided
for related states and components. However,
component connectors and state transitions
are also to be considered as related if the connected components/states are re-
lated. This can be specified by a trace impact pattern as shown in Figure 5, i.e.
the component connector labelled as cc and the state transition labelled as st
are implicitly related. Consequently, a pair of edit steps modifying occurrences
of cc and st, respectively, are to be considered as coupled.

Coupled changes are summarized over all evolution scenarios of the history
as follows: We construct a s-×-t matrix where s denotes the number of edit
operations available for instances of MMsrc and t denotes the number of edit
operations available for instances of MMtgt. A variable ai,j (i ∈ {1, ..., s}, j ∈
{1, ..., t}) is computed as the fraction of coupled edit steps of types i and j (i.e.
edit steps invoking edit operations represented by i and j, respectively) with
respect to all edit steps of type i being observed in the source model history.

4 Tool Support

We have prototypically implemented the analysis framework proposed in Sec-
tion 3 on the widely used Eclipse Modeling Framework (EMF) and the model
differencing engine SiLift [8, 9]. It is made available to the general public at the
SiLift website1 in order to enable other researchers to study the co-evolution of
any EMF-based models.

Adaption of the generic framework. In order to adapt the generic framework to
new modeling languages, i.e., to adapt it to a given source and target domain,
one has to configure the SiLift differencing tool chain. Primarily, suitable edit
operations for the source and target domain have to be provided. In SiLift, we
use the model transformation language and system Henshin [1] to implement
edit operations as declarative transformation rules, to which we refer to as edit

1 http://pi.informatik.uni-siegen.de/Projekte/SiLift/coevolution.php
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rules. Domain engineers can make use of the EMF-based meta-tool SERGe (SiD-
iff Edit Rule Generator) [10] in order to generate basic edit rules, which can be
derived from MMsrc and MMtgt, respectively. Basic edit rules can be comple-
mented by semantically rich complex edit rules such as refactoring operations.
Typically, many complex edit rules can be composed of basic edit rules generated
by SERGe.

Optionally, a set of trace impact patterns can be specified as additional input
for the coupling analysis. Trace impact patterns are also specified in Henshin.
We refer to these pattern specifications as trace impact rules. Trace impact rules
do not implement in-place transformations, but serve as specifications of graph
patterns which are to be found by the Henshin matching engine. Obviously, trace
impact rules have to be specified manually by a domain engineer.

PPU Case Study. In order to demonstrate the feasibility of our approach, we
have adapted the analysis framework to be used in the PPU(Pick and Place
Unit) case study [11], which provides several evolution scenarios of a laboratory
plant. In our previous work [4], we modeled each of the scenarios from two
different viewpoints using two types of modeling languages: A simple architecture
description language (SA) was used to model the system architecture, fault trees
(FT) were used to model undesired system states and their possible causes.

All configuration artifacts which are needed to adapt the analysis framework
to SA and FT models are available at the EnSure website2. In summary, we
identified 82 edit rules available for FT models, 69 of them could be generated
with SERGe. For SA models, we identified 42 suitable edit rules of which only
one had to be specified manually, all other 41 edit rules could be generated with
SERGe. In addition, we specified 6 trace impact rules serving as additional input
of the coupling analysis. Consequently, we were able to automatically generate
the results that have been produced by a manual analysis in our previous work
[4].

5 Related work

Most approaches to model co-evolution address the migration of different types of
MDE artifacts in response to meta-model adaptions. MDE artifacts which have
to be migrated are, for example, instance models [7], model transformations [14],
or syntactic and semantic constraints [3].

Only a few approaches address the evolution of multi-view models, which is
most often considered as a model synchronization problem. Solutions are often
based on the principle of bidirectional model transformations which are used to
derive incremental change propagation rules, e.g., [5, 16, 6]. Among them, the
approaches of Giese et al. [5] and Hermann et al. [6] are based on Triple Graph
Grammars (TGGs). TGG rules describe correspondences between elements of
source and target models together with the according forward and backward

2 http://www.iste.uni-stuttgart.de/rss/projects/ensure/co-evolution
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editing behavior. Bergmann et al. [2] present a novel type of model transfor-
mation to which they refer to as change-driven transformations. Change-driven
transformations are directly triggered by complex model changes and thus can
be utilized to specify sophisticated co-evolution patterns. A similar approach is
presented by Wimmer et al. [15].

In contrast to our approach, TGG rules and change-driven transformations
must be specified manually, whereas we intend to generate our co-evolution
rules. In fact, we believe that existing approaches based on TGGs, change-driven
transformations or similar techniques, can be also supported by our co-evolution
analysis framework. Up to the best of our knowledge, we are not aware of any
approach providing a framework to empirically study co-evolution by analyzing
the history of co-evolving models.

6 Conclusion and Future Work

Many approaches for consistently co-evolving models and other related MDE
artifacts have been proposed recently. Some are tailored to fixed source and
target domains while others are more generic and adaptable.

However, correlation and coupling of changes has not been researched in-
depth for many types of co-evolving (sub-)models. In order to close this research
gap, we focus on establishing a co-evolution analysis framework to analyze the
history of co-evolving models of arbitrary types. This will provide the foundation
for synthesizing co-evolution rules in an automated way. Although the analysis
framework still needs some configuration data as input, we conclude from the
PPU case study that this adaption to a dedicated source and target domain can
be done with moderate effort. Currently, the co-evolution rules which we finally
intend to use as input of a co-evolution framework (see Figure 1) still have to
be manually synthesized based on the information which is produced by the
analysis framework. Larger case studies are needed to evaluate how far we can
push the generation of co-evolution rules and how much training data is needed
to derive appropriate co-evolution rules.

On the one hand, these co-evolution rules can be used to configure existing
model synchronization frameworks in cases of domains where the co-evolution
process can be fully automated. On the other hand, co-evolution rules serve
as basis for a recommender system, which is able to handle semi-automated
co-evolution of models. The latter one is subject to our future work.
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Abstract. In Model-Driven Engineering (MDE) the modification of a metamodel
typically can invalidate many different sorts of artifacts. In order to mitigate the
pragmatic consequences of such problem, several coupled evolution techniques
have been introduced over the last few years mainly focussing on restoring the
validity of models, transformations, and editors. However, none of the proposed
techniques addressed the coupled evolution of metamodels and template-based
code generators, which has been largely neglected despite the relevance of such
systems. In an attempt to fill the gap, this paper presents an approach for the
coupled evolution of Acceleo-based templating including the OCL embedded in
its notation. The approach has been implemented and illustrated by means of a
running example.

1 Introduction

In Model-Driven Engineering [1] (MDE) the employment of metamodels is perva-
sive. They are used to formally describe a wide range of artifacts, including models,
transformations, concrete syntaxes, and editors. In essence, metamodels are at the core
of any modeling ecosystem and their management is therefore key to success. Simi-
larly to any software component metamodels are expected to evolve during their life-
cycle [2]. However, because of the dependencies between metamodels and the related
artifacts, modifying a metamodel might compromise the validity of the latters. Unfortu-
nately, restoring the validity of such artifacts in a semi-automated manner is intrinsically
difficult because it must consider both the purpose of the metamodel modification (i.e.,
updative, adaptive, performance, corrective or reductive) and the technical aspects (i.e.,
the when, where, what and how of changes) [3]. While several approaches already in-
vestigated the coupled evolution of models (e.g., [4,5,6]), transformations (e.g., [7,8,9]),
and editors (e.g., [7,10]), the coupled evolution of template-based code generators has
been largely neglected at the expense of reduced pragmatics.

In this paper, we propose an approach to the coupled evolution of metamodels and
template-based code generators. In particular, we provide a solution to the problem
of adapting Acceleo1-based templates when the metamodels of the input models are
changed. The proposed approach is able to adapt corrupted Acceleo templates and it
is performed by means of an ATL adaptor, i.e., a model transformation which takes
the metamodel changes (represented in an opportune model-based notation), the model

1 http://www.obeo.fr/pages/acceleo
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(a) Initial version (b) Evolved version

Fig. 1: OrgChart simple metamodel evolution

associated to the corrupted Acceleo template and returns the adapted template. The
approach presents many similarities to other approaches focussing on the adaptation of
other kinds of artifacts, however it presents also specific difficulties: a) all the possible
metamodel refactorings (see [11]) must be dealt by the adaptor, and b) Acceleo provide
model traversing facilities by means of the Object Constraint Language2 (OCL) whose
expressions must be adapted as well. Interestingly, to the best of our knowledge none
of the current approaches focussed on code-generators, despite the relevance they have
in a wide range of projects.

The paper is organized as follows. In Section 2 we clarify the context of this work,
exposing briefly Acceleo and the co-evolution problem using a real case study. In Sec-
tion 3 we propose the process for the resolution of the presented problem and we show
the models before and after the resolution. In Section 4 a related section is organized for
the comparison of the existing works and the presented one. We conclude also including
the future works in Section 5.

2 The coupled evolution problem in model-to-text transformations
Almost any artifact involved in a model-driven development processes at different ex-
tent depends on the considered metamodels. Dependencies can emerge at different
times during the metamodel life-cycle, and with different degrees of causality depend-
ing on the nature of the considered artifact. An ecosystem of modeling artifacts and
tools developed atop of a metamodel, like the OrgChart metamodel shown in Fig. 1.a
and presented later in the paper, is a living set of artifacts working together and built
on the top the considered domain. For example graphical and textual editors might
be developed to support the specification of OrgChart models. Model transformations
might be also developed to generate target models or code out of source OrgChart mod-
els. Moreover, the Acceleo-based WebPages code generator is one of the possible code
generator used to generate target Web pages from source OrgChart models.

When metamodels are changed e.g., to satisfy unforeseen requirements or simply to
better represent concepts of the considered domain, the already existing artifacts might
be compromised and they have to be adapted in order to recover their conformance
with the new version of the changed metamodel. The metamodel evolution problem
and the consequent ecosystem migration has been discussed [12] and to the best of our
knowledge the adaptation of Acceleo-based generators has not been investigated yet
and it represents the main goal of this paper.

2 http://www.omg.org/spec/OCL/
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Fig. 2: Sample Acceleo templates

The remaining of the section is organized as follows: an overview of Acceleo is
given in Section 2.1. Section 2.2 introduces the problems related to the adaptation of
Acceleo-based transformations according to the changes operated on the corresponding
metamodels.

2.1 Acceleo-based model-to-text transformations

Acceleo is a model-to-text transformation tool typically used to develop code genera-
tors. Acceleo generators are based on templates that identify repetitive and static parts
of the applications, and embody specific queries on the source models to fill the dy-
namic parts. Fig. 2 shows a fragment of the Acceleo template that has been developed
to generate graphical representations of source OrgChart models as shown in Fig. 3.
In particular, the template generates HTML and Javascript code that uses the Google
Chart API3 to get the chart representations like the one in Fig. 3.b from source orga-
nizational models. Each Acceleo-based text generator starts with the specification of a
module referring to the metamodel that will be used during the generation process (see
line 2 in Fig. 2). Lines 3-32 consist of the template used to transform instances of the
President metaclass in Fig. 3a. In particular, for each president in the source model a
corresponding HTML file is generated (see line 5). The file name is obtained from the
attribute companyName in the aPresident variable, that is an instance of President.

From line 8 to 17 the template consists of static JavaScript code to create the chart.
Interestingly, lines 18 to 21 consist of an iteration that creates the rows related to the

3 https://developers.google.com/chart/
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members to be represented as boxes in the charts. Each row contains information taken
from the Member instance e.g., the name and the role. Once the president element
has been transformed, the other members are generated by means of the template gen-
erateSubMembers (see lines 33-44)specifically developed to manage instances of the
metaclass Member. Such a template iterates on the subemployees relations in order to
generate corresponding boxes.

2.2 Invalidating Acceleo-based templates with metamodel evolution

As previously mentioned, existing modeling artifacts might be affected by the changes
operated on the corresponding metamodels, and Acceleo templates are not an option.
For instance, the metamodel evolution shown in Fig. 1b compromises the Acceleo tem-
plates previously analyzed that become invalid in different points. In particular, the new
version of the OrgChart metamodel has been obtained by operating the following meta-
model change patterns [6]:

i) a new metaclass with name Company has been added with the attribute company-
Name moved into it. Such a modification refers to the extract metaclass pattern;

ii) the attribute address in the initial Member metaclass has been removed by applying
the remove attribute pattern;

iii) the reference boss has been renamed as supervisor by applying the rename refer-
ence pattern.

Because of such changes the templates presented in the previous section are in-
valid and cannot be applied on models conforming to the new version of the OrgChart
metamodel. In particular, the references to the companyName attribute (e.g., see the ex-
pression ”aPresident.companyName” at line 5 in Fig. 2) have to be migrated since the
attribute has been moved to a new metaclass. A similar problem occurs at lines 36-42
that refers to the attribute address that has been removed. Finally, lines 35-41 have to be
also migrated since they refer to the feature boss that has been renamed as supervisor.

Adapting Acceleo templates without a proper supporting can be a strenuous and
error-prone task. In the next section we propose an approach based on model-differencing
and model transformations that under certain conditions is able to automatically adapt
affected Acceleo templates.

(a) Source OrgChart model (b) Generated HTML5+JS chart

Fig. 3: Simple OrgChart model and corresponding graphical representation
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Fig. 4: Adaptation process

3 Adaptation of Acceleo templates

In this section we propose an approach able to adapt Acceleo templates that have to
be migrated because of changes operated on the corresponding metamodels. The ap-
proach is based on the process shown in Fig 4 and it resembles the techniques we have
already applied to adapt ATL transformations [7], TCS specifications [13], and GMF
editors [10], that are different kinds of artifacts having the same co-evolution problem.
In particular, the adaptation process consists of the following main activities:
. Difference calculation, given two subsequent versions of the same metamodel, their
differences are calculated to identify the changes which have been operated on the first
version of the model to obtain the last one. The calculation can be operated by any of
the existing approaches able to detect the differences between any kind of models, like
EMFCompare 4;
. Difference representation, the detected differences have to be represented in a way
which is amenable to automatic manipulations and analysis. To take advantage of stan-
dard model driven technologies, the calculated differences should be represented by
means of another model[14];
. Generation of the adapted Acceleo templates, the differences represented in the dif-
ference model are taken as input by the Acceleo Adapter Transformation able to adapt
the source templates with respect to the operated metamodel modifications.

Concerning the last step of the process it is important to recall that metamodel
changes can be classified as follows [6,9]:
. non-breaking changes: changes that do not break existing Acceleo templates that are
still valid with the new version of the metamodel;
.breaking and resolvable changes: changes that affect the validity of existing Acceleo
templates but that can be automatically adapted to be applied on models conforming to
the new version of the metamodel;
. breaking and unresolvable changes: changes that affect the validity of existing Ac-
celeo templates and user intervention is required to migrate them.

By considering the previous classification, the adaptation process shown in Fig. 4 is
able to migrate Acceleo templates only in case of breaking and resolvable changes. In
case of unresolvable changes, comments are added in the generated templates in order
to highlight the parts of the templates that have to be fixed by developers. Because
of space limitations, in this paper we do not list the catalogue of metamodel changes
according the classification above and interested readers can refer to [6] for a detailed
discussion. In the remaining of the section we give some details about the representation

4 EMFCompare: http://www.eclipse.org/emf/compare/
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Fig. 5: Delta model representing the differences between the metamodels in Fig. 1

of metamodel differences (Section 3.1) and about the management of some breaking
and resolvable changes (Section 3.2).

3.1 Representation of metamodel changes

The differences between different versions of a same metamodel are represented by ex-
ploiting the difference metamodel concept, presented by some of the authors in [15].
In particular, given two Ecore metamodels, their difference conforms to a difference
metamodel MMD derived from Ecore by means of a model transformation as follows:
for each class MC of the Ecore metamodel, the additional classes AddedMC, Delet-
edMC, and ChangedMC are generated in the extended Ecore metamodel by enabling
the representation of the possible modifications that can occur on domain models and
that can be grouped as follows: i) additions, new elements are added in the initial meta-
model; ii) deletions, some of the existing elements are deleted, and iii) changes, some
of the existing elements are updated. Fig. 5 shows a fragment of the model representing
the differences between the metamodels in Fig. 1. For instance, the renaming of the
reference boss into supervisor, is represented by means of the ChangedClass named
Member that has the ChangedReference boss referring by means of the reference to the
new updatedElement to the reference named supervisor.

3.2 Acceleo Adapter Transformation

The adaptation of affected Acceleo templates is performed by means of an ATL trans-
formation that takes as input the model of the affected Acceleo templates, the difference
model representing the evolution of two subsequent versions of the same metamodel,
and generates the adapted Acceleo templates. The transformation consists of a con-
servative copy part, including rules that simply copy the not affected elements in the
template, and a migration part, consisting of one rule, each devoted to the management
of a specific metamodel change. A fragment of the developed transformation is shown
in Listing 1.1.Due to space limitations, Listing 1.1 reports only the rules managing
the change patterns discussed in Section 2.2. Following we will describe the rules of
the Acceleo Adaptater showing how the migration has been done on the template of
our case study. As can be seen in Fig. 6 the corrupted Acceleo template is injected in
a model with extension ”.emtl”, compliant to the Acceleo metamodel. In Figures 6a,
6b, excerpts of the templates and corresponding models have been reported (top is the
model injected from the template source in the bottom).

27



VII

1module AcceleoAdapter;
2create OUT:AcceleoMM from IN:AcceleoMM, InitialMM:ECORE, DELTA:DELTAMM, EvolvedMM:

ECORE;
3...
4rule PropertyCallExpExtractMC {
5 from s : AcceleoMM!PropertyCallExp (s.existExtractMC())
6 to t : AcceleoMM!"ecore::PropertyCallExp" (
7 ...
8 referredProperty <- s.getReferenceExtractMC(),
9 source <- t1

10 ),
11 t1 : AcceleoMM!PropertyCallExp(
12 source <- thisModule.VariableExpExtractMC(s.source),
13 referredProperty <- s.getReferredPropertyExtractMC()
14 )
15}
16lazy rule VariableExpExtractMC
17{
18 from s : AcceleoMM!VariableExp
19 to t: AcceleoMM!"ecore::VariableExp"(
20 ...
21 referredVariable <- t1
22 ),
23 t1 : AcceleoMM!"ecore::Variable"(..)
24}
25rule PropertyCallExp {
26 from s : AcceleoMM!PropertyCallExp
27 (not s.deletedEStructuralFeature() or not s.referredProperty.

isChangedEStructuralFeature())
28 to t : AcceleoMM!"ecore::PropertyCallExp" (
29 ...
30 referredProperty <- s.getReferredProperty()
31)
32}
33rule PropertyCallExpChanged {
34 from s : AcceleoMM!PropertyCallExp
35 (s.referredProperty.isChangedEStructuralFeature())
36 to t : AcceleoMM!"ecore::PropertyCallExp" (
37 ...
38 referredProperty <- s.referredProperty.getReferredPropertyChanged()
39)
40}
41...

Listing 1.1: Fragment of the Acceleo adapter transformation

PropertyCallExpExtractMC (lines 4-15 in Listing 1.1) is the matched rule respon-
sible for managing attributes involved in extract metaclass changes, like the attribute
companyName of the metamodel (Fig. 1a), cited in the template highlighted in Fig. 6a
line 5. The filter condition in this rule calls the existExtractMC helper that checks if he
considered attribute is involved in some extract metaclass change pattern. In this spe-
cific case, such a change pattern occurs because of the addition of the metaclass Com-
pany, the deletion of the attribute companyName, the addition of the reference com-
pany and the changed changed metaclass President. The execution of such rule on the
considered template generates two nested PropertyCallExps (see lines 8-14) for the
proper navigation of the extracted attribute, see Fig. 6b, where the expression ”aPres-
ident.company.companyName” corresponds to a nested element in the related model.
The PropertyCallExpExtractMC rule calls the lazy rule VariableExpExtractMC (see
line 12) that creates new VariableExp and Variable OCL elements. The value of re-
ferredProprerty (line 13) binding is set by the helper getReferredPropertyExtractMC
that retrieves the new reference according to the information available in the difference
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(a) Initial version
(b) Final version

Fig. 6: Fragment of the generateElement template

model. This rule is able then to migrate the expression aPresident.companyName to the
new expression aPresident.company.companyName.

The matched rule PropertyCallExp (line 25-32) is one of the conservative copy
rule for the elements in the templates that are not affected by the operated metamodel
changes. In fact, the rule condition at line 27 checks if the considered element is not
deleted or changed according to the information available in the difference model. At
line 30, the value of referredProperty is set by getReferredProperty that derives the
right reference. In our example this rule is responsible for the deletion of the expression
m.address (line 36 in Fig. 2) related to the deleted attribute address in the metamodel.

The matched rule PropertyCallExpChanged (line 33-40) manages reference renam-
ing changes as in the case of the reference boss renamed as supervisor in our metamod-
els (Figures 1a and 1b). The condition of the rule checks if the renaming is occurring
in the difference model, by using the helper isChangedEStructuralFeature. In this case
the new PropertyCallExp is created, setting the referredProperty with the new value
coming from the renamed element in the difference model, by using the helper ge-
tReferredPropertyChanged. For instance, the expression ”m.boss” in Fig. 2 (line 41),
referring to the renamed reference, is replaced with the expression ”m.supervisor”.

4 Related Work

Metamodeling ecosystems and coupled evolution have been presented in [12], explor-
ing the problem artefact by artefact and including the relation definition among them.
Coupled evolution of models and metamodel has been previously exhaustively treated
in [6,5,16]. These works focus on the problem of models migration when metamodel
changes. They use a model migration language, or an higher order transformation for
migrating models. These approaches use a conservative copy for the non-breaking
changes, like in our approach. Obviously the atifact kind is different but the intent is
the same. Moreover, transformations and metamodel co-evolution is another interesting
topic investigated in [8,17,9]. They propose methods and discussions about the prob-
lem that we have changing the metamodel which the transformations refer to. All those
works use the similar definitions for the classification of changes. Other kinds of arte-
facts defined on the top of the metamodel can be concrete syntaxes definitions, like
diagrammatic or textual. Also these artefacts have dependencies to the metamodel that
need to be restored when the metamodel evolves. In [7] and [10] those problems are
respectively treated proposing automation similar to the one described in this paper.
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This work is strictly related the OCL definition [18], since the migration part is in-
herent to the Object Constraint Language used by Acceleo for the model navigation
in the templates. The work developed for the migration of acceleo templates can be
the inspiration or partially reused in other migration of artifacts using OCL, like OCL
Query or OCl expression in ATL and so on. In [19] the authors have dealt with the
problem of constraints adaptation in order to be compliant to the evolution of their as-
sociated metamodels. Since maintaining OCL constraints can be a tedious task, Kahina
Hassam et al. propose to assist the developer to rewrite them after each evolution of
the associated metamodels. In [20], the authors presented an architecture to automate
coupled evolution on an arbitrary software domain. They compute equivalences and
differences between any pair of metamodels (e.g., representing schemas, UML models,
ontologies, grammars) to derive adaptation transformations from them, and they apply
these adaptations as step wise automatic transactions on the initial metamodel, to obtain
the final metamodel. These works are related for the OCL part that is in common with
our work. In [21] presents ChainTracker, a general conceptual framework, and model-
transformation composition analysis tool, that supports developers when maintaining
and synchronizing evolving code-generation environments. ChainTracker, gathers and
visualizes model-to-model, and model-to-text traceability information for ATL and Ac-
celeo model-transformation compositions.

5 Conclusions and future work
The problem of coupled evolution in Model-Driven Engineering represents one of the
major impediment for the practice of such software discipline. Several approaches have
been already proposed mainly focussing on the adaptation of models, transformations,
and - at different extent - editors. This paper extended existing techniques to the adapta-
tion of template-based code generators, because such kind of code generators are widely
used and part of routinary practices. In particular, the paper proposed an ATL adaptor
to consistently migrate Acceleo templates in accordance to the changes operated on
the corresponding metamodel. The main contribution of the paper consists in a) the
refactoring coverage which is extensive and considers the major refactorings classified
in [11]; and b) the migration of OCL expressions which are used by Acceleo for model
traversing. The approach has been implemented and is illustrated throughout the paper
by means of a running example. To the best of our knowledge, this is the first attempt in
addressing the problem of the coupled evolution of template-based code generators. Fu-
ture work includes the possibility of covering a part of the breaking and non resolvable
cases by introducing models with partiality and uncertainty borrowed from the area of
requirement engineering.
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Abstract. Model-to-text (M2T) transformation is an important part of
model driven engineering, as it is used to generate a variety of textual
artefacts from models, such as build scripts, configuration files, documen-
tation and code. Despite the importance of M2T transformation, build-
ing M2T transformations that scale with the size of the input model(s)
remains challenging because most contemporary M2T transformation
languages do not provide adequate support for incremental transforma-
tions. We have previously proposed the use of automatic signatures, as
a technique for source incremental transformations. In this paper, we in-
troduce user-defined signatures, which outperform automatic signatures.
We perform a comparative analysis of user-defined signatures with auto-
matic signatures, and non-incremental transformation by application to
an existing M2T transformation.

1 Introduction

Model-to-Text (M2T) transformation is a model management operation that
involves generating text (e.g., source code, documentation, configuration files,
reports, etc.) from models. As M2T transformations become increasingly pop-
ular for generating textual artefacts in software projects, so also is the concern
for building scalable M2T transformations [1]. According to Bennett et. al. [2],
software evolution is inevitable and it involves activities that are necessary to
fulfil the requirements of end-users. However, software evolution incurs costs as-
sociated with finding a subset of changed parts of the system model, analysing
the impact of the change, implementation of the change, re-validation of the
system [3]. For example, re-generation of text files upon making changes to a
source model should not take as much time as it took to generate the text files
in the first instance, and the process of re-generation should also be devoid of
redundant re-computations, i.e., files that are not affected by changes need not
be re-generated.

In our previous work [4], we proposed signatures for constructing efficient,
scalable M2T transformations. Signatures can be used to detect changes in source
model(s) and limit the execution of a transformation to the parts of the trans-
formation that are affected by the change(s). Signatures must be derived from
the transformation that is to be executed incrementally, and we have previously
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proposed automation for deriving signatures (which we now term automatic sig-
natures and discuss further in Section 3.3). In this paper, we reiterate and then
address the shortcomings of automatic signatures via user-defined signatures.
User-defined signatures have the further advantage of being more efficient than
automatic signatures (Section 5).

2 Related Work

Model transformation has been described as the heart and soul of MDE [5]. Al-
though little work has been done on incremental M2T transformation, there have
been a few published techniques on incremental model-to-model (M2M) trans-
formation. For example, Hearnden et. al. in [6] proposes an incremental method
which represents the trace of a transformation execution as a tree. The Hearnden
approach maintains an entire transformation context throughout all transforma-
tion executions, which allows propagation of changes between source and target
models by re-executing the transformation on computed model deltas. Other
incremental M2M approaches like PMT [7] synchronises models via trace links,
which contain information relating to the provenance of target model elements
with respect to source model elements. PMT is a rule-based M2M transforma-
tion language and the transformation engine uses identifiers to match source
model elements to target model elements.

To the best of our knowledge, Xpand1 is the only contemporary M2T lan-
guage that supports source incremental transformation. Incremental generation
in Xpand is a threefold process: generating trace links; performing model differ-
encing; and analysing the difference model with respect to generated files. The
generated trace links specify how source model elements are mapped to gener-
ated files. The difference model enables the transformation engine to identify the
elements of the model that have changed. Model differencing is achieved in one
of two ways: either by listening to changes made by the user in a model editor,
or by comparison of the current and previous versions of the input model. Once
the difference model is constructed, impact analysis is performed to determine
which changed model elements are used in which templates. A template is re-
executed if it uses a model element that has changed. The approach to incremen-
tality employed by Xpand cannot utilise additional information about change,
which might be known only to the developers. As we shall see in Section 3.3,
user-defined signatures can utilise domain-specific information to increase the
efficiency of incremental transformation.

3 Background: Incremental M2T

Incrementality in software engineering refers to the process of reacting to changes
in an artefact in a manner that minimises the need for redundant re-computations.

1 http://eclipse.org/modeling/m2t/?project=xpand
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Generally, incremental model transformations reduce the amount of time and
computation expended on propagating changes from inputs to outputs.

In the context of M2T transformation, incrementality provides mechanisms
for the transformation engine to only re-invoke templates that are affected by
changes to the input model. Incrementality in M2T transformation is categorised
into 3 types [8]: user-edit preserving, target, and source incrementality. User-edit
preserving incrementality prevents loss of user-crafted content by mixing gen-
erated text with manually written text. Target incrementality updates already
generated targets with output from the current transformation execution after
having invoked all templates. Source incrementality, unlike target incremental-
ity, isolates modified model elements and invokes only those templates that are
affected by the changes.

Many contemporary M2T transformation languages support user-edit pre-
serving and target incrementality, but not source incrementality. Developing a
sound theory of source incrementality is an open research challenge, and is cru-
cial for significantly improving the efficiency of transformations that are complex
(i.e., operate on large or densely connected models).

3.1 Running Example

In the following section, we demonstrate the use of signatures in an M2T tem-
plate language. Figure 1 is a simplified model of a person’s contact list on a
social media platform (e.g. Twitter), which consists of: persons, the people that
a person follow (follows), and that people that follow a person (followers). The
follows - followers relationship is asymmetric: following a person does not imply
that they must follow you. The model serves as input to the template in List-
ing 1.1. The generation of a person’s follower list or following list represents a
simple example of a process that would benefit from incremental generation. In
the remaining sections, we demonstrate the use of signatures with our running
example.

(a) Metamodel. (b) Example input model.

Fig. 1. Example input model.

34



3.2 Signature-Based Source Incrementality

Signatures are concise, lightweight proxies for templates that indicate whether or
not a change to an input model will affect the output of a template. Signatures
can be used to detect changes in input model(s) and limit the execution of a
transformation to the templates that are affected by the change(s). Signatures
represent a dynamic identifier for a model element in relation to a particular
template that consumes data from the model element. The composition of a
model element’s signature depends on what attributes of the model element
are accessed in a template. For example, in Figure 1, a person has age and
name attributes. Consider the template shown in Listing 1.1, that is used to
generate a person’s followers and followed list from the person model in Figure 1.
The template accesses the name attributes of the person, the person’s followers
and persons followed by the person. Therefore, the signature of person with
respect to the template can be the values of the properties that are accessed by
the template: person.name, person.follows.name and person.followers.name.
Note that the age attribute does not form any part of the signature, as this
template is not dependent on the value of the any person’s age. That is to say,
a signature is a proxy for a specific template, and captures only those parts of
the model that are used by that template.

1 [template public personToFile(p : Person)]
2 [file (p.name)/]
3 Person [p.name] has the following followers:
4 [p.followers.name] and follows the following persons:
5 [p.follows.name].
6 [/file]
7 [/template]

Listing 1.1. Simple template-based M2T transformation template specified in OMG
MOFM2T syntax

We represent a signature as a sequence. Each element in the sequence is
either a primitive value, or a further sequence. During the computation of a
signature, each model element property value that makes up the composition
of a signature is added to the signature sequence. For instance, considering
the input model in Figure 1, suppose that a person’s signature is calculated
from the name of person and the name attribute of person’s followers and per-
sons followed by the person. The initial signature for ‘andy’ using a flat struc-
ture will be the sequence: {“Andy Brown”, {“John Godwin”}, {“Simon
Hayes”}}. Note that the second and third elements of the sequence are also se-
quences because the follows and followers references are multi-valued. At the end
of each transformation execution, the signatures (i.e., sequences) are persisted
in non-volatile storage, such as a relational database or XML document.

During the first execution of an M2T transformation, a template’s signature
is evaluated each time the template is invoked, and the resulting signature value
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is written to disk along with a unique identifier (typically, the model element’s
id) for the model elements that produced that signature value. In subsequent
executions of the M2T transformation, the previous signature values are used
in determining which templates need to be re-executed, and for which model
elements. More specifically, a change in the model results in a signature value
that differs from the equivalent signature value in the previous execution of a
template on that model element. A signature value that has changed indicates
that a template must be re-executed on a model element in order to propagate
the change (to the generated text).

We have seen how signatures are stored and how they are used, but not how
they are computed. The subsequent sections discuss two approaches to styles of
signature which differ by the way in which that they are computed: automatic
signatures and user-defined signatures.

3.3 Automatic Signatures

Automatic signatures are computed by concatenating the dynamic text-emitting
sections of a template. The transformation engine strips a template of its static
sections and invokes the template made up of only the dynamic sections, es-
sentially capturing property accesses of model elements specified or expressed
in templates. The templates are analysed at runtime. For example, the auto-
matic signature computed by executing template in Listing 1.1 on ‘andy’ is the
sequence: {“Andy Brown”,{“John Godwin”},{“Simon Hayes”}}.

Automatic signatures require that a template is invoked at least once to
re-compute a signature and compare the newly computed value to the signa-
ture value stored during the last successful transformation execution. Through
an empirical study in our previous work [4], automatic signatures have been
demonstrated to be an effective way of achieving source incremental transfor-
mations, leading to significant (30 - 50%) reduction in execution time of re-
transformations.

1 [template public personToFile(p : Person)]
2 [file (p.name)/]
3 [p.name/]
4 [if (p.followers.isEmpty())]
5 has no followers
6 [else]
7 has some followers
8 [/if]
9 [/file]

10 [/template]

Listing 1.2. Example of a template-based M2T transformation, specified in OMG
MOFM2T syntax.

Automatic signatures however do not always guarantee the correctness of
re-generated text. For example, in Listing 1.2, the only dynamic text-emitting
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section in the template emits the name of a person. Therefore, the signature
of person is always person.name. However, this signature is not sensitive to all
possible changes to person that could result in different text being generated,
such as the followers reference becoming non-empty. Suppose that the model
evolves such that person ‘andy’ has no followers. The signature of ‘andy’ will
remain constant (“Andy Brown”) despite the change to the model, and the
obvious need to re-generate the text file. The transformation engine using the
automatic signature cannot detect the change, and thus, no template invocation
is performed.

Templates that access properties in static sections, such as the one shown
in Listing 1.2, tend to result in the computation of signature values that do no
always accurately reflect a change in the model that necessitate re-generation of
text.

4 User-defined Signatures

User-defined signatures give more control to the developer by allowing them
to express the way in which a signature is computed. Ideally, a user-defined
signature accesses precisely the same model elements (and precisely the same
properties of those model elements) as the template for which the signature
is a proxy. The responsibility for ensuring the signatures are representative of
the templates rests with the transformation developer. Unlike automatic signa-
tures, user-defined signatures give more control to the developer, and are more
lightweight. As such user-defined signatures are heavily reliant on the developer’s
knowledge of the transformation.

For example, the transformation in Listing 1.2 which the automatic signa-
ture finds problematic can be addressed with the user-defined signature shown
on line 2 in Listing 1.3. (Note that user-defined signatures necessitate extending
the M2T language with an additional language construct). The user-defined sig-
nature is computed using the same parts of the model as the template, including
whether or not the person has any followers. When the template is executed on
person ‘andy’, the signature evaluates to {“Andy Brown”,false}, which is
a complete reflection of the property accesses made in the template. The sig-
nature expression instructs the transformation engine to evaluate the signature
from the expression provided by the developer. In this case, the developer is care-
ful to include all model element properties whose change are likely to result in
re-execution of the template. The advantage of this approach is that signatures
can include parts of the model that are accessed in static sections of templates,
as well as those that are accessed in dynamic sections.

4.1 Drawbacks of User-defined Signatures

Despite the effectiveness of user-defined signatures at addressing the drawbacks
of automatic signatures, they are not without their own drawbacks. In particular,
user-defined signatures are prone to human error. For example, a transformation
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1 [template public personToFile(p : Person)]
2 [signature : Sequence{p.name,p.followers.isEmpty()} /]
3 [file (p.name)/]
4 [p.name/]
5 [if (p.followers.isEmpty())]
6 has no followers
7 [else]
8 has some followers
9 [/if]

10 [/file]
11 [/template]

Listing 1.3. Example of user-defined signature in a template-based M2T
transformation, specified in OMG MOFM2T syntax.

author might specify a signature expression that is incomplete. An incomplete
signature expression omits at least one property access made in the template,
and cannot be relied upon to produce signatures that are correct or that are
true reflections of the property accesses made in a template. We address this
challenges by applying runtime analysis of templates to provide helpful hints
to the developer, which the developer can use to assess the correctness and
completeness of their signature expressions.

Additionally, although user-defined signatures may appear to be simple, spec-
ifying signature expressions that are complete and correct reflections of model
element property accesses in a template can be a onerous task, especially for
complex templates involving large models. Furthermore, writing signature ex-
pressions for templates that access a large number of model element properties
can result in very long lists of attributes in the signature expression, which may
be unappealing to the developer and difficult to manage. Addressing this chal-
lenge remains as future work, but we anticipate providing built-in operations
that make it easier for developers to declaratively express which parts of the
input model should be traversed to compute a user-defined signature.

4.2 Runtime analysis for User-defined Signatures

Contemporary M2T languages limit the applicability of static analysis tech-
niques to the languages, because most M2T languages are dynamically typed
and support features such as dynamic dispatch [4]. Instead we have applied
partial analysis of templates at runtime to determine model element properties
accessed in a template. The property accesses made in the template then serve
as useful hints to the developer for assessing the correctness and completeness
of the specified signature expression composition. Property access hints are par-
ticularly useful during initial execution of a transformation, because the first
transformation execution is not incremental, but the hints help the developer
immediately assess the signature expression, perhaps still with little knowledge
of the transformation. Therefore, on subsequent transformation executions, the
developer is less concerned about the correctness of the signature expressions,
provided the template has not been modified.
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In addition to this, property access hints can capture model element property
accesses used to control template execution flow. For instance, in the example
shown in Listing 1.2, the runtime analysis will capture and suggest to the devel-
oper to include ‘person.followers’ in the signature expression.

5 Experimental Evaluation

To assess the performance benefits of user-defined signatures, and compare their
performance with automatic signature generation and non-incremental transfor-
mation, we extend our experiment from our previous work [4]. This work used
the Pongo2 M2T transformation, which is implemented in EGL and used to
generate data mapper layers for MongoDB relational databases. For this exper-
iment, we generate Java code from the GmfGraph Ecore model obtained from
the Subversion repository of the GMF team. GmfGraph Ecore model is a prime
candidate for this experiment because it represents a project that has evolved
independent of the signature implementation in EGL, which also means that our
knowledge of GmfGraph in relation to the Pongo transformation templates is
limited. User-defined signature was prototyped by extending the syntax of EGL
with support for a user-defined “signature” expression per transformation rule.
An example of user-defined signature expression is shown on Line 2 in Listing 1.3.

The results in Table 1 show the difference in the number of template invoca-
tions and total execution time between non-incremental transformation, and in-
cremental transformation using automatic and user-defined signatures. Expect-
edly, due to the initial overhead of computing, processing, and storing signatures,
the first execution of the transformation in incremental mode takes longer to ex-
ecute than in non-incremental mode. However, in subsequent executions of the
transformation, the incremental mode out-performs the non-incremental mode:
on average execution of the incremental mode requires 66% of the time taken
for non-incremental mode when using automatic signatures and 52% when us-
ing user-defined signatures. It was also observed that in two instances (versions
1.25 and 1.30 of the input model), the user-defined signatures resulted in more
template invocations than the automatic signatures. This suggests that the au-
tomatic signatures, in these particular instances were insensitive to changes in
the input model, and it also highlights the shortcoming (discussed in Section 3.3)
of automatic signatures.

Furthermore, the results of the experiment indicate that signatures, gener-
ally, are effective means of achieving source incrementality. For instance, signa-
tures allow the transformation engine to selectively invoke only the templates
that are affected by changes to an input model. This was observed in versions
1.31 and 1.32 of the input model, when the transformation did not invoke any
template using the signatures (both user-defined and automatic), whereas the
non-incremental transformation invoked all the templates in the transformation.

2 https://code.google.com/p/pongo/
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Non-Incremental Incremental (Auto) Incremental (User-def)
Version Changes (#) Inv. (#) Time (s) Inv. (#) Time (s; %) Inv. (#) Time (s; %)
1.23 - 72 2.16 72 2.69 (125%) 72 2.17 (100%)
1.24 1 73 1.93 1 1.38 (93%) 1 1.10 (57%)
1.25 1 73 1.89 2 1.47 (78%) 4 0.95 (50%)
1.26 1 74 2.09 1 0.73 (35%) 1 0.79 (38%)
1.27 10 74 1.89 44 1.27 (67%) 44 1.11 (59%)
1.28 10 74 2.16 44 1.63 (75%) 44 1.19 (55%)
1.29 14 74 2.05 14 1.67 (81%) 14 1.00 (49%)
1.30 24 77 2.21 35 1.45 (66%) 37 1.29 (58%)
1.31 1 77 2.13 0 0.97 (46%) 0 0.90 (42%)
1.32 1 77 2.13 0 0.81 (38%) 0 0.48 (23%)
1.33 3 79 1.88 3 0.71 (38%) 3 0.72 (38%)

22.52 14.78 (66%) 11.70 (52%)

Table 1. Results of using non-incremental and incremental generation for the Pongo
M2T transformation, applied to 11 historical versions of the GMFGraph Ecore model.
(Inv. refers to invocations)

5.1 Discussion

The results from our experiments indicate that signatures are viable means of
providing source incremental M2T transformations. For the Pongo transforma-
tion, we observed that the lowest execution time for the automatic signatures
was as little as 35% of the execution time in non-incremental mode, and for the
user-defined signatures, the execution time was as little as 23% of the execution
time in non-incremental mode.

User-defined signatures often execute faster than automatic signatures. Apart
from the overhead of storing, retrieving, and comparing signatures, automatic
signatures also incur an additional overhead of invoking templates to calculate
signatures. On the other hand, user-defined signatures are concise EOL3 expres-
sions that result in relatively small sized string values, compared to automatic
signatures that contain all dynamic sections of a template.

6 Conclusion

We have proposed user-defined signatures, which provide source-based incremen-
tal M2T without the downsides of automatic signatures which were the subject
of our previous work. We have illustrated, with the aid of an example, that
user-defined signatures can effectively handle transformation templates that au-
tomatic signatures find problematic. Additionally, through empirical evaluation,
we have showed that user-defined signatures are often more efficient than both
non-incremental transformations, and incremental transformations that use au-
tomatic signatures.

In future work, we will make it easier for developers to specify user-defined
signatures by providing built-in operations that traverse a subset of a model and
collect appropriate signatures for all of the elements that have been traversed.
3 http://www.eclipse.org/epsilon/doc/eol/
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These operations will relieve the developer of the responsibility of specifying large
or complex signatures. Additionally, we will extend our empirical evaluation to
include several further M2T transformations that are used in industry, such as
those found in the EMF4 and GMF5 projects.
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Abstract. The evolution of a software language (whether modelled by
a grammar or a schema or a metamodel) is not limited to development
of new versions and dialects. An important dimension of a software lan-
guage evolution is maturing in the sense of improving the quality of its
definition. In this paper, we present a maturity model used within the
Grammar Zoo to assess and improve the quality of grammars in a broad
sense (structural models) and give examples of activities possible for
each level.

1 Motivation

Grammar Zoo [41] is an initiative aimed at sys-

Fig. 1. Grammar Zoo,
http://slps.github.io/
zoo

tematic collection of grammars in the broad sense
— structural definitions of software languages; anno-
tation of each grammar with information about its
source, original format and authors; complementing
each grammar with details about how it was obtained;
documenting usages of each grammar — its deriva-
tives, tools, documents and other grammars; and fi-
nally making all these grammars publicly available in
a variety of formats. It has many possible uses:

Interoperability testing. Suppose that we have
identified multiple grammars of the same intended
language that correspond to its different frontends.
To test their interoperability, one can do code reviews or develop a test suite,
but a better, more systematic, way is to generate such a suite and compare or
converge those grammars automatically. An approach for that has been pro-
posed in [9] and evaluated by two case studies involving 4 Java grammars and
33 TESCOL grammars, which were extracted from parser specifications and
became one of the early fragments of the Grammar Zoo. Its replication with a
simplified algorithm applied to adapted grammars, used 28 grammars of different
languages from the ANTLR grammar repository [3].

Grammar recovery heuristics. There have been many successful attempts
of reusing grammatical knowledge embedded in various software artefacts like
parser specifications, data format descriptions or metamodels. Some focused
on idiosyncratic properties of the source notation, others tried to generalise
the relaxed ways of treating the baseline artefact with heuristic rules for split-
ting/combining names, matching parentheses, etc [39]. The more grammars can
be recovered with heuristics, the better validated and motivated they become.
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Empirical grammar analysis. Grammar metrics is a mature field of re-
search, but more elaborate characterisations such as “top” or “bottom” nonter-
minals are common in grammar-based papers. When the repository of various
grammars has grown to a reasonable size and comprised over 500 grammars,
the micropattern mining methodology [11] was applied to infer characterisations
by mining this repository [40]. They can in turn be used for clustering gram-
mars based purely on statistical data about sets of indicators and for triggering
grammar mutations [3].

Sample-based grammar engineering. Crafting a good grammar suitable
for the intended task is not an easy activity: is must not be too restrictive or
too permissive, must be compatible with the intended technology, reasonable
in terms of performance, readable for a human expert, machine processable,
etc (some of the aspects obviously being more relevant under different circum-
stances). Having access to a large corpus of existing successful grammars (to-
gether with the information about their actual applications, of course), could
aid the grammar engineer either implicitly (essentially by “code reading”) or ex-
plicitly (by reusing an existing grammar as a starting point for developing a
domain-specific language).

Grammar components. There is ongoing work on identifying semantic
components of software languages that correspond to concepts like loops, vari-
ables, exception throwing, etc [16]. By using a combination of program slicing
and clone detection techniques on a large enough corpus, we can identify syn-
tactic components of software languages and investigate whether there is any
correspondence with semantic components.

Since the first days of the Grammar Zoo it became painfully clear that there
is no general agreement about maturity of grammars: even a grammar in a
narrow sense (say, a parser specification) can be optimised with one parsing
technology in mind while rendering it useless for other technologies, and for
grammars in a broad sense the meaning behind measurements becomes even
more obscure. In early publications around the project there was also mentioning
of the Grammar Tank, a sibling project collecting smaller grammars of DSLs —
it seemed unreasonable to put a tiny grammar extracted from a ten-line Haskell
ADT definition right next to a “real” grammar defining a programming language
like C# or C++, extracted from a 1000+ page manual. Later we imported
grammars from the Atlantic Metamodel Zoo, from the Relax NG collection and
many other places, adding to the complexity and heterogeneity. In the end, all
grammars have been merged into one collection, each annotated with all kinds
of metadata. One of the important annotations is a maturity level, which we
define essentially as the level of details and consistency and a measure of how
close the grammar is to actual use, notwithstanding its domain and intent.

The next session introduces the usual tools available for grammar engineering
activities. §3 actually presents the levels of the maturity model. In §4, we give
an example of how a grammar can be used in practice, referring to its possible
maturity level. §5 discusses related work and §6 concludes the paper.
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2 Grammar Manipulation

The arsenal of grammar manipulation is rather large, and for the sake of better
understanding of the rest of the paper, we name a few important methods. All
of them are to some extent represented in the GrammarLab1 library and useful
for programming in the Rascal metaprogramming language [21].

XBGF [25] is an operator suite for programmable grammar transformations.
It consists of more than 50 operators like renameN for renaming a nonterminal
or unfold for unfolding a nonterminal reference to its definition. Operators have
universally defined semantics and known properties — some can be proven to be
language-preserving refactorings, others extend the defined language or restrict
it. Transformations are programmed against this operator suite by choosing an
operator and providing appropriate arguments for it to make it applicable to the
grammar being transformed — i.e., unfold(n) is a valid transformation step, if
n is a nonterminal present in the grammar. Similar techniques exist for other
grammar manipulation frameworks [6,22,23].

SLEIR [42] is a similar suite for grammar mutations [38], which are gen-
eralised transformations automatically applicable on a large scale: enforcing a
normal form, changing a naming convention, systematically refactoring harmful
constructions into equivalent harmless ones are examples of grammar mutations.

Grammar analysis is a research direction on its own, where based on ob-
servable facts obtained from grammar metrics [31] or micropatterns [40] we can
make estimations and draw conclusions about a grammar’s suitability for spe-
cific tasks, compatibility with a technology, backwards compatibility through
versions, interoperability among various tools, etc.

The last mentioned group of instruments was important for creating the
Grammar Zoo and growing it, and less so for using it as such. Grammar ex-
traction obtains grammars in a broad sense from software artefacts containing
grammatical knowledge (source code, documentation, protocol definitions, alge-
braic data types, databases, etc). Grammar recovery [24,34,39] works similarly
with sources using deceivingly familiar notations in an inconsistent or otherwise
unexpected way — manually written, out of date, incomplete, etc.

3 A Quality/Maturity Model for Grammars

We distinguish among the following grammar levels:

� A grammar is fetched if it can be put in a file which we claim to con-
tain grammatical knowledge. A fetched grammar is usually written in an
(E)BNF-like notation, but it can also be an XML Schema schema, an Ecore
model, a parser specification, etc. A grammar from an undisclosed ISO stan-
dard or a grammar built in a proprietary tool is not fetched, since we have
no possible way to extract the knowledge from it. A compiler is therefore not
a fetched grammar since the grammatical knowledge is ingrained too deep

1 GrammarLab: http://grammarware.github.io/lab.
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in it and requires special techniques to be fetched. The sources of a com-
piler, however, can be considered fetched, since further extraction can be
semi-automated, and the result will depend mostly on the source and not on
the extraction algorithm. Hence, a corpus of programs in a given language is
also not a fetched grammar, but an APTA (Augmented Prefix Tree Accep-
tor) or a DFA (Deterministic Finite Automaton) constructed from it by a
grammatical inference algorithm, is a fetched grammar. A fetched grammar
can contain unreadable symbols, incorrect indentation, parts written in an
unknown notation or a natural language, or even be present in a form of an
image or a manuscript.

� A grammar is extracted, if it was fetched and then successfully processed
by a (hopefully automatic) grammar extractor, possibly also corrected of ty-
pographical, text recognition and similar errors and converted into a context-
free grammar or, more broadly speaking, to a Boolean grammar [29]. (Not
venturing beyond context freedom is simply a consequence of the current
lack of theoretical foundations for linking classic context-dependent gram-
mars to generalised types — in general, aligning the Chomsky hierarchy [4]
with Barendregt λ-cube [2]). An extracted grammar is suitable for auto-
mated processing: it can be pretty-printed in a range of different ways and
transformed by general means, without writing a tool specific for its pecu-
liar notation or format: syntax diagrams, Relax NG schemata, algebraic data
types, parser specifications all lose their notational differences when they are
being extracted, but they retain all structural peculiarities such as using a
particular style of recursion (syntax diagrams are incapable of expression left
recursion, and some parsing algorithms tend to avoid it as well), the lack or
presence of terminal symbols (anything that defines an abstract syntax, has
no terminals) or nonterminal symbols (classic regular expressions [20] have
no notion of named subcomponents), etc.

� A grammar is connected, if it was extracted and then processed to not
contain unwanted top sorts (defined but never used) and bottom sorts (used
but not defined). These two quality indicators were proposed in [33,34] and
discussed in more detail in [23] before being formalised as micropatterns [40].
Connecting a grammar can be done automatically with a mutation [38,42],
semi-automatically with a sequence of transformation steps, or by editing it
inline. Connecting is a simple procedure that allows to start making some
claims about the grammar, since it enables its formalisation (the classic
〈N , T ,P, s〉 model of a grammar requires it to have one known starting
symbol) and possible application of grammar-based algorithms (in particular
grammar-based test data generation expects the grammar to be connected
because otherwise it is futile to use any coverage criteria). In a broader
sense, a connected grammar always relies on some underlying mechanism of
testing or validation which ensures its general quality — as opposed to the
extracted grammar which can be an output of an automated extractor and
never checked nor inspected further.

� A grammar is adapted, if it is connected and then transformed towards
satisfying some constraints: it could be complemented with a lexical part,

45



or its naming convention can be adjusted, or certain metaconstructs can be
introduced to or removed from its syntax. The adaptation has a clear intent:
adding a lexical part can lead to automated generation of a parser or at least
a recogniser; conforming to a naming convention can enable the use of the
grammar in specific language workbenches, etc.

� A grammar is exported, if it was adapted and then a piece of grammarware
was generated from it. An exported grammar bidirectionally and possibly
nontrivially corresponds to a real piece of grammarware such as a compiler
or a code analysis or transformation tool.

Each Grammar Zoo entry has one fetched grammar: ones with less than
one are “non-entries” that can perhaps be referred to, but can under no cir-
cumstances be machine processed; having more than one fetched grammar can
happen for cases such as multiple websites mirroring one another, because an
additional check is required to assert them to be equal. If several extractors are
available (e.g., one straightforward one and one heuristic-based error-correcting
one), there can be multiple extracted grammars per entry. Similarly, there can
be several grammars of level connected and up per entry, varying per their ex-
tracted source and methods of processing. Especially different adapted grammars
per entry are common, since each of them corresponds to a specific intentional
adaptation project. At this point in the history of the Grammar Zoo we have
not yet experienced the need to explicitly distinguish the reason for adaptation
of each grammar: some are massaged for better readability, some adjusted with
parsing in mind, some are disambiguated [35], some adapted for testing pur-
poses [3,9,32], etc. We intentionally leave the hierarchy as general as it is, and
leave its extension to future work.

4 A Maturation Path

Suppose we would like to have a piece of grammarware to parse and analyse
programs in a particular software language — say, COBOL or PHP. Being con-
strained in time, we usually start by looking for existing grammars: once we find
one that seems reasonably suitable for our needs, we can declare it fetched. If
a fetched grammar of our intended language is already in the Grammar Zoo, it
can save us the search, the frustration from websites having been taken down,
as well as the ambiguity about the true source of the grammar.

In the simplest cases, grammar extraction methods and tools can be applied
to a fetched grammar with reasonable success. There is quite a collection of them
readily available within GrammarLab, and it is fairly straightforward to use
notation-parametric grammar extraction [39], if the input notation is anything
like BNF or EBNF; write out XSLT mapping templates, if the input notation
is XMI, XSD or anything from the XMLware technical space. If all available
methods fail, we can attempt to apply grammar recovery tools, which have
heuristics known to overcome frequent erroneous patterns. Once some reasonable
kind of non-empty grammar is obtained or if it was in the Grammar Zoo to begin
with, the grammar can be considered to be extracted.
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An extracted grammar can be processed further, analysed, transformed, ex-
ported, imported, visualised etc — there are many tools in the GrammarLab
that can do it directly, and they can also help to export it to a format readily
consumable by other metagrammarware. However, it does not mean that this
grammar would “work” there, whatever that might mean. There are some sen-
sible metrics, constraints and grammar analyses established in state of the art
grammar recovery [24,34], that are almost universally useful in improving the
quality of a grammar. For instance, we would like to identify the starting symbol
of a grammar, establish it being unique. Furthermore, for each parts unreachable
from it, we would like to make a decision and either remove them or connect to
the rest of the grammar. This is usually done by programming the correspond-
ing steps in XBGF [25], SLEIR [42], GDK [22], TXL [6] or any other grammar
manipulation language. This usually implies manual examination of a grammar
and its metrics by an expert, making the appropriate decisions and then doc-
umenting the changes. Once this is completed, we speak of having a connected
grammar.

The next step is grammar adaptation [23]: a goal-specific continuation of
grammar transformation activities. For example, if we have decided to parse and
analyse code in COBOL or PHP, this is our goal, and in case of Rascal [21] it will
mean having a complete concrete syntax specification and a suitable algebraic
data type. Both can be obtained from a connected grammar, but the adaptation
strategies are different. For a syntax specification, we need to add the lexical
part, specify layout, increasingly disambiguate the grammar, etc. For a data
type, we should think of its suitability for specifying our analyses later, and we
can easily eliminate all terminal symbols and massage the remaining abstract
grammar to enable more concise and readable patterns. These streaks of activity
end up with an adapted grammar each.

Finally, our two grammars (or a syntax specification and a data type, or a
grammar and a schema — terminology may vary) are ready to be exported —
we do this with out of the box renderers, possibly followed by manual polishing
such as adding documenting annotations and inserting copyright notices. It is
not unusual for an exported grammar to be linked to a specific tool which it
forms a part of.

5 Related Work

Lämmel and Verhoef [24] were the first to propose the notion of a grammar level2
to specify a quality level or a recovery status of a grammar. We have conceptually
inherited that hierarchy and extended it to accommodate more important details.
Their level 1 broadly corresponds to an extracted grammar in our model, level
2 to connected, levels 3 and 4 (depending on how thorough it has been tested)
to adapted. An exported grammar is at level 5 if it either demonstrates the
absence of manual steps in grammar deployment, or documents them by its
2 These “grammar levels” are essentially CMM-like levels applied to grammars, unre-
lated to well-known “grammatical levels” used for a range of grammar metrics [18,31].
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existence. Our contribution lies in rethinking and generalising this hierarchy
for all grammars in a broad sense and empirically applying it to hundreds of
grammars (as opposed to CFGs of one or two programming languages).

El-Attar and Miller [7] have shown how antipattern detection can be used
to improve the quality of models (in their case, use case models, but a similar
technique for metamodels is not unthinkable). This approach is conceptually very
similar to a typical grammar engineering activity when the language engineer
identifies which metaconstructs are incompatible with the technology indended
for use, and refactors them away. At the current state of software language
engineering, the first part is the most appropriate to do with micropatterns [40]
and the second part with grammar mutations [42].

France and Rumpe [10] have investigated the relation between quality and
MDE from the pragmatic point of view and found out that one of the biggest
advantages comes from the opportunity to reuse previously assessed models (and
submodels) of known quality in the development of new ones. The same argu-
mentation, lifted to the metalevel, can be found in the first section of this paper
when we show some possible uses for the Grammar Zoo.

It is impossible to talk about quality without mentioning ISO/IEC 9126 [15],
an official standard specifying quality of a software system as a product (hence,
also a grammarware system). It identifies quality characteristics such as function-
ality, reliability, usability, efficiency, maintainability, portability, and continues
to break them down into smaller pieces. There have been some attempts to for-
malise and detail parts of it up the the point of implementability — in particular,
maintainability has received a lot of attention [13], but the general agreement
is to treat the standard as a set of guidelines and considerations, not as an
immediately implementable model. An extensive review of research activities
concerning the quality models in the particular context of model-driven software
development, was made about papers in top conferences in 2000–2009 [28].

Welker’s maintainability index in the Coleman-Oman model is often claimed
useful for quickly assessing the maintainability (and hence also quality, per ISO
9126 [15]) of software. Its formula exists in various slightly adjusted incarnations
in the academic literature and is commonly denoted as either just “maintainabil-
ity” [1, p.155][5, p.46] or “maintainability index” / “MI” [12, p.255][26, p.15]. As
it turns out, MI is inappropriate for grammarware purposes. Suppose we apply
aggressive normalisation and unchain all chain productions and inline all non-
terminal symbols that are used only once and have only one production rule.
Such a transformation preserves stability of the grammar, but obviously reduces
its analysability, changeability and testability. Yet MI shows improvement. Since
stability, analysability, changeability and testability are the main components of
maintainability per ISO 9126 [15], MI does not adequately measure maintain-
ability.

Discussions on language quality are abundant in the context of general pur-
pose programming languages [36,14,37], modelling languages [30,19] and domain-
specific languages [27,17]. Their contributions are mostly in a form of sets of
guidelines that are with some evidence and expertise linked to the quality of the

48



final product. Our maturity model can be seen as an attempt to formalise and
standardise a part of software language quality — namely, its structural model.
There is some strong evidence that this syntactic aspect is not dominating when
considering software language quality in general [8].

6 Conclusion

We have briefly introduced the field of grammarware manipulation and a project
of collecting grammars in a broad sense — structural definitions of structure
found in software systems. We have also presented a maturity model of several
distinct levels on which grammars can reside — the model gradually came into
existence during several years of research on grammar analysis and improve-
ment. The renovated Grammar Zoo with this new maturity model is about to
be deployed and made available for public use. This model was essential in its
growth from a dozen self-made grammars to over 1500 entries of fetched level
and above.

There are many reasons for models to evolve: some are externally motivated
and concern the natural evolution (improvement as a response to contextual
changes), some concern the actual use of the models. In this particular paper we
have treated quality as basically the level of details in a model extracted from its
real-life counterpart, which was directly linked to the possibility of automated
processing. This made sense in our context — collecting and analysing grammars
in a broad sense — but it stands to reason that the same considerations would
apply for any fact extraction models and software models in general.

There is some evidence in adjacent fields that models which evolved in one di-
mension (e.g., a programming language grammar extracted from a book, cleaned
up, polished and turned into a validation tool) can be very profitably (re)used
for improving or constructing models that evolved in another dimension (e.g.,
a programming language grammar from the next edition of the book). For us,
proving this or even collecting substantial evidence by convincing case studies,
remains future work.
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Abstract. Cloud computing is a paradigm that is transforming the computing in-

dustry and is receiving more attention from the research community. The incre-

mental deployment of cloud services is particularly important in agile develop-

ment of cloud services, where successive cloud service increments must be inte-

grated into existing cloud service architectures. This requires dynamic reconfig-

uration of software architectures, especially in cloud environments where ser-

vices cannot be stopped in order to apply reconfiguration changes. This paper 

presents a model-driven dynamic architecture reconfiguration process to support 

the integration of cloud services. Models are used to represent high-level archi-

tecture reconfiguration operations as well as adaptation patterns. Adaptation pat-

terns allow us to describe reconfiguration operations independently of a specific 

cloud platform technology. On the other hand, model transformations are used: 

i) to support compatibility checking of increments; ii) to generate software adap-

tors that solve incompatibilities between architectures; and iii) to generate recon-

figuration plans specific of cloud provider, that include reconfiguration actions 

to be applied on cloud service instances at runtime. The proposed process is il-

lustrated with a dealer network system development example, where cloud ser-

vices are deployed in an incremental way. 

Keywords: Model Driven Development, Model Transformations, Cloud Com-

puting, Dynamic Reconfiguration, Model Based Evolution 

1 Introduction 

Cloud computing is a software engineering paradigm that has the potential of change 

large part of the IT industry; becoming a research topic with innovative proposals to 

design, develop and deploy cloud-based systems [1]. Cloud applications are delivered 

as services over the Internet. Among distinguishable characteristics of cloud computing 

parading are measured service and rapid elasticity and scalability [2]. The former al-

lows billing based on real usage of resources. The later allows acquiring more resources 

during a peak of demand and releasing them once they are no longer required. In addi-

tion, services can be redeployed on different provider-specific platforms depending on 

Quality of Service (QoS), Service Level Agreement (SLA) or other business criterion. 
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Service-oriented architecture approach is a way of designing, developing and de-

ploying loosely coupled distributed applications using coarse-grained services. Devel-

oping service-oriented applications (such as cloud services) facilitates reconfiguration 

of software architectures at runtime, what is known as dynamic architecture reconfigu-

ration. Organizations that adopt this approach will be able to i) manage business evo-

lution and/or upgraded services can be introduced with minimum impact on existing 

systems, and ii) implement loosely-coupled integration approaches [3]. As stated be-

fore, cloud services could be deployed in different provider-specific platforms; which 

often leads to tight coupling of developed cloud services to a specific cloud provider 

technology.  In order to avoid the dependence on cloud providers, the cloud service 

architectural design must facilitate the use of different environments for execution [4]. 

Model-Driven Development (MDD) is an approach for developing software systems 

that promotes a new form of building systems based on the construction and mainte-

nance of models at different levels of abstraction to drive the development process. In 

this approach, a software system is developed by refining models and it is implemented 

through model to text transformations. 

Software adaptation patterns represent generic and repeatable solutions to manage 

change in recurring architectural adaptation problems, and prescribe the steps needed 

to dynamically adapt a software system at runtime from one configuration to another 

[5]. The use of adaptation patterns is a trend to support reuse in evolution for dynamic 

adaptive software architecture [6]. Adaptation of software architectures is not only sup-

ported by change management proposals, but also by proposals for solving the prob-

lems that arise when the interacting entities do not match properly. Software adaptation 

promotes generation of software adaptors to bridge incompatibilities among services 

(e.g., different names of methods and services, different message ordering, etc.) in an 

nonintrusive way [7,8, 9]. Generation techniques for software adaptors are beginning 

to be used in cloud environments [10]. 

Cloud applications integrate and compose different cloud services. The cloud ser-

vices to be integrated may come from the delivering of a software increment in an in-

cremental development approach, or just may be product of maintenance/evolution 

phases. The integration/update of increments may trigger the dynamic reconfiguration 

of the existing cloud service architecture. Dynamic reconfiguration creates and destroys 

architectural elements instances at runtime; being particularly important for cloud ser-

vices be able to manage instances in different cloud platforms and continue working 

while reconfiguration takes place. However almost no or little attention has been paid 

on supporting this reconfiguration at runtime, and only in recent years software engi-

neering research started focusing on these issues [11]. In addition, as far as we know, 

the incremental and dynamic deployment of cloud services into existing services in the 

cloud has not been studied yet. 

In this paper, we introduce a process to support the dynamic reconfiguration of cloud 

service architectures due to the integration of software increments. This process will 

allow software developers to specify how the integration of the architecture of a soft-

ware increment affects the current cloud service architecture. Additionally, after apply-

ing model-driven techniques, software developers will obtain the software artifacts 

needed to dynamically reconfigure the current cloud service architecture. We define the 
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architecture of a software increment as a portion of an architecture that corresponds to 

the architectural description of the increment whose integration into current architec-

ture triggers the current architecture reconfiguration.  

The remainder of the paper is structured as follows. Section II discusses related work 

on proposals to support the dynamic architecture reconfiguration. Section III presents 

our dynamic architectural reconfiguration approach. Finally, Section IV presents our 

conclusions and future work. 

2 Related work 

Software evolution based on reconfiguration of software architectures is an active area 

of research; however, there are gaps that still need to be covered. Some of these gaps 

where identified in a systematic literature review performed by Jamshidi et al. [6]. The 

authors took into account the stage of the software lifecycle where evolution mecha-

nisms were active; findings showed lack of support during the integration and provi-

sioning stage, but also during deployment stage. In our work, we give support to the 

dynamic reconfiguration of software architectures at the deployment stage of the soft-

ware life cycle. 

In this section, we analyze how researchers and practitioners address the dynamic 

reconfiguration of software architectures to support the development of cloud/service 

applications. The most relevant works [11, 12, 13] we have found are analyzed below. 

Baresi et al.[12] propose a methodology for deriving service-oriented architectures 

from high-level business-oriented architecture descriptions. They use formal represen-

tations to describe both application specific types as well as runtime configurations of 

concrete instances. They also, use graph transformations rules and define refinement 

relation from a generic style of component-based systems to the SOA style. 

 MOdel-based SElf-adaptation of SOA systems (MOSES) [13], proposes a method-

ology aimed at driving the self-adaptation of a SOA system to fulfill non-functional 

QoS requirements. This framework uses linear programing to formulate the identifica-

tion of the most suitable adaptation according to the detected changes in the environ-

ment.  

Self-architecting Software Systems (SASSY) [14] uses the application requirements 

captured by domain experts to derive automatically a base software architecture. Then, 

SASSY derives an optimized architecture from the base architecture by selecting the 

most suitable service providers and by applying QoS architectural patterns. In addition, 

for each QoS architectural pattern, they apply adaptation patterns that specify how the 

system self-adapts to incorporate the pattern into the configuration. Unlike previous 

cited approaches, SASSY deploys the coordination logic.  

All the works described above i) take into account structural and behavioral aspects 

for reconfiguration; ii) use SLA or QoS negotiation to discover and select the most 

suitable service implementation (instance); and iii) apply dynamic binding for recon-

figuration. This means that reconfiguration improves non-functional qualities through 

perfective changes. However, adaptive changes (e.g., software increments due to new 

functionalities) that require architecture reconfiguration are not taken into account. 
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They abstract models of business requirements or derive high level architectures ; how-

ever, they do not take into account the importance of architectural aspects in agile/in-

cremental development processes [15]. Despite the fact that cited approaches propose 

consistency or compatibility checking task, they do not provide solutions to support the 

deployment in different cloud platforms.  

In summary, as far as we know, there is a lack of support to incremental and dynamic 

deployment of cloud services into existing cloud service architecture. Our approach 

allows incremental reconfiguration of software architectures, and promotes compatibil-

ity between the architecture of software increments with the existing cloud architecture, 

according to cloud specific deployment platform.  

3 A Process for Dynamic Architecture Reconfiguration of 

Cloud Services 

In this section, we introduce our motivation example and continue with the reconfigu-

ration process description. 

3.1 Motivating Example 

The proposed motivation example is based on “Acme Manufacturing” dealer network 

system scenario [16]. Acme is a manufacturer company, which wants to improve service 

to its dealers and partners. With this purpose in mind, Acme considers building and 

deploying cloud services in an incremental way. The first increment aims to do a better 

job of fulfilling dealers’ orders and provides cloud services for dealers to place and 

manage their orders. This allows a direct interaction between customer’s I.T. systems 

and Acme’s systems. Acme also needs to improve its shipping process to increase de-

livery speed, and thus, in a second increment provides its local transport partner with 

cloud services. The transport partner uses cloud services to retrieve orders that need to 

be shipped as well as to inform dealers about shipping status. This second increment 

also updates the cloud services deployed in the first increment, providing dealers with 

information about last bought of items included in the order. Finally, after the third 

increment Acme needs to be able to manage international deliveries. However, since 

the international partner has its own custom systems based on exposed web services 

Acme uses the partner’s web service to make shipping requests. 

3.2 Reconfiguration Process 

The model-driven Dynamic Incremental Architectural Reconfiguration (DIARy) pro-

cess has been defined using model-driven and adaptation techniques. This process aims 

to support software developers during the deployment phase, on activities related to 

integration of software increments into existing services in the cloud. We support the 

integration process from an architectural point of view. DIARy proposes activities to 

support the management of dynamic reconfiguration of existing cloud services archi-

tectures, produced due to the integration of architectural elements. The main activities 
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of DIARy process are: i) Specify Increments; ii) Check Increment Compatibility; and 

iii) Reconfigure Architecture. Fig. 1 shows the activities of the DIARy process. 

Specify Increments. DIARy may be incorporated into existing development processes 

and this activity serves as a glue that allows its incorporation. Software Architects per-

form this activity not only to specify the architecture that corresponds to the architec-

tural description of the increment to be deployed, but also the impact that the integration 

of the increment has on current architecture. The latter is specified describing how the 

elements of the architecture of the software increment collaborate to reconfigure the 

current architecture in order to provide the required functionality. This activity gener-

ates as output the Increment’s Architecture Model; uses as inputs artifacts the Current 

Architecture, Design Artifacts, and SLAs. Additionally, uses Increment Description 

Guidelines as guide and an architecture description language to describe both the cur-

rent architecture as the architecture of the software increment. Each of these artifacts 

is explained below: 

 

Fig. 1. Overview of the DIARy approach 

1. Current Architecture Model (CurAM): This model allows representing the current 

architecture (i.e., before increment deployment) using design artifacts. CurAM in-

cludes information about services, connectors, configuration as well as cloud soft-

ware architecture related information. CurAM evolves after each increment integra-

tion; however, in this activity it is used only as input, helping Software Architects to 

identify elements of the current architecture to be affected by the integration. 

2. Design Artifacts: This input artifact represents design artifacts generated during the 

development process. Depending on the development process to which DIARy is 

applied, this artifact could be i) the original system architecture designed during the 

development process; ii) any form of architecture description that describes the in-

crement; iii) Architectural backlogs generated during an agile development process. 

This artifact helps Software Architects to identify the elements of the current archi-

tecture that will be affected by the integration. 
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3. Service Level Agreements (SLA): This artifact contains the conditions and parame-

ters that compromise the service provider to meet certain levels of quality. Software 

Architects use it to take design decision during specification. 

4. Increment’s Architecture Model (IAM): Software Architects participate in generat-

ing this output artifact. IAM allows representing the architecture of the software in-

crement and includes information about services, connectors, and configuration. 

Furthermore, IAM allows represent how the elements of the architecture of the soft-

ware increment collaborate to reconfigure the current architecture. To do this, IAM 

includes references to CurAM elements. Software Architects use references to point 

out the elements of current architecture affected by the increment (elements added, 

updated or deleted) as well as the elements used as Integration Points (IP). We call 

IP to the interfaces of the current architecture elements that interact with interfaces 

of the elements of the architecture of a software increment in order to allow interac-

tion and provide the required functionality. Finally, in order to support reconfigura-

tion on cloud environments, IAM includes information related aspects of Cloud Soft-

ware Architectures [17]. For instance, the IAM associated to the second increment 

of motivating example (see section 3.1) will include:  

(a) Information about Shipping Request Service, Ship Status Service and connec-

tions that need to be added.  

(b) References to the interfaces of Place Order service and its interaction protocol 

(i.e., both elements need to be updated in order to satisfy the new requirement that 

establish that: the Place Order service must provide information about last bought of 

items included in order).  

(c) References to the service interfaces required and provided by/to the current ar-

chitecture that will serve as IP.  

(d) Information related to cloud software architecture such as interaction pattern be-

tween dealer and transport partner (e.g., publish/subscribe connector, request/re-

sponse connector). 

5. Increment Description Guidelines: Help Software Architects: i) to identify impact of 

increment integration on current architecture and; ii) to take design decisions. These 

guidelines give support about how to specify increments using IAM and CurAM. In 

addition, we have begun to work in an Increment Description Language (IDL). This 

language will allow Software Architects to use high-level architecture reconfigura-

tion operations to specify impact of the integration on current cloud service archi-

tecture. Service Oriented Architecture Modeling Language (SoaML) [18] leverages 

Model Driven Architecture (MDA) and provides a UML profile and meta-model for 

the specification of services. However, SoaML does not allow to represent how the 

architecture of a software increment affects the existing cloud architecture nor to 

specify information related to cloud software architectures. IAM and CurAM are part 

of this IDL and their meta-models will extend the SoaML meta-model.  

IAM and CurAM artifacts are input for the next activity, which is described below. 

Check Increment Compatibility. This activity helps to verify whether the architec-

ture of a software increment can be integrated into the current architecture. Its main 

objective is to reduce the risk of incompatibilities between service interfaces that could 
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avoid integration (e.g., different names of methods and services, different message or-

dering, etc.). Despite the fact that in previous activity Software Architects specified the 

impact of the increment integration on current architecture, in practice, we cannot ex-

pect that any given software component perfectly matches the needs of a system nor 

that the components being assembled perfectly fit one another [7]. The same may hap-

pen during the integration of the increment, where incompatibilities may exist between 

IAM and CurAM elements.  

We will apply software adaptation techniques to correct incompatibilities, generat-

ing software adaptors when needed. We have chosen to follow Cámara et al. approach 

[19] because i) it is a model driven approach; ii) it gives support the automatic creation 

of adaptors from abstract specifications; iii) and, it provides tools that fully support the 

adaptation approach from start to finish (including compatibility checking). To follow 

this approach we need to provide service interfaces described by signatures (operation 

names and types) and interaction protocol. The former must be described as a WSDL 

representation and the latter as an Abstract BPEL (ABPEL) representation. Integration 

Designers will specify model transformations to obtain these representations from the 

increment’s architecture (IAM) as well as from the current architecture (CurAM). 

This activity results in generation of software adaptors to be used in a specific cloud 

platform (CloudAdaptors) using CurAM and IAM as input. CloudAdaptors allow cor-

recting incompatibilities between services interaction protocols (i.e., incompatibilities 

among IP operations). If discrepancies exist, Software Architects apply model-to-text 

(M2T) transformations to generate skeletons of CloudAdaptors. Then, Software Devel-

opers complete CloudAdaptors skeletons, implementing code to solve discrepancies 

according to deployment platform. Depending on cloud platform, CloudAdaptors may 

be scripts, configuration files, packages, services, or any cloud platform specific arti-

fact. For instance, regarding to our motivating example (see Section 3.1), in order to 

allow interaction with web services provided by international transport partner, the in-

tegration of the third increment will require i) compatibility verification of interfaces 

requested by manufacturer and interfaces provided by international transport partner. 

The first interfaces are already deployed and belong to CurAM; whereas the latter, that 

are going to be deployed, are described in IAM; ii) generation of CloudAdaptors. As-

suming that the deployment platform is Windows Azure, the generated CloudAdaptors 

will be a cloud service Worker Role.  

Reconfigure Architecture. This last activity supports the execution of the integration 

operations, resulting in incorporation of the architecture of the software increment into 

current architecture and the corresponding dynamic architecture reconfiguration (see 

Fig. 2). This activity is composed of the following main steps: 

Select Adaptation Pattern. In this step, Software Architects participate in the selection 

of the adaptation patterns best suited to integrate the architecture of the software incre-

ment into the current architecture. This step results in the generation of a List of Patterns 

Model, using CurAM and IAM information to select patterns from Adaptation Pattern 

Repository Model. The Output artifact and input AdaPRepM are explained below: 
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1. Adaptation Pattern Repository Model (AdaPRepM): Integration Designers use this 

to represent prescriptions at a high level of abstraction of steps required to integrate 

architectural elements into current architecture. Integration Designers define adap-

tation patters for possible integration scenarios. We consider scenarios where the 

elements of the architecture of a software increment: i) do not need interconnection 

with any current architecture element; ii) require establish interconnection with cur-

rent architecture elements without updating them; and iii) require establish intercon-

nections and update current architecture elements. Adaptation patterns is a research 

field by itself, in our work we will extend current proposals to define the AdaPRepM 

meta-model. To be specific, we will extend the Meta-model for Adaptation Pattern 

Composition proposed by Ahmad et al. [20]. 

   

Fig. 2. Reconfigure Architecture Activity 

2. List of Patterns Model (LisPatM): This output provides a list with the most suited 

adaptation patterns that must be applied to integrate the elements of the architecture 

of the software increment into current architecture. 

Define Reconfiguration Plan. This activity aims to generate a plan with the sequence 

of reconfiguration operations needed to integrate the elements of the architecture of the 

software increment into the current architecture. For doing this, a two-step models 

transformation strategy must be applied. On the first step, Integration Designers specify 

M2M transformations that generate a Reconfiguration Plan Independent of Cloud Pro-

vider technology. This plan includes high-level reconfiguration actions needed to 

change cloud service architectures. In the second step, Integration Designers specify 

M2T transformations to operationalize reconfiguration actions into Reconfiguration 

Plans Specific of Cloud Provider. Software Architects execute these transformations 

and Software Developers complete the generated plans if required. This activity has as 

inputs IAM, AdaPRepM, LisPatM and Platform Specific Adaptation Operations Model. 
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1. Cloud-Platform Specific Adaptation Operations Model: This model represents at a 

high level of abstraction cloud artifacts and reconfiguration operations inde-

pendently of a specific cloud platform technology. This model and LisPatM are used 

to generate a Reconfiguration Plan Independent of Cloud Provider. 

2. Reconfiguration Plan Specific of Cloud Provider: This artifact is specific of a cloud 

provider technology. This artifact includes sequence of commands that create, up-

date, or destroy architectural elements instances and their links at runtime. Examples   

are scripts, packages, configuration files and so on.  

Apply reconfiguration. In the last step, the Cloud Specialist, expert in deployment, in-

tegrates the increment into the current architecture by deploying CloudAdaptors and by 

using dedicated services to apply the Reconfiguration Plan Specific of Cloud Provider 

artifacts in the corresponding cloud platform. Integration dynamically reconfigures in-

stances of the running Actual System Architecture. 

4 Conclusions and Future Work  

We introduced the DIARy process to support the dynamic software architecture recon-

figuration triggered by the deployment of new cloud services. DIARy uses model-driven 

and adaptation techniques to allow integration of cloud services into current architec-

ture at runtime. We believe this process provides a solution to cover the lack of support 

to incremental and dynamic deployment of cloud services into existing cloud service 

architecture. DIARy shows the steps that software developers must follow to specify 

how the architecture of a software increment will affect the existing cloud architecture. 

In addition, model transformations are used for: i) promoting the compatibility between 

the architecture of the increment with the existing cloud architecture; and ii) generating 

cloud-platform specific reconfiguration plans that apply adaptation patterns to recon-

figure existing cloud architecture. Activities and artifacts included in DIARy were de-

scribed, and a motivation example was used to illustrate some related aspects.  

At this moment, we experimented with several small examples to test the viability 

of the approach. As further work, we plan to empirically validate DIARy through con-

trolled experiments and case studies with medium-sized real-world projects. We are 

also working on: i) the definition of an Increment Description Language to specify in-

crement’s architectures and their impact on actual system architecture; ii) the definition 

of a reference architecture to support the reconfiguration process, and iii) the imple-

mentation of different model transformations to automate the DIARy process.  
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