
PPI- A Portable PROLOG Interface for JAVA

Ludwig Ostermayer, Frank Flederer, Dietmar Seipel

University of Würzburg, Department of Computer Science
Am Hubland, D – 97074 Würzburg, Germany

{ludwig.ostermayer,dietmar.seipel}@uni-wuerzburg.de

Abstract. As a first step to combine the two programming paradigms – object-
oriented programming and logic programming – we have introduced a generic
default mapping for JAVA objects and PROLOG terms. This mapping can be used
without any modification to the JAVA classes that stand behind the objects. We
also can generate automatically JAVA classes from predicates in PROLOG that
map to each other. Apart from the default mapping it is further possible to cus-
tomise the mapping by JAVA annotations. This allows for different Prolog-Views
on a given class in JAVA. The data exchange format between JAVA and PROLOG is
a simple textual representation of the JAVA objects and of the terms in PROLOG.
Because this textual representation already conforms PROLOG’s syntax, it can be
directly used within PROLOG.
In a second step we have to develop the link between JAVA and PROLOG that
executes the mapping and communication. We already have presented a connec-
tor architecture for PROLOG and JAVA and an example interface that successfully
uses our object term mapping with high performance. However, this interface
depends heavily on a single PROLOG implementation: SWI-PROLOG. But as we
have a generic mapping between JAVA objects and PROLOG terms, we also strive
for an interface that also is generic and can be used independently of the PROLOG

implementation.
In this paper, we present the Portable Prolog Interface (PPI) for JAVA that uses
the standard streams stdin, stdout and stderr to communicate with a PRO-
LOG instance. Because these standard streams are available for all popular oper-
ating systems and are used by most of the PROLOG implementations for the user
interaction, the PPI works for a broad range of PROLOG implementations. We
evaluate our new generic interface PPI with different PROLOG engines and with-
out changing the underlying JAVA or PROLOG source code of our tests.

Keywords. Multi-Paradigm Programming, Logic Programming, Prolog, Java.

1 Introduction

The object-oriented software engineering concept is one of the most used in the field
of software development. However, there are other programming paradigms which are
eminently suitable for particular problem domains. One of those programming concepts
is the logic programming paradigm. The best known logical programming language is
PROLOG. PROLOG programs consist of a collection of rules that describe horn clauses.
In PROLOG programs, these rules are used by the inference mechanism to find solutions



for which the rules are true. Due to the simple definition of those rules, PROLOG is
eligible, for instance, for a simple definition of business rules.

It is desirable to combine different programming paradigms in order to use the
strength of each individual concept for suitable parts in a piece of software. Several
approaches for an interaction between JAVA and PROLOG have been proposed in the
past. But most of those concepts are specialized to specific PROLOG implementations.
The benefit of such a strong binding to a PROLOG implementation leads to a good per-
formance, but it lacks of portability across several PROLOG implementations. A well
known interface between JAVA and PROLOG is JPL. JPL, however, makes use of the
foreign language interface (FLI) of SWI-PROLOG. Because of this strong binding to
SWI-PROLOG it is not easily usable for other PROLOG implementations as XSB- or
YAP-PROLOG. Another interface for PROLOG and JAVA is Interprolog. Also this in-
terface is heavily dependent of a single PROLOG implementation: XSB-PROLOG. Al-
though support for SWI- and YAP-PROLOG are announced, they have to put a lot of
effort into porting Interprolog to those other PROLOG implementations. There are other
implementations of interfaces between JAVA and PROLOG that attach importance to the
portability regarding PROLOG implementations. One of those interfaces is JPC [5]. But
also for this interface much porting effort has to be expended.

The main contribution of this paper is for our connector a new generic Portable Pro-
log Interface (PPI) which uses our object term mapping [14] for a smooth communica-
tion between JAVA and PROLOG. The PPI extends our connector architecture for PRO-
LOG and JAVA as presented in [15] and allows the usage of the connector with several
PROLOG implementations and operating systems. The PPI uses the standard streams
stdin, stdout and stderr to communicate with a PROLOG instance. These stan-
dard streams are part of the operating systems and are also used by most of the PROLOG
implementations for the interaction with users.

The rest of the paper is structured as follows: In Section 2 we discuss work that
is related to the results presented in this paper. In Section 3 we recap our object term
mapping and how it is realised for JAVA and PROLOG. This is followed by the presen-
tation of the PPI in Section 4 which we evaluate in Section 5. Finally in Section 6, we
conclude and discuss future work.

2 Related Work

The results in this paper are the continuation of our work with a portable connector
architecture for JAVA and PROLOG that allows a smooth communication between both
programming languages.

In [13], we have presented the framework PBR4J (PROLOG Business Rules for
JAVA) that allows to request a given set of PROLOG rules from a JAVA application.
To overcome the interoperability problems, a JAVA archive (JAR) has been generated
containing methods to query the set of PROLOG rules. PBR4J uses XML Schema to de-
scribe the data exchange format. From the XML Schema description, we have generated
JAVA classes for the JAVA archive. For our connector the mapping information for JAVA
objects and PROLOG terms is not saved to an intermediate, external layer. It is part of
the JAVA class we want to map and though we can get rid of the XML Schema as used in

2



PBR4J. Either the mapping is given indirectly by the structure of the class or directly by
annotations. While PBR4J just provides with every JAR only a single PROLOG query,
we are now able to use every object as goal in PROLOG and depending on which vari-
ables are bound different queries are possible. PBR4J transmitted along with a request
facts in form of a knowledge base. The result of the request was encapsulated in a result
set. With our connector we do not need any more wrapper classes for a knowledge base
and the result set as it was with PBR4J. That means that we have to write less code in
JAVA. We either assert facts from a file or persist objects with JAVA methods directly to
PROLOG’s database.

The generic mapping mechanism as described in Section 3 was introduced first
in [14]. Using the default mechanism, nearly every class in JAVA can be mapped to
a PROLOG term without any modification to the class’ source code. Additionally, if
a customised mapping is needed, we provide JAVA annotations in order to realise the
modification easily. These annotations do not affect the original program code in JAVA.
Apart from the mapping, we have proposed the Prolog-View-Notation (PVN) to de-
scribe existing PROLOG terms and to create JAVA classes that map under the default
mapping to the described terms. Because there are nested references of different JAVA
objects, the mapping is done recursively. However, we observed a mapping anomaly
that we call Reference Cycle. A Reference Cycle occurs if a JAVA object is referenced
by itself. Using our mapping mechanism as proposed this leads to a cyclic term. We
want to avoid cyclic terms because our mapping mechanism in this case leads to infi-
nite long strings in JAVA. We have proposed a solution that replaces an attribute which
is a member of the Reference Cycle by a list that contains all referenced objects. If any
of those objects is referenced, a reference identifier is used instead of the nested term
representations. Because the list is restricted to the referenced objects, we avoid the
cyclic term problem and are able to map objects that have a self-reference.

In [15] we have introduced our general connector architecture for JAVA and PRO-
LOG. The presented implementation of the connector is lightweight. The object term
mapping is realised with only two classes. As communication interface we have pre-
sented the Prolog-Interface (PI) for SWI-PROLOG. The PI uses the Foreign Language
Interface (FLI) of SWI-PROLOG and is therefore only applicable for this single PRO-
LOG implementation. An evaluation of the performance has shown that the PI in com-
bination with our object term mapping is as fast as JPL [16], a highly optimized JAVA
interface for SWI-PROLOG. However, the implementations for the evaluation with our
connector have proven simpler, clearer and shorter as with the reference JPL. We re-
quired with our connector 25% less lines of code than with JPL.

There are other approaches how to establish a communication between JAVA and
PROLOG like [3,4,5,7,10] that we already have discussed in [14,15]. In contrast to our
work, all these approaches are limited to single PROLOG implementations and none of
these approaches allow the mapping of already existing classes to terms in PROLOG,
especially without any modifications to the underlying source code. The implementa-
tion of our connector itself is much more lightweight and programs using our connector
need less lines of code than with the other approaches.

3



3 The Object Term Mapping between JAVA and PROLOG

In [14] we have proposed a customisable mapping between JAVA objects and PROLOG
terms. The mapping provides a default mapping of JAVA classes to PROLOG terms. This
makes it possible to use almost any already existing JAVA class without any modification
to the classes in JAVA. Thus, a JAVA developer can make use of PROLOG functionalities
with minimal effort. If the default mapping of JAVA objects to PROLOG terms does not
match already existing PROLOG predicates or any needed data structure on the PROLOG
side, we also have proposed a customisable mapping of JAVA objects to PROLOG terms.
This customisation allows the user to change the functor as well as the composition and
the type of a term’s arguments. In this section we want to recap the default and the
customisable mapping of JAVA objects to PROLOG terms with some examples.

3.1 Default Mapping

To provide JAVA developers an easy way to use PROLOG, our approach implements a
smart default mapping. For the default mapping JAVA classes can be used without any
modifications. The JAVA programmer does not need to know the syntax and only little
of the functionalities in PROLOG in order to establish a connection.

The mapping target of an object is a term in PROLOG, also referred as target term
in this paper. The default mapping from a JAVA object to a PROLOG term uses the
object’s class name as the target term’s functor. Class names in JAVA are usually written
in Upper Camel Case notation. But upper first characters in predicate names are not
allowed in PROLOG because functors are atoms. Atoms in PROLOG usually begin with
lowercase characters, otherwise the predicate’s name must be escaped by surrounding
single quotes, e.g. 'Book'.

For the default mapping, we have decided to convert the in JAVA common Camel
Case notation to the in PROLOG common Snake Case notation. This is done, by replac-
ing uppercase characters by their lowercase equivalent and add an underscore prefix,
if the character is not the first one. For instance, the class’ name MyBook maps to the
atom my_book.

Classes usually contain member variables. The default mapping just maps every
member variable to an argument of the target term. This is done, by getting all these
variables via Java Reflections. The order of the arguments in the target term is given
by the getDeclaredFields() method in JAVA. According to JavaDoc, there is no
assured order but Oracle’s JVM (JAVA Virtual Machine) returns an array of fields that
is sorted by the position of the variables’ declarations in the JAVA class files.

Another aspect of our default mapping is the fix conversion of some types in JAVA
to certain types/structures in PROLOG. A natural mapping of JAVA types (to PROLOG)
is as follows: short (integer), int (integer), long (integer), float (float), double (float),
String (atom), Array (PROLOG list), List (PROLOG list) and Object (compound PRO-
LOG term). For other data types, only existing in certain PROLOG implementations like
string in SWI-PROLOG [18], the default mapping can be further extended or changed.
It is possible to save these changes to the default mapping to a configuration file.

A special part in logical programming are logical variables. The inference mecha-
nism of PROLOG tries to assign valid values to them for which the rules of the PROLOG

4



program are true. Because different values for a logical variable might be true, several
solutions can be found for a single request made available through backtracking.

The inference mechanism and the unification of logical variables to valid values is
a strong feature of PROLOG. In order to make this unification process available in JAVA
we have introduced the concept of Object Unification.

When transforming JAVA objects to PROLOG terms, we transform specific variables
of an object into a logical variable in PROLOG. We map null values in JAVA to vari-
ables in PROLOG. More precise, every time we map an object to PROLOG, all member
variables with a null value are substituted in PROLOG with different variables. Then,
these variables can be unified within the inference process of PROLOG. Finally, a in
PROLOG unified term leads to a substitution of the initial null values in JAVA by the
values of the in PROLOG unified variables.

To illustrate the default mapping mechanism, different implementations of a Book
class follow. In each step, further details are implemented in order to show another
detail of the default mapping mechanism. The first Book class does not implement any
member variable at all:

class Book {
}

When we create a instance of the Book class and transform it via the default map-
ping to a term in PROLOG, any instance will result in the same term with an arity of
zero:

book

The name of the class Book is transformed to a snake case notation which in this
case just leads to the lowercase book.

We extend the Book class of the previous implementation by the title of the
book:

class Book {
private String title;
// ... constructor\ getter\ setter

}

For lack of space, we omit the implementation details of a class’ constructor, getter
and setter methods. Now, we create again an instance:

Book b = new Book();
b.setTitle("Sophie's World");

The target term in PROLOG then looks like in the following listing:

book('Sophie\'s World')

The single member variable title is used for the single argument of the book
term. Because the member variable is of the data type String in JAVA, it is transformed
by the default mapping into an atom in PROLOG.

In the next step we extend the Book class by another member variable, the amount
of pages. This time, we use the int data type in JAVA:

5



class Book {
private String title;
private int pages;
// ... constructor\ getter\ setter

}

We create again an instance of the Book class:

Book b = new Book();
b.setTitle("Sophie's World");
b.setPages(518);

The instance b of Book then is transformed via the default mapping to:

book('Sophie\'s World', 518)

The resulting term in PROLOG contains the values of both member variables, be-
cause the default mapping just transforms all of the member variables of a JAVA class.
The pages variable, however, is not set within quotes, as the default mapping trans-
formes a JAVA int to a integer in PROLOG. The order of the two member variables
within the PROLOG term is defined by the return of the getDeclaredFields()
method of the JAVA reflection API. In this case, the sorting of the member variables is
the declaration order of them within the Book class.

We give now an example where one of the member variables is set to null. For
this, we instantiate a Book object and do not set the pages member variable:

Book b = new Book();
b.setTitle("Sophie's World");

Not setting the pages amount leads to an uninitialized variable that is set to null.
According to the default mapping, all member variables that have a value of null are
transformed to variables in PROLOG:

book('Sophie\'s World', Book@123_pages)

The name of the logical variable is composed of the object’s reference in JAVA
(Book@123) and the name of the member variable (pages). Generating the name of
logical variables this way we obtain an unique variable name. Its uniqueness results
from the unique object reference within a JAVA program and the unique name of the
member variable within a JAVA class. Even if the same JAVA object is transformed
multiple times to PROLOG, it is sufficient. Because we need just one single unification
for a member variable of an object, the multiple occurrence of a member variable of the
same object, leads to a single unification on the PROLOG side.

But we are not limited by transforming a single JAVA object to PROLOG. Referenced
objects are transformed recursively. To show this, we extend the book class again and
create a new class named Author:

class Book {
private String title;
private Author author;

6



private int pages;
// ... constructor\ getter\ setter

}

class Author {
private String name;
// ... constructor\ getter\ setters

}

As one can see, we now have a reference from the Book class to the Author class.

Author a = new Author();
a.setName("Jostein Gaarder");

Book b = new Book();
b.setTitle("Sophie's World");
b.setAuthor(a);

The target term in PROLOG of the book b now is a complex compound term:

book('Sophie\'s World', author('Jostein Gaarder'),
Book@123_pages)

The Author class just contains a single member variable, so does the resulting tar-
get term in PROLOG. The resulting term for the author object a is contained as argument
within the target term for the book b.

3.2 Customised Mapping
If the default mapping does not map an object to a desired term structure, the user is
able to modify the mapping with a special purpose annotation layer in JAVA. With JAVA
annotations we can add the necessary meta-data of a desired mapping to the source code
in JAVA. Note, that annotations are not part of a JAVA program, i.e. they do usually not
affect the code itself they annotate. Annotations are parsed in JAVA with the methods of
the Reflection API. To customise the mapping between objects and terms we only need
three annotations in a nested way: @PlView, @Arg and @PlViews.

@PlView is used to describe a single Prolog-View on a given class in JAVA. With
Prolog-View we mean single mapping of a given class in JAVA to term in PROLOG.
It is possible to define different Prolog-Views on the same class. We achieve this with
different @PlView annotations which are collected within a @PlViews annotation in
the given class. A @PlView annotations consists of several elements:

viewId is a mandatory element and identifies the Prolog-View. The predicate
name normally set by the default mapping can be written over by the element functor.
There are three remaining elements of a @PlView annotation that are lists consisting
of strings: orderArgs, ignoreArgs and modifyArgs. These lists are used to
manipulate the structure of the target term corresponding to the desired Prolog-View.

orderArgs determines which member variable values, defined by their JAVA
names, are used within the textual term representation. As the name orderArgs sug-
gests the order of members in this list matters. The order of the resulting term arguments
corresponds to the order of the member variable names in this list.

7



ignoreArgs removes one or a few member variables from the default mapping.
The user simply can add the names of the ignored member variables in this list instead
of writing all the other names into the orderArgs list. As ignoreArgs contains
all the missing arguments, there is no order information that describes the order of
the arguments left over to the mapping. Therefore, the relative order of the arguments
within the default mapping is unaffected. The user is told not to use orderArgs and
ignoreArgs together within the same @PlView annotation, as this could lead to
anomalies like member variable names that are in both or in none of the two lists.
To prevent an accidental wrong use, an exception is raised if both elements are used
together within an @PlView annotation. The orderArgs and ignoreArgs are just
to define which member variables are considered for the mapping and which not, as well
as the order of those parameters.

modifyArgs modifies the mappings of single member variables to arguments of
the target terms. It is an array consisting of @Arg annotations.

@Arg has three elements for the modifications: valueOf, type and viewId. As
long as there is no @PlArg annotation in an @PlView annotation, the default mapping
is applied for all mapped member variables.

valueOf references the name of the member variable whose mapping is going
to be manipulated by the @Arg annotation. In a single @PlView annotation only one
@Arg annotation is allowed for every member variable referenced by valueOf.

type defines the PROLOG type which will be used within the target term in PRO-
LOG. Options for type are elements of an enumeration representing certain PROLOG
types like atom, float, integer or structures like compound term, list. In case of com-
pound term and list, it is possible that again several Prolog-Views in a referenced class
exist. Though, the user again can select a Prolog-View for the referenced class via an
according viewId. The type compound is always a reference to another object. Be-
cause an object can be mapped to a list, the type list can also be a reference.

viewId is used for member variables that reference a class for which different
Prolog-Views are defined.

To illustrate the meaning of the different annotations and their arguments, we give
an example of a Book class with three different Prolog-Views defined on it by @PlView
annotations:

@PlViews({
@PlView(viewId="book1", orderArgs={"title"}),
@PlView(viewId="book2", ignoreArgs={"author"}),
@PlView(viewId="book3", functor="tome",
modifyArgs={@PlArg(valueOf="pages", type=ATOM)}

)}
)
class Book {
private String title;
private Author author;
private int pages;

// ... setters / getters
}

8



The first Prolog-View, identified by book1, just selects the member variable title
to be part of the resulting PROLOG term. Therefore, the resulting term just contains the
title of the book.

The second Prolog-View book2 uses the selection list ignoreArgs. The only
entry in this list is the member variable author. That means all the other member
variables, namely title and pages, are still contained in the resulting target term in
PROLOG.

The last Prolog-View book3 has no restriction on the included member variables
at all. Thus, all member variables are mapped to PROLOG. However, two modifications
to the mapping are done within the annotation: the functor of the target term is
changed from book to tome; the type in PROLOG of the mapping of the member
variable pages is changed in PROLOG from integer as in the default mapping to atom.
Therefore, the resulting term in PROLOG has a single quoted value for the pages of the
book.

The resulting three target terms in PROLOG are summarised in the following listing:

book('Sophie\'s World').
book('Sophie\'s World', 518).
tome('Sophie\'s World', author('Jostein Gaarder'), '518').

3.3 Creating Textual Term Representations

All the information needed for the creation of textual term representations can be de-
rived from the classes involved in the mapping. The default mapping uses the infor-
mation of the class structure itself. The customised mapping uses the information con-
tained in the JAVA annotations @PlView that are identified by the string viewId. As
in [15] shown the object to term conversion as well as the parsing is implemented in
a wrapper class called OTT (Object-Term-Transformer). An example for the usage of

query

o1

o3

o2

ott1

ott2

ott3

Fig. 1: A tree of OTT Objects

OTT instances is shown in Figure 1. The object o1 is destined to be unified in PROLOG.
It has references to two other objects o2 and o3 which lead to a nested term structure
in PROLOG. The class Query is a wrapper for a call to PROLOG. To its constructor o1
is passed and an instance of OTT is created, here ott1. For all the other references in

9



o1 instances of OTT are created in a nested way, namely ott2 for o2 and ott3 for
o3.

In order to create the textual term representation of o1, the instance query causes
ott1 to call its toTerm() method that triggers a recursive call of toTerm() in all
involved instances of OTT. In doing so, the first operation is to determine which fields
have to be mapped. Depending on a requested Prolog-View or the default mapping an
array of Field references is created that contains all the needed member variables for the
particular view in the corresponding order. The information about the Fields is retrieved
with help of the Reflection API in JAVA. The same way, additional information like
PROLOG types and viewIds for particular member variables are saved within such
arrays. As the information of a Prolog-View on a class is solid and does not change
with the instances, this field information is just created once and cached for further use.
For the creation of the textual term representation, the functor is determined either from
a customised functor element of an @PlView annotation or from the class name in
the default case. After that, the Field array is iterated and the string representation for
its elements are created. The pattern of those strings depend on the PROLOG type that
is defined for a member. If a member is a reference to another object, the toTerm()
method for the reference is called recursively.

3.4 Parsing Textual Term Representations

After query has received the textual representation of the unified term from PROLOG,
it is parsed to set the unified values to the appropriate member variables of the JAVA ob-
jects involved. The parsing uses again the structure of nested OTT objects as shown in
Figure 1. The class OTT has the method fromTerm(String term). This method
splits the passed string into functor and arguments. The string that contains all the ar-
guments is split into single arguments. This is done under consideration of nested term
structures. According to the previously generated Field array the arguments are parsed.
This parsing happens in dependence of the defined PROLOG type of an argument. For
instance, an atom either has single quotes around its value or, if the first character is low-
ercase, there are no quotes at all. If there is a quote detected, it is removed from the string
before assigning it as a value for the appropriate member variable. Assignments for
referenced objects in o1 are derived recursively by calling the fromTerm(String
term) method of the appropriate instances of OTT, in our example ott2 and ott3.

4 PPI - The Portable PROLOG Interface

In a previous paper [15] we already have presented our connector architecture for PRO-
LOG and JAVA. Figure 2 gives an overview of the components and how the connec-
tor works. An object is transformed to a PROLOG term in string format via the object
term mapping (OTM) as described in Section 3. This string is transmitted via a Prolog-
Interface (PI). Then the string is parsed in PROLOG. Because the string already con-
forms to PROLOG’s syntax, this is an easy task. The resulting term is unified and sent
back again in string format which is finally processed by a parser in JAVA. The used PI

10



Object
Term

Java Prolog

OTM

Parser
Term

PI

PI

Fig. 2: Components of the Connector

can be any Prolog Interface for JAVA that is available for the considered PROLOG im-
plementation. We already have implemented a high performance PI for SWI-PROLOG
based on its Foreign Language Interface. The combination of our mapping and the PI
for SWI has been optimized to the point where our connector works as fast as an imple-
mentation with JPL [16] which is the standard JAVA interface bundled with SWI. It is
more complex to operate with JPL than with our connector. We have this quantified by
the amount of lines of code necessary to call PROLOG from JAVA: an implementation
with our connector needs 25% less lines of code. In addition, a user developing with
JPL must have a deeper understanding for PROLOG and its structures.

However, the PI is only applicable with SWI-PROLOG. In order to conserve an inde-
pendence regarding the PROLOG implementations we introduce in this paper a generic
interface suitable for almost every PROLOG implementation and operating systems, the
Portable Prolog Interface (PPI). Instead of a specialized interface between JAVA and
a certain PROLOG implementation, we use standard streams of every operating sys-
tem to connect to a PROLOG process: the standard input (stdin), the standard output
(stdout) and the standard error (stderr). Every PROLOG implementation usually
provides user interaction via these streams. To write as user a request directly to PRO-
LOG the stdin stream is used. The output is channelled via the stdout or stderr
stream to a user interface. The output contains the resulting bindings of the variables
that have been unified by PROLOG’s inference engine.

Java Prolog
<stdin>

<stdout>
<stderr>

Fig. 3: Structure of the Pipe Interface

Our object term mapping can be combined with the PPI in a native way because the
textual term representation that we transmit already conforms to PROLOG’s syntax. Our
connector using the PPI now is deployable for a broad range of operating systems and
PROLOG implementations. Normally, these streams are used for writing and calling
goals as well as for getting the variable bindings of a solution. In addition, the user
is able to kick off features in most PROLOG systems like backtracking by typing the
character semicolon. This is just an input for stdin and therefore our interface is also
able to use such meta commands.

11



Another difference of the PPI and the interface PI in [15] is that the PI returned the
unified term as a whole. Using the standard streams PROLOG returns only the binding
of the variables, e.g. X=4. In order to make this separate bindings usable for our map-
ping process, the variables in the initial term are replaced by the appropriate bindings.
Fig. 4 shows the schematic flow between the individual pipes that process the informa-
tion flow. When opening a connection from a JAVA program to a PROLOG engine two
classes are initialised in JAVA: OutPipe and InPipe. The class OutPipe shares the
main thread of the underlying JAVA program and has the job to write text to PROLOG’s
stdin. When the unify method is called within the JAVA program, OutPipe writes
the the textual term representation, which should be unified, to PROLOG’s stdin. The
class InPipe runs a separate thread and receives the results from PROLOG by reading
the stdout or stderr stream.

OutPipe InPipe PrologJavaProg

unify

wait

write

wait resume
read

return
wait

resume

return

stdin

stdout
/stderr

t

Fig. 4: Information Flow via the PPI

To avoid unnecessary overhead the two threads are paused if they are not needed.
Because we want the result as return of the method unify, we pause the calling thread
in order to wait for the result from PROLOG. We have sent a request to PROLOG and
await the result to be written to PROLOG’s stdout or stderr. Therefore, after writ-
ing the text to stdin, the InPipe thread is resumed in order to collect the unifi-
cation result. As soon as the resulting data has arrived via stdout or stderr, the
InPipe returns it to OutPipewhich resumes its computations and thread of InPipe
is paused. After the result, in form of variable bindings, is converted back to the tex-
tual representation of the in PROLOG unified term, the resulting string is returned by
unify.

5 Evaluation

In this section we evaluate the combination of the generic PPI with our connector ar-
chitecture for PROLOG and JAVA. We have implemented three tests for the evaluation.
For the computations, we have successfully used the following freely available PRO-
LOG implementations: B-, CIAO-, GNU-, SWI-, YAP- and XSB-PROLOG. In doing so,
no modifications to the original program files in JAVA and PROLOG have been neces-

12



sary. We have tested1 consecutively 50000 calls. The resulting average execution time
for the different PROLOG implementations are presented in the tables that follow the
short descriptions of the tests. Note, that the resulting execution times in tables always
include the time necessary to process the goal on the different PROLOG engines.

In the first test the goal, that we send from JAVA to PROLOG, is just the atom true
which is always true and needs no unification. We do this, to better estimate the time
that only is spent for establishing a connection and the transmission of the data.

B-PROLOG CIAO GNU SWI XSB YAP

3.0 sec 15.5 sec 3.0 sec 7.4 sec 3.7 sec 2.9 sec

The second test has two different implementations. The first implementation sends
as goal to PROLOG a variable assignment to an atom consisting of 100 characters. The
second implementation has an increased character count of 1000 for the assigned atom.
The purpose of this test is to analyse the influence of the length of a goal, measured in
characters, on the execution time.

Characters B-PROLOG CIAO GNU SWI XSB YAP

100 4.4 sec 15.5 sec 4.2 sec 12.5 sec 5.5 sec 8.6 sec
1000 18.4 sec 33.4 sec 18.5 sec 40.5 sec 18.6 sec 61.7 sec

Third test considers underground railway networks, as in [15] the London Under-
ground. These networks are represented as undirected graphs with stations as nodes and
lines as edges connecting the individual stations. In PROLOG this is simply realised via
the facts connected. The first and the second argument of a connected fact is a
station. The third argument is the line connecting the two stations. The next listing gives
some examples for connected facts for the London Underground:

connected(station(green_park), station(charing_cross),
line(jubilee)).

connected(station(bond_street), station(green_park),
line(jubilee)).

...

In this third test we request for a station adjacent to a given station and line. We
process the graphs for the London Underground, Sydney and Vienna. The number of
edges in these graphs decreases from London with 412 edges over Sydney with 284
edges to Vienna with only 90 edges.

B-PROLOG CIAO GNU SWI XSB YAP

London 7.8 sec 25.5 sec 4.6 sec 15.3 sec 8.5 sec 5.0 sec
Sydney 6.3 sec 22.8 sec 4.4 sec 15.2 sec 7.7 sec 4.9 sec
Vienna 5.2 sec 22.0 sec 3.8 sec 13.7 sec 7.6 sec 4.7 sec

1 on Core i5 2x2.4 GHz, 6 GB RAM, Ubuntu 14.04

13



As one can see in the second table the amount of data which is transmitted to and
from PROLOG has a huge influence on the execution time. All the times of the execution
with 1000 characters are up to 7 times slower than the execution with 100 characters.

In the last table, one can see that the decrement of execution time for the PROLOG
inference mechanism has only a slight effect on the complete execution time includ-
ing the input and output operations. The slowest execution in this evaluation is the
1000 character benchmark for YAP. But 61.7 seconds for 50000 executions means an
execution time of 1.234 milliseconds for a single execution. Because in real world ap-
plications 50000 executions in a row are unusual, this delay of about one millisecond is
still a good value.

6 Conclusions and Future Work

In this paper we have presented the portable PROLOG interface (PPI) for our connector
architecture. The PPI is based on standard streams that are part of nearly every operat-
ing system and are used by most PROLOG implementations for the user interaction. In
a first evaluation we could verify the applicability of the PPI within our connector for
several PROLOG implementations, and that with a decent performance. This way, we
have improved the portability of our connector architecture for PROLOG and JAVA.

In a future work, we want to extend our tests with the PPI to other PROLOG im-
plementations, maybe to commercial PROLOG systems, too. In addition, we currently
work on the integration of existing high performance interfaces into our connector. In
doing this, we expect to get better execution times for our mapping technique between
JAVA and PROLOG.

References

1. A. Amandi, M. Campo, A. Zunino. JavaLog: a framework-based integration of Java and
Prolog for agent-oriented programming. Computer Languages, Systems & Structures 31.1,
2005. 17-33.

2. M. Banbara, N. Tamura, K. Inoue. Prolog Cafe: A Prolog to Java Translator.
Proc. Intl. Conference on Applications of Knowledge Management, INAP 2005, Lecture
Notes in Artificial Intelligence, Vol. 4369, Springer, 2006. 1-11.

3. M. Calejo. InterProlog: Towards a Declarative Embedding of Logic Programming in Java.
Proc. Conference on Logics in Artificial Intelligence, 9th European Conference, JELIA, Lis-
bon, Portugal, 2004.

4. S. Castro, K. Mens, P. Moura. LogicObjects: Enabling Logic Programming in Java through
Linguistic Symbiosis. Practical Aspects of Declarative Languages. Springer Berlin Heidel-
berg, 2013. 26-42.

5. S. Castro, K. Mens, P. Moura. JPC: A Library for Modularising Inter-Language Conversion
Concerns between Java and Prolog. International Workshop on Advanced Software Devel-
opment Tools and Techniques (WASDeTT), 2013.

6. S. Castro, K. Mens, P. Moura. Customisable Handling of Java References in Prolog Pro-
grams. arXiv preprint arXiv:1405.2693, 2014.

7. M. Cimadamore, M. Viroli. A Prolog-oriented extension of Java programming based on
generics and annotations. Proc. 5th international symposium on Principles and practice of
programming in Java. ACM, 2007. 197-202.

14



8. K. Gybels. SOUL and Smalltalk - Just Married: Evolution of the Interaction Between a Logic
and an Object-Oriented Language Towards Symbiosis. Proc. of the Workshop on Declarative
Programming in the Context of Object-Oriented Languages, 2003.

9. M. D’Hondt, K. Gybels, J. Viviane Seamless Integration of Rule-based Knowledge and
Object-oriented Functionality with Linguistic Symbiosis. Proc. of the 2004 ACM sympo-
sium on Applied computing. ACM, 2004.

10. T. Majchrzak, H. Kuchen. Logic java: combining object-oriented and logic programming.
Functional and Constraint Logic Programming. Springer Berlin Heidelberg, 2011. 122-137.

11. L. Ostermayer, D. Seipel. Knowledge Engineering for Business Rules in Prolog.
Proc. Workshop on Logic Programming (WLP), 2012.

12. L. Ostermayer, D. Seipel. Simplifying the Development of Rules Using Domain Specific Lan-
guages in Drools. Proc. Intl. Conf. on Applications of Declarative Programming and Knowl-
edge Management (INAP), 2013.

13. L. Ostermayer, D. Seipel. A Prolog Framework for Integrating Business Rules into Java
Applications. Proc. 9th Workshop on Knowledge Engineering and Software Engineering
(KESE), 2013.

14. L. Ostermayer, F. Flederer, D. Seipel. A Customisable Mapping between Java Objects and
Prolog Terms.
http://www1.informatik.uni-wuerzburg.de/database/papers/otm_
2014.pdf

15. L. Ostermayer, F. Flederer, D. Seipel. CAPJa - A Connector Architecture for Prolog and
Java. http://www1.informatik.uni-wuerzburg.de/pub/ostermayer/
paper/capja_2014.html

16. P. Singleton, F. Dushin, J. Wielemaker. JPL 3.0: A Bidirectional Prolog/Java Interface.
http://www.swi-prolog.org/packages/jpl/

17. J. Wielemaker, T. Schrijvers, T. Markus, L. Torbjörn. SWI-Prolog.
Theory and Practice of Logic Programming. Cambridge University Press, 2012. 67-96.

18. J. Wielemaker. SWI Prolog.
http://www.swi-prolog.org

15

http://www1.informatik.uni-wuerzburg.de/database/papers/ otm_2014.pdf
http://www1.informatik.uni-wuerzburg.de/database/papers/ otm_2014.pdf
http://www1.informatik.uni-wuerzburg.de/pub/ostermayer/paper/capja_2014.html
http://www1.informatik.uni-wuerzburg.de/pub/ostermayer/paper/capja_2014.html
http://www.swi-prolog.org/packages/jpl/
http://www.swi-prolog.org

	PPI- A Portable Prolog Interface for Java
	Ludwig Ostermayer, Frank Flederer, Dietmar Seipel 
	Introduction
	Related Work
	The Object Term Mapping between Java and Prolog
	Default Mapping
	Customised Mapping
	Creating Textual Term Representations
	Parsing Textual Term Representations

	PPI - The Portable Prolog Interface
	Evaluation
	Conclusions and Future Work



