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Abstract. This paper discusses the anomaly of gradually inconsistent argumen-

tations when reasoning under uncertainty. It is argued that in several domains,  

uncertain knowledge modeling experts’ opinions may induce inconsistencies to 

a certain degree in interim and final conclusions. In order to model gradual/partial 

inconsistency, complex certainty factors are introduced and their serial and par-

allel propagation within rule-based expert systems is presented. Our complex cer-

tainty factor model, representing and propagating belief and disbelief separately, 

sheds light on the meaning of inconsistency degrees and their persistence within 

argumentations under uncertainty. For the methodology capable of this separate 

propagation, complex certainty factors for facts are designed as two- and for rules 

as four-dimensional value tuples. Requiring local consistency of knowledge, we 

show that only two dimensions are necessary for rules, and based on this finding, 

deliver a simple graphical visualization suitable for expert’s knowledge acquisi-

tion. Finally, we categorize gradual inconsistencies and discuss their handling.  

1 Motivation: Rules, uncertainty handling, and inconsistency 

Assisting experts in their decisions and actions can be performed by modeling the en-

vironment by a knowledge base and asking for entailed consequences in form of deri-

vations for expert’s expressed goals from the knowledge base. A widely used form of 

knowledge representation consists of facts (data) and if-then rules (production rules) 

for expert systems or rule-based systems. Efficient basic algorithms are known which 

act either in a forward-chaining, data-driven, bottom-up manner by applying rules from 

facts over derived interim results to goals (production view), or in a backward-chaining, 

goal-driven, top-down manner reducing derivations of goals to those of subgoals until 

reaching facts (goal/problem reduction). In case of certain knowledge, a goal may ad-

mit several derivations using a collection of facts and rules and it is known that only 

one derivation suffices to show entailment from a consistent (Horn) knowledge base.  

In case of uncertain knowledge, the methodology of rule-based systems, logic, and 

logic programming cannot be transferred in a straightforward manner. In their seminal 

work on modeling inexact reasoning in medicine, Shortliffe and Buchanan [11] propose 

the use of certainty factors (CF), real numbers between -1 and 1, for facts and rules, 

expressing measures of increased belief (positive CF) or disbelief (negative CF)  



according to acquired evidence, and describe within their MYCIN diagnosis system the 

propagation of certainty factors for derived interim and final conclusions/goals within 

a forward-chaining inference framework. Besides calculating CFs for logical expres-

sions of rule conditions and propagating CFs in rule application (serial propagation), a 

new issue occurs whenever several derivations exist for the same conclusion/goal, such 

as for the same hypothesis in medical diagnosis. Whereas such a situation is not very 

interesting for certain knowledge—simply taking one of the derivations/argumenta-

tions as a proof for a goal (with certainty)—two derivations for the same hypothesis, 

each with an uncertain belief measure out of different pieces of evidences, are regarded 

to constitute a situation of incrementally acquired evidence for the same hypothesis and 

would lead to a stronger belief in that hypothesis (parallel propagation).  

This parallel propagation can not only be applied to two measures of increased be-

liefs and similarly to two measures of increased disbelief, but also to mixed belief situ-

ations where a measure of increased belief (positive CF) and a measure of increased 

disbelief (negative CF) are previously calculated for the same hypothesis or subgoal. 

This situation leads to a positive CF, if belief is of higher degree, to a negative CF, if 

disbelief is of higher degree, and to zero if measures of belief and disbelief are equal. 

The two versions of MYCIN formulas for parallel propagation do not apply to combine 

certain belief (+1) and certain disbelief (-1)—the case of absolute inconsistency. 

This paper recognizes a deficiency in the latter kind of calculations from a modeling 

point of view when reasoning with experts’ opinions and rules which could lead to 

(degrees of) contradictions due to (partially) inconsistent argumentations and deriva-

tions for goals and subgoals. We introduce complex certainty factors to manage these 

contradicting opinions leading to combined measures of increased belief and disbelief. 

Calculations of complex certainty factors enable to recognize conflicting subresults and 

propagate degrees of inconsistency until final goals and conclusions. In our opinion, 

the idea and visualization of the proposed complex certainty factors will throw light on 

the problem of gradual inconsistency within uncertainty reasoning.  

The author is aware that starting with works of Heckermann and Horovitz [6] and 

Pierce [10], in which several anomalies in “extensional approaches” like the CF model 

for uncertainty reasoning are discussed and in which belief networks as an “intentional 

approach” based on Bayesian probabilistic inference are declared to constitute a supe-

rior model for reasoning with uncertainty, a considerable part of the AI community 

followed this opinion including the developers of MYCIN themselves (Heckerman and 

Shortliffe [7]). Extensional approaches, viewed as suffering from modularity together 

with locality and detachment, “respond only to the magnitudes of weights and not to 

their origins” [10] and therefore lack a proper handling of distant correlated evidences.  

However, the problem of partial/gradual inconsistency addressed in this paper de-

scribes another type of anomaly of reasoning with uncertainty and we are not aware of 

a resolution of this anomaly in non- or quasi-probabilistic (extensional) or probabilistic 

(intentional) systems including belief networks. In Sect. 2, we emphasize the relevance 

of the inconsistency anomaly by considering some business applications where ex-

pert’s knowledge could lead to inconsistencies. In Sect. 3, we review the MYCIN cer-

tainty factor model and discuss some general interpretation issues, such as properties 

of degrees of confirmation and disconfirmation. We define the notion of local belief 



consistency and distinguish absolute and uncertain belief/disbelief as well as absolute 

and partial inconsistency. The anomaly of gradual inconsistency is illustrated by a fic-

tive example of experts’ ratings of derivatives related to the financial crisis. 

In order to model gradual inconsistency, we introduce complex certainty factors in 

Sect. 4 and present their serial and parallel propagation within a rule-based expert sys-

tem in Sect. 5. In order to propagate belief and disbelief separately, more complex cer-

tainty factors for rules are necessary, still under requirements of local consistency of 

knowledge, they could be simplified (cp. 5.3). A simple graphical visualization for ex-

pert’s knowledge acquisition follows. Detecting inconsistencies in expert’s argumenta-

tions is illustrated by applying our model to the financial crisis example in subsect. 6.1.  

Though our ideas to handle the anomaly of gradual inconsistency are designed using 

the CF model, they are applicable to other formalisms as well. Reasoning with complex 

certainty factors do not only sum up evaluation of a decision by a figure like certainty 

factor, probability or likelihood ratio, but can also evaluate distrust and skepticism (cp. 

6.2) whenever different argumentations lead to partially conflicting conclusions. In 6.3, 

we retrospectively interpret the phenomenon of gradual inconsistency, distinguish in-

herent and apparent inconsistency in the course of uncertainty reasoning and show tech-

niques to resolve recognized types of inconsistencies leading to future works (Sect. 7). 

2 Expert knowledge and inconsistency in business applications 

Many decision problems in business, economics, society, and politics are based on pre-

dictive knowledge and expert evaluations that are prone to hidden conflicts and incon-

sistencies. They represent partial information on cause-effect relationships with a lack 

of exhaustive frequency or (a-priori and conditional) probability data being a prerequi-

site for building belief networks. Inference systems should be able to handle experts’ 

opinions as partial and modular knowledge about cause-effect, influence, and relevance 

relationships as well as selective association rules extracted by data mining techniques.  

One application domain lacking complete probability data is risk evaluation of new 

technologies; only (uncertain) expert opinions about causal relationships are known 

concerning future consequences. Examples are relationships between greenhouse effect 

and global warming, between environmental contamination, damage and catastrophes, 

as well as effects of extensive use of mobiles and social media on children’s mental 

growth. TV shows with debates of experts of different schools of thought often exhibit 

that controversial and opposite opinions may lead to inconsistencies in argumentations. 

Also, knowledge and rules of the same expert may sometimes induce indiscernible in-

consistency within a subject. In politics, it is not rare to find “experts” who preach de-

mocracy principles and human rights but support dictatorships because of hidden eco-

nomic interests. Such kind of inconsistency cannot be detected easily by TV spectators 

confronted with experts’ opinions on complex problems such as globalization, currency 

devaluation, political instability, middle-east conflict and Arab spring.  

Furthermore, there are some areas such as law and jurisprudence where knowledge 

to be applied is normative. Besides informative knowledge considered as descriptive, 

helping with conceptual understanding, normative knowledge is seen as prescriptive 



showing how to comply (with law). Normative orders and systems are not only relevant 

in jurisprudence, but also characterize scientific branches like normative economics and 

normative ethics. Normative knowledge includes requirements usually expressed using 

the verbal form “shall” for a necessary conclusion as a (generally formulated) judgment 

if a given list of conditions is fulfilled. The application of this modular knowledge in 

court proceedings is subject to uncertainties in the given evidences or facts of the case. 

In a criminal case, punishments may heavily differ in extent from monetary penalty to 

several years of prison, depending on the final refined judgment that may be a standard 

burglary, robbery or armed robbery. Evidences and facts of a case like “has the robber 

a knife, a pocket knife, etc.”, “is it considered as dangerous tool” are subject to uncer-

tainties. In a course of an analysis scheme based on these evidences, the judge should 

infer belief about intention (negligent, grossly negligent, etc.). From the other hand, he 

examines exculpations (distress/emergency states) which can lead to disbelief. Thus, 

given both positive belief and disbelief in some aspects of the judgment, one is con-

fronted with partial inconsistency in the concluding judgment or within an intermediate 

conclusion. Our method is able to propagate these partial inconsistencies until the con-

cluding judgment. Only at the concluding judgment, the lawyer has to weigh pros and 

cons (belief and disbelief) as well as argumentations for and against, in order to finally 

judge the criminal case. In our opinion, normative knowledge is inherently modular and 

cannot deliver the necessary conditional probability tables required for belief networks. 

So using our complex certainty factors for modular knowledge is one method of choice. 

3 Certainty factors and the inconsistency anomaly  

In introducing certainty factors of facts and rules for modelling uncertain knowledge 

and discussing their serial and parallel propagation, we stress on several general inter-

pretation issues: properties of belief and disbelief, difference to probability, local con-

sistency, absolute and gradual belief and inconsistency. A motivating example concern-

ing experts’ rating of derivatives and financial crisis illustrates the anomaly of gradual 

inconsistency that is shown to be improperly handled by the certainty factor model.  

3.1 Certainty factors and their relationship to probabilities 

A common application of uncertainty reasoning is classification and diagnosis. Some 

observations (symptoms, evidences) can be linked by rules to solutions (hypotheses, 

diagnoses, diseases). Rules are associated expert’s estimates of confirmation/disconfir-

mation or belief/disbelief by an (un-)certainty measure, as in a MYCIN example [11]: 

IF:     E1) The stain of the organism is gram positive 

      AND E2) The morphology of the organism is coccus 

      AND E3) The growth confirmation of the organism is chains 

THEN:    there is suggestive evidence   (CF = 0.7)  

H) that the identity of the organism is streptococcus  

Generally, a certainty factor CF(H,E), denoted here CF(H|E) for convenience, is a 

real number in [-1…1] representing a measure of increased belief in the hypothesis H 



given an acquired evidence E, if it is positive, and a measure of increased disbelief in 

(belief against) the hypothesis H given the evidence E, if it is negative. While a certainty 

factor of 1 corresponds to “definitely certain” and -1 to “definitely not” or “certainly 

against” a hypothesis, certainty factors for linguistic utterances “weakly suggestive”, 

“suggestive”, and “strongly suggestive” evidence may range from 0.2 to 0.95, and for 

“almost certainly not”, “probably not” and “may be not” may range from -0.95 to -0.2. 

A first formula for certainty factors CF(H|E) of the rule “if E then H” adopted by 

MYCIN in terms of a measure of (increased) belief MB(H|E) and a measure of in-

creased disbelief MD(H|E), given an acquired evidence E, is simply the difference:  

CF(H|E) =  MB(H|E) −  MD(H|E)                                                                        (1)     

Shortliffe & Buchanan [11] note that the above rule example reflects their collaborating 

expert’s belief that gram-positive cocci growing in chains are apt to be streptococci, 

where a 70% of belief in the conclusion is uttered. They noted that translated to the 

notation of probability, the rule with CF=0.7 seems to say P(H|E1,E2,E3) = 0.7. The 

expert, they say, may well agree with this, but he definitely not agree with the conclu-

sion that P(¬H|E1,E2,E3) = 1 - P(H|E1,E2,E3) = 1 - 0.7 = 0.3. The expert claims, that 

“the three observations are evidence (to degree 0.7) in favor of the conclusion that the 

organism is a Streptococcus and should not be construed as evidence (to degree 0.3) 

against Streptococcus”. Thus, CF(¬H|E) is not equal 1 - CF(H|E). Accounting for this 

difference, Shortliffe and Buchanan [11] fix CH(H|E) = 0 for the case the hypothesis H 

is probabilistically independent from the evidence E, that is, for P(H|E) = P(H). In this 

case both MB(H|E) and MD(H|E) are equal to zero:  

   𝑀𝐵(𝐻|𝐸) = 0          𝑎𝑛𝑑     𝑀𝐷(𝐻|𝐸) = 0      𝑓𝑜𝑟    𝑃(𝐻|𝐸) = 𝑃(𝐻)                              (2) 

For the case the evidence E supports belief in H, P(H|E) > P(H), they define:  

        𝑀𝐵(𝐻|𝐸) =
𝑃(𝐻|𝐸) − 𝑃(𝐻)

(1) − 𝑃(𝐻)
   𝑎𝑛𝑑     𝑀𝐷(𝐻|𝐸) = 0      𝑓𝑜𝑟    𝑃(𝐻|𝐸) > 𝑃(𝐻)         (3) 

By this definition, the measure of increased belief MB(H|E) can be interpreted as the 

ratio of increase of probability of P(H) to P(H|E) after acquiring the new evidence E 

relative to the possible increase distance from P(H) to 1, full certainty for H. For the 

case the evidence E supports disbelief in H (belief against H), P(H|E) < P(H), we get: 

        𝑀𝐷(𝐻|𝐸) =
𝑃(𝐻) − 𝑃(𝐻|𝐸)

𝑃(𝐻) − (0)
   𝑎𝑛𝑑     𝑀𝐵(𝐻|𝐸) = 0      𝑓𝑜𝑟    𝑃(𝐻|𝐸) < 𝑃(𝐻)         (4) 

Likewise MD(H|E) can be interpreted as the ratio of decrease of probability of P(H) to 

P(H|E) after acquiring E relative to the distance from 0, full disbelief in H, to P(H). 

Heckermann [5,7] multiplies denominators of (3) and (4) by the extra terms P(H|E)-0 

for MB and 1-p(H|E) for MD, making the definitions symmetric in P(H) and P(H|E) 

and justifying parallel propagation (15). Further, when P(H) approaches 0 with P(H|E) 

fixed, MB(H|E) converges to P(H|E) in the original and to 1 in Heckermann’s defini-

tion. He maps the likelihood ratio λ =
𝑃(𝐸|𝐻)

𝑃(𝐸|¬𝐻)
∈ ]0,∞[  to 𝐶𝐹 ∈ ] − 1,1[  by 𝐶𝐹 =

λ−1

λ
 

for λ ≥ 1 and 𝐶𝐹 = λ − 1 for λ < 1 and applies Bayesian inversion formulas 𝑃(𝐸|𝐻) =

[𝑃(𝐻|𝐸) ∗ 𝑃(𝐸)]/𝑃(𝐻) and 𝑃(𝐸|¬𝐻) = [𝑃(¬𝐻|𝐸) ∗ 𝑃(𝐸)]/𝑃(¬𝐻). We will not dwell on 

probabilistic justifications of the CF model which were already subject of many papers.  

Of concern are here only some desired properties that remain true with these defini-

tions of MB and MD operationalizing degrees of confirmation and disconfirmation: 



 The measure of increased disbelief in H after acquiring evidence E is equal to the 

measure of belief in ¬H after acquiring evidence E and vice versa:  

o MD(H|E) = MB(¬H|E)      (5) 

o MB(H|E) = MD(¬H|E)      (6) 

 For each rule, not both measures of increased belief and of increased disbelief 

can be positive (local belief consistency): 

o MB(H|E) > 0  MD(H|E) = 0     (7) 

o MD(H|E) > 0  MB(H|E) = 0     (8) 

From (5) and (6) it follows according to CF definition (1) that: 

CF(¬H|E) =  ̶  CF(H|E)     (9) 

Properties (7) and (8) prescribing what we call local belief consistency are crucial, 

since the same piece of evidence cannot both favor and disfavor the same hypothesis. 

Thus formula (1) is stated for convenience, instead of stating CF(H|E) = MB(H|E), if 

MB(H|E) > 0 and CF(H|E) =  ̶  MD(H|E), if MD(H|E) > 0. As Heckermann [5] states, 

we assume that probability and belief measures are to be understood as subjective ac-

cording to the same expert with prior knowledge k about the domain. So P(H|E) can be 

seen as P(H|E,k), P(H) as P(H|k), MB(H|E) as MB(H|E,k), MD(H|E) as MD(H|E,k), 

and CF(H|E) as CF(H|E,k). For a fact E, CF(E) can be seen as a rule’s CF: CF(E|k). 

Precisely, Heckermann denotes CF(H|E,k) as CF(HE, k) to account for the matter of 

fact that the expert knowledge somehow conditions the whole expert’s opinion about 

CF of the rule and that a diagnostic rule if E then H actually models the reciprocal 

causality that the hypothesis/disease H causes the appearance of the evidence E.  

3.2 Certainty factors of compound evidence and their serial propagation  

Given an if-then-rule (R) with certainty factor CFR  

(R)   if    condition/evidence E     then     conclusion/hypothesis H      (CFR) 

firstly compute the CF(E) out of CF of the members constituting the expression E and 

then compute CFR(H) of the conclusion by serial propagation of CFs: 

1. Calculate CF(E) for E an expression using conjunction, disjunction and negation: 

o CF ( e1  e2 )  =   and(CF(e1), CF(e2)) := min(CF(e1), CF(e2))  (10) 

o CF ( e1  e2 )  =   or(CF(e1), CF(e2))    := max(CF(e1), CF(e2)) (11) 

o CF ( e )         =    ̶̵  CF(e)     (12) 

2. Calculate CFR(H): 

o If CF(E) > 0 then CFR(H) = CF(E) * CFR    (13) 

o If CF(E) ≤ 0 then the rule (R) is not applicable   (14) 

Whereas the min-function for conjunction of evidence in (10), as a possible t-norm, 

is adequate for e1 and e2 being completely or strongly overlapping, another t-norm 

CF(e1  e2 )  = CF(e1)*CF(e2), less than min(CF(e1), CF(e2)), is more adequate, if e1 

and e2 are independent. We propose to attach to each rule individual variants of  

t-norm/t-conorm for computing CF of conjunction/disjunction of evidences according 

to the evidences’ grade of overlapping/dependency/disjointedness (see below).   

It is important to note that serial propagation do only apply to the case CF(E) > 0, or 

practically using a threshold, e.g. CF(E)  0.2 as for MYCIN. Take the rule (R1) “if it 



rains then the grass gets wet” with certainty factor 0.9. If it rains, we can infer grass is 

wet with certainty factor CF1 = 0.9. It is clear that if it doesn’t rain CF(Rain) = -1, we 

cannot infer CF(WetGrass) = -1*0.9 = -0.9, since grass may be wet, for instance, be-

cause of the sprinkler being on. The asymmetry in (13) and (14) accounts for the intui-

tion of experts working with rule-based systems, who commonly tell that the presence 

of evidence E increases belief in a hypothesis H, but the absence of E may have no or 

negligible significance on H.  So for the case CF(Rain) = -1, we have CF(Rain) = 1 

and this negated evidence is only invoked with a rule with negated evidence like “If it 

doesn’t rain, then grass is not wet” that may be associated a significantly lower CF, as 

0.3, depending on the expert’s knowledge over other relevant causes in the domain 

making grass wet. This CF is nearly 0, if a sensor automatically turns the sprinkler on. 

Further, knowledge engineering with certainty factors should be either causal or di-

agnostic in order to avoid strange feedback loops, as for the causal rule (R1) together 

with the diagnostic rule (R2’) “if grass is wet, then sprinkler is on” with CF2’ = 0.4. 

Then one can infer from CF(Rain) = 1, that CF(SprinklerOn) = (1*0.9)*0.4 = 0.36. 

Clearly, the fact that it rains would “explain away” that the sprinkler is on, thus 

CF(SprinklerOn) should be near to zero. While inter-causal reasoning can be better 

handled by belief networks, the situation is better modelled by two causal rules or by 

one compound causal rule using disjunction: (R12) If Rain  SprinklerOn then Wet-

Grass. For the rule (R12), we propose to attach another t-conorm, such as CF(R  S) = 

CF(R) + CF(S)  ̵̶  CF(R)*CF(S), greater than max(CF(R), CF(S)) of (11), for R=Rain 

being independent of S=SprinklerOn or even CF(R  S) = min(1, CF(R) + CF(S)) as-

suming that R and S are (almost) mutually exclusive events.  

3.3 Parallel CF propagation and belief substantiation of co-concluding rules 

The case of parallel propagation of certainty factors applies when two rules have the 

same conclusion or hypothesis H (two co-concluding rules): 

(R1)   if    E1     then    H      (CFR1) 

(R2)   if    E2     then    H      (CFR2) 

Let the certainty factors for H be: x = CFR1(H) and y = CFR2(H)  as calculated by serial 

propagation of (R1) and (R2), then the resulting certainty factor for H is calculated by: 

               𝐶𝐹(𝐻) =

{
 
 

 
 
𝑥 + 𝑦 − 𝑥 ∗ 𝑦         𝑓𝑜𝑟    𝑥 ≥ 0, 𝑦 ≥ 0                           (𝑎)

𝑥 + 𝑦 + 𝑥 ∗ 𝑦         𝑓𝑜𝑟   𝑥 ≤ 0,   𝑦 ≤ 0                            (𝑏)
𝑥+𝑦

1−min(|𝑥|,|𝑦|)
           𝑓𝑜𝑟  − 1 < 𝑥 ∗ 𝑦 < 0                        (𝑐)

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑          𝑓𝑜𝑟 (𝑥, 𝑦) ∈ {(−1,1), (1,−1)}            (𝑑)

                (15)   

Actually, the formulas of (15) apply to the case of more than two co-concluding rules: 

Simply take x as the result of applying (15) so far and y as the CF result by serial prop-

agation of an additional rule, then combine x and y by applying (15) again. It can be 

shown that the application of (15) is commutative and associative. We first discuss (a) 

and (b), which are given in the original work of Shortliffe and Buchanan [11], then (c) 

and (d) in next sections. Motivated by the diagnostics domain, (15a) means that several 

evidences supporting the same hypothesis H substantiate suspicion for H. (15b) is 

equally motivated in case both evidences are against the same hypothesis H.  



 x = 0.5,   y=0.9     CF(H)  =  0.5 + 0.9  0.5*0.9  =  1.4 0.45   =  0.95              

 x = -0.5,  y= -0.9  CF(H)  = -0.5 0.9+(- 0.5)*(- 0.9)  = -1.4+ 0.45  = -0.95 

Formula (15b) is analogous to (15a): 𝑥 + 𝑦 + 𝑥 ∗ 𝑦 =  −(|𝑥| + |𝑦| − |𝑥| ∗ |𝑦|) for 

x and y being both negative (|𝑥| and |𝑦| correspond to measures of increased disbelief). 

In both cases, substantiation of belief (or disbelief) uses the probabilistic sum formula 

𝑎 + 𝑏 − 𝑎 ∗ 𝑏, an adequate t-conorm of disjunctions for independent propositions. This 

is justified if distinct independent argumentation chains are available from different 

indications. Two ways relating parallel propagation to disjunction can be depicted. A 

compound rule using disjunction “if E1  E2 then H” replaces (R1) and (R2), but needs 

a new expert’s CF estimation. A second way involving disjunction is to introduce new 

intermediary propositions H1 and H2 as two ways leading to H and apply rule (R1’) “if 

E1 then H1” and (R2’) “if E2 then H2”, separately. Interpreting CF(H1) = CFR1(H) = x 

and CF(H2) = CFR2(H) = y as the beliefs in H regarding, in diagnostic terms, the subsets 

P1 and P2 of the subpopulation of patients possessing disease H who show symptoms 

E1 and E2, respectively, so CF(H) can be seen as the belief outcome for H related to 

the patient set P1P2. We may roughly write H = H0H1H2, where CF(H0)=0, since 

no belief is known for the subpopulation P0 (corresponding to H0) possessing H but 

not showing symptoms E1 and E2. Presuming independence of P1 and P2, the use of 

the probabilistic sum is justifiable. This reasoning applies to (15b) by considering ¬H 

instead of H and |𝑥| and |𝑦| instead of x and y as beliefs in ¬H. The independence as-

sumptions of P1 and P2 are related to, and seem to be weaker (or equivalent) conditions 

for the justification of (15a) and (15b) than, the conditions of independency of E1 and 

E2 and their conditional independency, given H and H, stated by Adams [1].  

As a later appraisal for the CF model (in the new millennium) in comparison with 

Bayesian belief networks, Lucas ([8], Sect. 3.2-3.3, Fig. 1-2) shows that the efficiency 

of belief networks for large knowledge bases is due to the usage of extra structures like 

Noisy-OR that are shown to be equivalently handled by formula (15a) of the CF model 

for co-concluding rules. In fact similar so-called (decomposable) causal independence 

conditions are assumed in large practically relevant belief networks as pointed out by 

Lucas [8]. In order to avoid inefficiency in knowledge acquisition and processing for 

effect-nodes with lots of causes’ parent nodes, the (very big) conditional probability 

tables are gathered in an implicit way out of the individual cause-effect relations (like 

if-then rules) and processed by formulas like (15a) of CF parallel propagation. 

In case independency conditions are violated, we propose to attach other t-conorm 

variants to the evaluation of H, i.e. using max(x,y) for P1 and P2 being highly overlap-

ping/correlated and min(1,x+y) for P1 and P2 being mutually exclusive (disjoint).  

In this context, consider the knowledge gained from different experts: If two experts 

with prior knowledge k1 and k2 (evidences about the domain) assert their beliefs for 

the same rule, then we get something similar to CF(H|E, k1) and CF(H|E, k2). These 

can be seen as certainty factors for two different rules with the same conclusion H and 

can be handled by parallel propagation. In this case, it is convenient to assume that H1 

and H2 are highly overlapping and thus CF(H) = max(CF(H|E, k1)*CF(E), CF(H|E, 

k2)*CF(E)). If we deal with uncertainty at a meta-level, i.e., the assertions of the experts 

may be themselves uncertain, then one can take the arithmetic average of the experts’ 

beliefs concerning the same rule and assign it to one rule’s CF(H|E,k1,k2).  



3.4 Absolute confirmation, disconfirmation, and absolute inconsistency 

Formula (15d) excludes the occurrence of “absolute inconsistency”. For further discus-

sions, let us consider the defining criteria for MB and MD postulated by Shortliffe and 

Buchanan [11]. Let e+ (e–) represents all confirming (all disconfirming) evidence for 

hypothesis H acquired to date. MB(H|e+) and MD(H|e–) increase toward 1 as confirm-

ing respectively disconfirming evidence is found and equals 1 if and only if a piece of 

evidence logically implies H respectively H with certainty. This is achieved by (15a) 

and (15b), as 𝑥 + 𝑦 − 𝑥 ∗ 𝑦 = 𝑥 + 𝑦(1 − 𝑥) can only be 1 if 𝑥 = 1 or 𝑦 = 1. For the 

case of absolute confirmation MB(H|e+)=1, Shortliffe and Buchanan postulate that 

MD(H|e–) should be set to 0 regardless of the disconfirming evidence in e–. Similarly, 

the case of absolute disconfirmation MD(H|e–)=1 makes all confirming evidence in 

e+ without value for H. They remarked that the case where (MB(H|e+)= MD(H|e–) =1 

is absolutely inconsistent (contradictory) and hence the CF is undefined (15d).  

The original version of (15c) was formula (1) according to previously computed 

MB(H|e+) and MD(H|e–) by setting CF(H|e+& e–) = MB(H|e+) – MD(H|e–). Yet, for-

mula (15c) computes 1 when x or y is 1 and -1 when x or y is -1, as desired: 

 x = 1.0,  y=-0.9      CF(H)  =  (1.0 - 0.9)/(1-min(|1.0|,|-0.9|)  = 0.1/0.1   = 1 

 x = -0.9,  y=1.0      CF(H)  =  (-0.9+1.0)/(1-min(|-0.9|,|1.0|)  = 0.1/0.1   = 1 

 x = -1.0,  y=0.9      CF(H)  =  (-1.0 + 0.9)/(1-min(|-1.0|,|0.9|)  = -0.1/0.1  = -1 

With this interpretation, we note the discontinuum between {1} for absolute and the 

interval [0, 1) for uncertain confirmations and disconfirmations. Certain knowledge is 

considered as knowledge of higher magnitude which defeats and nullifies all other 

uncertain knowledge. Suppose we reason under uncertainty about the mortality likeli-

hood of patients with some complex diseases, and for a patient we gathered evidences 

showing a disbelief in mortality with CF = -0.5 for the next five years. Upon knowing 

his death, we get a CF=1 (certainly true) that nullify our disbelief from other evidences. 

Another example from default reasoning: We know that all birds fly with CF=0.95 and 

we know that a penguin is a bird, then we can imply that a penguin may fly with high 

positive certainty factor. Acquiring new specific certain knowledge that a penguin can-

not fly with certainty because of heavy weight and small wings, then the resulting CF 

is -1 regardless of our previous uncertain belief that it is a likely flying bird.  

3.5 Inconsistency in case of parallel CF propagation of mixed belief & disbelief  

Considering the idea and semantics of formula (15c), we show its undesired properties 

as mathematical mapping and its weakness in modeling gradual inconsistency. 

If evidences exist one for and one against a hypothesis, a common certainty factor 

CF is calculated (CF > 0, if MBfor > MDagainst and CF < 0 if MBfor < MDagainst):  

 x = -0.5,  y=0.9      CF(H)  =  (-0.5 + 0.9) / (1-min(|-0.5|,|0.9|)  

                         =   0.4 / (1-0.5)  = 0.4 / 0.5    =  0.80 

 x = 0.5,   y= -0.9    CF(H)  =  (0.5 + (-0.9)) / (1-min(|0.5|,|-0.9|)  

                         =   -0.4 / (1-0.5)  = -0.4 / 0.5    =  -0.80 

Shortliffe and Buchanan [11] firstly apply formula (1) delivering CF = MBfor - MDagainst 

= 0.9–0.5=0.4 for the first and analogously -0.4 for the second example. They enhance 



(1) into formula (15c) together with van Melle [12] in the course of development of a 

domain-independent EMYCIN system, in order to consider that very strong belief for 

a hypothesis should only be slightly affected by lower ranked disbeliefs. Note that two 

certainty factors CF1 = 0.9 and CF2 = 0.9 with a combined CF12 = 0.99 would be de-

stroyed by CF3 = -0.8 to a resulting CF(v1) = 0.19 by formula (1), whereas the formula 

(15c) computes CF(v2) = (0.99-0.8)/(1-0.8) = 0.19/0.2 = 0.95. So CF(v2) = CF(v1)/0.2. The 

new version (15c) is a normalization of the difference of belief and disbelief of (1).  

The formulas in (15) for CF(H) describes a function in x and y  [-1,1]. Buchanan 

and Duda [3] point out the following as “desired properties” of this function: 

  “When contradictory conclusions are combined (so that 𝑥 = −𝑦), the resulting  

       certainty is 0. Except at the singular points (1,-1) and (-1,1), CF(H) is continuous  

       and increases monotonically in each variable x and y.”  

The first property concerns all (x,y) in a straight line between, and excluding, the 

singular points (1,-1) and (-1,1). Whereas cases (1,-1) and (-1,1) are considered contra-

dictory [11] and their CF(H) remains undefined (15d), all other situations with partially 

contradictory conclusions are equally evaluated to 0. That means, whereas for x = 1 

and y = -1, an absolute contradiction is recognized, the values x=0.999 and y= – 0.999 

are evaluated to CF(H) = 0. Even worse, we may get in the proximity of (1,-1) all 

possible values for CF(H). Consider x = 0.999 and y = -0,9, CF(H)=(0.999+(-0,9))/(1-

min(|0.999|, |-0.9|)) = 0.099/0.1 = 0.99. This highly contradictory situation (0.999, -0.9) 

—one “strongly suggestive” opinion and one opinion “almost certainly not”—is con-

sidered equivalent to the clear situation x = y = 0.9 having two strongly suggestive 

opinions. The same problem occurs in the proximity of (-1,1). Thus, the property in the 

second reported sentence is to be relativized since the monotone increase in one varia-

ble is very perturbed by small changes in the other variable. Further, in the proximity 

of the straight line between (1,-1) and (-1,1) small changes may result in a very high 

increase between two extreme CF values, for instance, going from (0.999, -0.9999) to 

the near point (0.999, -0.99), x is fixed and y only increases by 0.0099, but the value of 

CF(H) increases drastically from -0.9 to +0.9 going through 0 at point (0.999, -0.999). 

The inability of the CF model to distinguish between lack of evidence 𝑥 = 𝑦 = 0 and 

contradictory conclusions 𝑥 = −𝑦 of different grades still remains in CF models con-

sidered to better match probability theory. For instance, the formula of parallel propa-

gation (𝑥 + 𝑦)/(1 + 𝑥 ∗ 𝑦) suggested by Heckermann [5] doesn’t change the situation.  

3.6 Inconsistency in argumentations – Example Financial crisis 

From the above discussion, our main objection is that inconsistency may appear in con-

clusions and one cannot always handle the situation by a kind of summarization or 

calculation based on a certainty factor or other single probability figure to mirror the 

partial contradiction. The situation is even worse, when contradictions appear within 

argumentations and are not apparent in the conclusion. In order to explain the phenom-

enon, we introduce the fictive example for the financial crisis depicted in Figure 1: 

Decisions of purchasing financial products such as derivatives are based on experts’ 

rating. Rating of a derivative D is based on ratings of A and C, the former being rated 



AA+ and the latter being a mixture of a bank value papers. The situation in Figure 1 (a) 

shows only positive opinions about all derivatives, including C and the certainty for the 

composition rule for D. Based on positive certainty factors for evidences, we get a 

CF=0.98 for derivative C by substantiation of belief of Experts E1 and E2 by formula 

(15a): 0.8+0.9-0.8*0.9=0.98. Thus, a certainty factor of 0.98 results also for D, as well.  

 
The decision case (b) shows akin situation with a wise man giving a negative rating 

for derivative C, because of its high degree of composition and its connection to bank 

value papers of insufficiently clear origins. The wise man can be Muhammad Yunus, 

an economist professor awarded the nobel peace prize. He further doubts on the deriv-

ative ratings (the newspaper “Handelszeitung” titled on 09.12.2008 “AAA nicht mehr 

das A und O”, i.e., “AAA no more the alpha and omega”). He gives a high measure of 

disbelief for derivative C. By using (15c) for the conclusion C merging CF12=+0.98 of 

Experts E1 and E2 with CF3 = -0.9 of the wise man, we get CF(C) = (0.98 + (-0.9)) / 

(1- min(|0.98|, |-0.9|)) = 0.08/0.1 = 0.8. This CF(C) propagates to deliver CF(D) = 0.8. 

The compound certainty factor CF(C) obscures the reasoning situation at stage C 

within the argumentation where a contradiction at a high grade exits. Even worse that 

this contradiction is not apparent any more at the end of the argumentation, i.e. at the 

conclusion D, only positive arguments are apparent without any skepticism.  

4 Complex certainty factors for reasoning with inconsistencies  

The drawbacks discussed in 3.5 and 3.6 of the CF model that mixes belief and disbelief 

in subresults and conclusions cannot be remedied by choosing another model of uncer-

tainty reasoning, like subjective Bayesian methods (Duda el al. (1976)) or the widely 

used Bayesian belief networks (Pierce (1988)). We are convinced that the evaluation 

by one real number, be it a certainty factor, an odd, a likelihood ratio, or a probability, 

does not suffice to make inconsistency visible within an argumentation. Therefore, our 



idea to remedy the drawbacks is to represent and propagate confirmations and dis-

confirmations separately within argumentations making possible to a disagreement, 

contradiction or inconsistency upon its discovery in a subresult to persist until the con-

clusion. To operationalize this idea, we introduce complex certainty factors (CCF) and 

by a suitable visualization stress its two-dimensionality separating belief and disbelief 

and making gradual inconsistency visible. The calculations for CCF are then presented 

for the combination of evidences/propositions by logical operators. The propagation of 

CCF is postponed to the next section where more complex CCF for rules are needed. 

4.1 Complex certainty factors 

Our requirement is that:       Distrust within an argumentation chain   

        should abide incessantly till conclusion.           (Req. 1)            

For instance, in the financial crisis example in 3.6, although the conclusion is summa-

rized by a positive certainty factor, disbelief in rating derivative C should be apparent 

in the evaluation of the conclusion (derivative D) as distrust. Also, if a conclusion 

would be summarized by a disbelief (negative certainty factor), distrust in form of a 

belief value within an argumentation should be apparent in the conclusion as well.  

Our approach is based on introducing complex certainty factors (CCF) for proposi-

tions and then for rules in order to propagate belief and disbelief separately, making 

them apparent within argumentations till the conclusion. A CCF of a proposition (fact, 

subresult or conclusion) consists of two separate parts for confirmation and disconfir-

mation and can be written, for convenience, like a complex number: 

   CCF = MB + i MD      (16) 

A CCF is composed of MB as real and MD as imaginary part of the complex number. 

The real part is called the belief/confirmation part and the imaginary part the disbelief/ 

disconfirmation part of the CCF. Let us consider some examples of CCF: 

 true (absolute confirmation):   1 + i 0   = 1 

 false (absolute disconfirmation):       0 + i 1  = i 

 consistent belief:   0.6 + i 0  = 0.6  

 consistent disbelief:     0 + i 0.7 = i 0.7 

 partially inconsistent knowledge:  0.8 + i 0.7            (belief & disbelief!!) 

 absolutely inconsistent:      1 + i  (contradiction) 

In the first four examples, we have either belief or disbelief and only one part (real or 

imaginary) is sufficient. In the last two cases, both confirmation and disconfirmation 

parts are positive and the resulting inconsistency is represented explicitly.  

4.2 Visualization of complex certainty factors 

The idea of a CCF of a proposition CCF = MB + i MD can be visualized in two dimen-

sions [0,1]x[0,1] where the x-axis represents MB and y-axis MD (see Figure 2). The 

distinguished points are (1,0) on the MB-axis for absolute belief/confirmation (true), 

(0,1) for absolute disbelief (false), (0,0) for the case no information on confirmation or 

disconfirmation could be calculated, and (1,1) for the case of absolute contradiction.  



 
      Figure 2: Visualization of complex certainty factors 

The projection of the points in [0,1]x[0,1] on the MB-axis and MD-axis along the 

thin lines and arcs represent the certainty factor values CF, where projections points on 

the MB-axis are positive CFs and projection points on the MD-axis correspond to neg-

ative CFs with the same amplitude. These projection trajectories form lines like rays 

starting in the proximity of (1,1). Each of these projection trajectory line containing an 

infinity of CCF points corresponding to the same CF is called an iso-CF line. Whereas 

the certainty factor CF is the same on each iso-CF line, the grade of disagreement, in-

consistency or contradiction is getting larger when going back towards the proximity 

of the absolute contradiction point (1,1) corresponding to CCF = 1 + i. For the CF model 

(cf. 3.4), all points (1, MD) with MD < 1 have CF=1 (certain belief nullifies partial 

disbelief) and all points (MB, 1) with MB < 1 have CF = -1 (certain disbelief nullifies 

partial belief), whereas point (1,1) of absolute contradiction has no defined CF. 

The distinguished points (1,0), (0,1), (0,0) and (1,1) are the corners of the unit quad-

rant [0,1]x[0,1] representing the two-dimensional CCF values’ range. The semantics of 

these four distinguished CCF corresponds to Belnap’s (useful) four-valued logic (for a 

computer how it should think) [2]: a proposition A has truth value (1,0) iff (the computer 

is) just told “A is true”, (0,1), iff just told “A is false”, (0,0), iff neither told “A is true” 

nor “A is false” and (1,1), iff told both “A is true” and “A is false”. Our CCF model 

extends Belnap’s four-valued logic in case of reasoning under uncertainty, yet captur-

ing and reasoning with both partial and absolute inconsistencies. 

4.3 Calculations with complex certainty factors for compound expressions 

The requirement for calculations with CCF following from (Req. 1) is as follows: 

    Belief and disbelief should not be admixed within CCF calculations.        (Req. 2) 

Beginning with operators and, or and not for evaluating condition parts of rules, let  

CFF(e1) = x1+ i y1   CFF ( e2 ) = x2+ i y2 ,  

The CCF of compound propositions e1  e2, e1  e2, and e1 are calculated as follows: 

 CCF(e1  e2)   =  and(x1+ i y1,  x2+ i y2)   =    and(x1, x2)  + i  or(y1, y2)  (17) 

 CCF(e1  e2)   = or(x1+ i y1,  x2+ i y2)      =      or(x1, x2)  + i  and(y1, y2)  (18) 

 CCF(e1)        = not(x1 + i y1)         =      y1 + i x1    (19) 



We firstly discuss (19). For negation NOT, we do neither use the formula 1-x for 

probability of the complement, nor –x for disbelief being “negative belief” for the CF 

model. Rather we interchange the belief and the disbelief part in (19), since MB(e1) 

= MD(e1) and MD(e1) = MB(e1) following the fundamental equations (5) and (6) in 

3.1. The belief and disbelief parts do not need to sum up to 1 in the CCF model. 

As (17) and (18) are dual, we focus our discussion on (17). CCF(e1  e2) written as 

and(CCF(e1), CCF(e2)) is defined through the operators on classical CF for and(x1, x2) 

and or(y1, y2), where general or evidence dependent t-norms and t-conorms can be used, 

respectively (cf. 3.2). Formula (17) incorporates de Morgan rule for “and” by using 

“or” for the disbelief part: As MD(e) = MB(e), we get MD(e1e2 ) = MB((e1  e2 )) 

= MB(e1   e2 ) = or(MB(e1 ), MB(e2 )) = or(MD(e1 ), MD(e2 )). Here, de Morgan 

rule, stating (e1  e2 ) is logically equivalent to e1   e2, is used.  

The classical CF model uses “min” as a t-norm for “and”, where the range of appli-

cation is not [0,1], as for fuzzy operators, but [-1,1]. The min-function behaves as in 

[0,1] when combining two measures of belief. It is (incidentally) coherent for two dis-

belief measures, because MD is negative within the CF in this case and min(CF1, CF2) 

= min(-MD1, -MD2) = -max(MD1, MD2). This fact is usually not mentioned explicitly 

in presentations of the CF model. When combining a positive and a negative CF, that 

is, a measure of belief CF1=MB1 and a measure disbelief CF2 = -MD2, the minimum 

will always take -MD2 as result regardless of the intensity of belief. For instance, for 

MB1 = 0.9 and MD2 = 0.1, we get -0.1; likewise in the opposite case where MB1 is of 

lower intensity MB1 = 0.2 and MD2 = 0.4, we get -0.4. The CCF calculation for this 

case gives: and(MB1, 0+ i MD2) = and(MB1,0) + i or(0, MD2) = 0 + i MD2. Also in 

this case, the CCF result shows, that the MB1 disappears because of the conjunction 

with MB2 = 0. For these three cases having in common that they represent what we call 

one-dimensional belief, the CF result coincides with the CCF result despite of their 

different representation (disbelief negative or as a second dimension).  

The situation changes in case of bi-dimensional belief. Recall that e2 as a subresult 

may have a measure of belief MB2 besides MD2 and we get and(MB1, MB2+ i MD2) 

= and(MB1, MB2) + i MD2. That means beliefs of e1 and of e2 are combined into the 

belief part of e1  e2 and likewise the disbelief in e2 propagates as well. Note that for 

the CCF conjunction, we use max-function for the evaluation of disbelief part (“or” in 

disbelief part in equation (17)). Thus, max(0, MD2) = MD2. For this special case, also 

other t-conorms deliver the same result min(1,x+y) = min(1, 0+MD2) = MD2 and x + 

y - x*y = 0+MD2+0*MD2 = MD2. We know that the result of CF model depends on 

the sign of CF2 corresponding to CCF2 = MB2 + i MD2. Following (15c), regarding x 

= MB2 and y = -MD2, the combined certainty factor CF2 = (x+y)/(1-min(|x|,|y|)=(MB2-

MD2)/(1-min(MB2, MD2)), being positive, if MB2>MD2, negative if MB2<MD2, and 

0 if MB2=MD2. For these three cases, the CCF result and(MB1, MB2) + i MD2  

differs in spirit from the CF result and(MB1, CF2) using mixed belief and disbelief 

of CF2 and simply taking the minimum. In contrast the CCF model combines beliefs 

into min(MB1, MB2) and propagates MD2 over the disconfirmation part. 

The discussion is analogous for equation (18) for calculating a CCF for disjunctions 

where de Morgan rule, stating (e1 e2 ) as logically equivalent to e1    e2,  is 

integrated by taking conjunction in the disbelief part of the resulting CCF.    



5 Propagation of complex certainty factors 

This section discusses serial and parallel propagation of CCF. We begin with discus-

sions of some practical drawbacks of the CF models in propagating disbelief in rules 

and declare requirements for the CCF model in order to overcome these drawbacks. We 

come up with a four-dimensional CCF for rules. By exploiting local consistency of 

knowledge, these more complex certainty factors are shown to be reducible into two 

types with only two dimensions, respectively. A visualization of these two types pro-

vides an easy-to-use graphical tool for expert’s knowledge acquisition.  

5.1 Disbelief propagation in CF model and requirements for CCF model 

Let us consider the practical difficulties in systematically propagating disbelief in the 

classical certainty factor model by considering some illustrating examples with given 

CF for rules and evidences: 

(R1) If E  then  H  (CF –0.8) 

            E                (CF +0.5)   CF(H) = +0.5*(-0.8) = – 0.4 

    (R2) If E  then  H  (CF 0.8) Rule is not applicable 

                E                (CF –0.5)   -/- -/- CF(H) = – 0.5*0.8 = – 0.4 (false!!) 

Rule (R2) cannot be invoked, because of negative CF of evidence. In order to propa-

gate disbelief in E in the second example, another rule is necessary: 

     (R3) If  E  then  H  (CF 0.6)   CF(E) = – (– 0.5) = 0.5  

                  E                   (CF –0.5)       CF(H) = 0.5*0.6 = 0.3 

Thus, disbelief can only be propagated in the CF model, if an additional rule with E 

in the premise is declared. Disbelief in H from disbelief in E can be propagated by: 

      (R4) If  E  then  H  (CF –0.6)     CF(E) = – (– 0.5) = 0.5  

                     E              (CF –0.5)        CF(H) = 0.5*(– 0.6) = –0.3 

Because this kind of Rules (R3) or (R4) are not well-kept in expert systems besides 

(R1) or (R2), the MD (also if it predominates MB) is not further propagated in a „pos-

itive“ argumentation chain. Let us consider the case that the expert always defines both 

rules; (R) with positive evidence and (dR) with negative evidence condition:  

   (R)   If   E   then H  CF = MB – MD 

    with     MB = MB(H|E)     and     MD = MD(H|E) 

        (dR)  If  E  then H  dCF = dMB – dMD  

    with   dMB = MB(H|E)  and  dMD = MD(H|E) 

Here, dMB and dMD are the measures of (increased) belief and disbelief in H under 

disbelief in E. While rule (R) propagates belief in evidence E, (dR) propagates disbelief 

in the evidence E. Although the rules of the first kind can generate disbelief as in the 

example (R1), this disbelief can be further propagated only by a rule of type (dR). Con-

sidering H as an intermediate result, CF(H) = -0.4 after applying (R1) can be further 

propagated only by a rule of the form (dR1) if  H  then  K. If the CF of (dR1) is 

positive an increased belief in K is propagated and if it is negative, disbelief in K results. 



Requirement for the CCF of a rule (Req. 3):  Since the complex certainty factor of 

evidence  CCF(E) = b + i d  contains both MB and MD, the CCF of a rule must contain 

belief and disbelief of the certainty factors of both rules (R) and (dR), in order that MB 

and MD of propositions could be further propagated simultaneously. 

 

5.2 Complex certainty factors for rules and their serial propagation 

To fulfill requirement (Req. 3), we define the complex certainty factor CCF(R) for a 

rule   (R)   If   E   then H 

as CCF(R) := tt MB + tf MD + ft dMB + ff dMD     (20) 

The four dimensions of the CCF(R) mean:  

 tt MB         belief in truth of evidence E results in belief of truth of hypothesis H 

 + tf MD     belief in truth of the evidence results in belief in falsehood of H 

 + ft dMB   belief in falsehood of the evidence results in belief in truth of H 

 + ff dMD   belief in falsehood of evidence results in belief in falsehood of H 

Given this more complex certainty factors for rules, two interesting questions arise: 

 How to calculate therewith? (serial/parallel propagation of CFF) 

 How can CCF‘s of rules be simplified in order to be more accessible to experts? 

Let us begin with serial propagation. Let be given  

(R)  If   E   then H   with   CCF(R) := tt MB + tf MD + ft dMB + ff dMD 

and  CCF(E)   = b + i d 

Then the CCF(H) is calculated as follows: 

     CCF(H)  =  CCF(E) * CCF(R)         (special CCF multiplication)  

      := or(b*MB, d*dMB)   + i  or(b*MD, d*dMD)      (21) 

Here or(b*MB, d*dMB) represents the belief part in the hypothesis H resulting from 

parallel propagation of b (belief in E) multiplied by MB (tt part of rule’s CCF) and of 

d, (disbelief in E) multiplied by dMB (ft part). Here both tt part and ft part yield belief 

in truth of H. Similarly, or(b*MD, d*dMD) represents the disbelief part in H resulting 

from the parallel propagation of b (belief in E) multiplied by MD (tf part of rule’s CCF) 

and of d (disbelief in E) multiplied by dMD (ff part). Here both tf part and ff part yield 

belief in falsehood of H. As will be clear in 5.3, only one element of each or-expression 

can be positive (or(x,0) = or(0,x) = x). Let us consider some examples: 

 CCF(R) = tt 0.9 + ff 0.4      and  CCF(E) = 0.7 + i 0.3 

 CCF(H) = or(0.7*0.9, 0) + i or(0, 0.3*0.4)  = 0.63 + i 0.12  

 CCF(R) = tf 0.9 + ft 0.4     and  CCF(E) = 0.7 + i 0.3        

 CCF(H) = or(0, 0.3*0.4) + i or(0.7*0.9, 0) = 0.12 + i 0.63 

5.3 Simplification of rules’ CCF and graphical interpretation 

Why have we only put two components within a rule’s CCF in the above two examples? 

The answer is that else we would have local inconsistency of knowledge (see below). 

And the good news is that only two types of CCF exist for locally consistent rules: 

 Type 1: MB > 0 and dMD > 0    CCF(R) = tt MB + ff dMD  as the first example      

 Type 2: MD > 0 and dMB > 0,   CCF(R) = tf MD + ft dMB  as second example  



Requirement of local consistency of knowledge (Req. 4): Expert belief according to 

an if-then-rule should be (at least locally for this rule) consistent: 

1. From definition of local consistency of belief in (7) and (8), we have: 

                     MB > 0  MD = 0         and    MD > 0  MB = 0             and  

analogously:  dMB > 0  dMD = 0       and  dMD > 0  dMB = 0      (22) 

2. We show, that additionally:          

           MB > 0      dMD > 0     as   P(H|E)>P(H)    P(H)>P(H|E)    (23) 

      and   MD > 0      dMB > 0     as   P(H|E)<P(H)    P(H)<P(H|E)     

From (22) it follows that only two positive components ( > 0) occurs in a CCF for each 

consistent rule. And from (23), it follows that only the above two types 1 and 2 of the 

four combinations of two components are possible. Let us give a short proof for (23): 

Applying Bayes rule: P(E|H) = [P(H|E)*P(E)]/P(H) = [P(H|E)/P(H)]*P(E) > P(E) 

for the case P(H|E) > P(H), i.e. P(H|E)/P(H) > 1. Using total probability principle 

P(E|H) + P(E|H) = 1, we deduce 1- P(E|H) > P(E) and thus P(E|H) < 1-P(E), 

i.e., P(E|H) < P(E) or P(E|H)/P(E) < 1. Applying Bayes rule again P(H|E) 

= [P(E|H)*P(H)]/P(E) = [P(E|H)/P(E)]* P(H), we deduce P(H|E) < P(H). 

Is it possible to have only one positive component as in the pure logical implication 

under certainty? Under uncertainty, experts sometimes think that a consequence rule 

(R) if E then H with MB > 0 does only apply, if positive belief in E is present, and that 

disbelief in E doesn’t mean anything for H. The proven equivalences (23) tell us that 

dMD must also be positive, that is, disbelief in H should in this case be positive. How-

ever, dMD doesn’t have to be of same intensity as the measure of belief MB (cf. exam-

ple in 3.2: (R1) if Rain then Wet (MB=0.9) but (dR1) if Rain then Wet (dMD =0.3)). 

5.4 Visualization of rules’ CCF for Expert knowledge acquisition 

Having reduced rule’s CCF to only two types each with a special structure with only 

two positive components, we are able to visualize CCF for rules as in Figure 3.  

     
(a) Type 1: CCF(R) = tt MB + ff dMD                  (b) Type 2:   CCF(R) = tf MD + ft dMB   

Figure 3: Visualization of complex certainty factors for rules 

The visualization shows that the two positive components of a rule’s CCF are always 

in diagonal quadrants, either Q(E,H) and Q(E,H) or Q(E,H) and Q(E,H). A 

positive measure of belief MB = MB(H|E) for type 1 CCF in quadrant Q(E,H) must be 

accompanied by a positive dMD = MD(H|E) = MB(H|E) in quadrant Q(E,H). 

Likewise a positive measure of disbelief MD = MD(H|E) = MB(H|E) for type 2 CCF 

in quadrant Q(E,H) must be accompanied by a positive dMB = MB(H|E) in quadrant 



Q(E,H). The expert has only to adjust the intensity of belief and disbelief on diagonal 

quadrants graphically by moving the respective points (Figure 3, small double arrows). 

The two intensities are generally not equal, further one of them may be certain and the 

other uncertain, e.g., the rule if Pregnant then Women has MB = 1 and dMD < 1 because 

a non-pregnant human being can be a man (Women) or a non-pregnant women. 

5.5 Parallel propagation of complex certainty factors 

As for the CF model, parallel CCF propagation apply when two rules have the same 

conclusion or hypothesis H (two co-concluding rules): 

(R1)   if    E1     then    H      (CCFR1) 

(R2)   if    E2     then    H      (CCFR2) 

Let the certainty factors for H be: x1 + i y1 = CCFR1(H)    and   x2 + i y2 = CFR2(H)    

as calculated by serial propagation (21) applied to (R1) and (R2), respectively, then the 

resulting complex certainty factor for H is calculated by the following formulas:   

CCF(H)  =      (x1 + x2 – x1*x2 )     +   i    (y1 + y2 – y1*y2 )     (24) 

Not only the belief part (x1 + x2 – x1*x2) of CCF(H) substantiates both belief values of 

CCFR1(H) and CCFR2(H) as in (15a), but also the disbelief part (y1 + y2 – y1*y2 ) sub-

stantiates both disbelief values of CCFR1(H) and CCFR2(H), too. Endorsed beliefs and 

endorsed disbeliefs remain separated from each other and not combined unlike the CF 

model using (15c). Having CFR1(H)= -0.5 and CFR2(H)=0.9 results into CF(H) = 0.4/0.5 

= 0.80 using (15c). This corresponds to CCFR1(H) = i 0.5 and CCFR2(H) = 0.9 resulting 

into CCF(H) = 0.9 + i 0.5 by (24). Disbelief in H from applying (R1) remains apparent 

in CCF(H), unlike in the pure positive CF(H). Further, the case (15d) having an unde-

fined certainty factor corresponds to CCFR1(H) = 1 and CCFR2(H) = i with the defined 

result CCF(H)  = 1 + i signalizing an absolute inconsistency derived for H.  

As discussed in 3.3, co-concluding rules can be seen as disjunctive parts for H in 

case of two beliefs (15a) and for H in case of two disbeliefs in H, i.e. beliefs in H 

(15b). In case of co-concluding rules, the CCF model calculate CF simultaneously for 

these two disjunctions and let them separated in the confirmation and disconfirmation 

part of the CCF result. Note the difference to evaluating one disjunction in expressions 

of evidences with both belief and disbelief parts in (18) where conjunction is used in 

the disbelief part, implicitly applying de Morgan rule. This explains the divergence of 

(18) and (24) in the disconfirmation/disbelief part. As discussed in 3.3 we may vary the 

t-conorm used for co-concluding rules according to their grade of dependency in direc-

tion to the case of overlapping (max(x1,x2)) or disjointedness (min(1, x1+x2)).  

6 Application and interpretation of gradual inconsistency 

The CCF model is applied to the financial crisis example of 3.6 and shown to correctly 

propagate disbelief and distrust in argumentations and to detect gradual inconsistency. 

We introduce a skepticism factor which together with the standard CF can better reflect 

uncertainty in derived conclusions. Finally, we interpret and classify gradual incon-

sistency into 2 types, namely inherent inconsistency and apparent inconsistency.  



6.1 Financial crisis revisited – applying the CCF model 

Let us consider the financial crisis example of section 3.6 (Figure 1) again and apply 

the propagation of complex certainty factors in the following Figure 4: 

 
Figure 4: Applying CCF model to the financial crisis example 

The disbelief of the wise man in rating of derivative C is now modeled by CCFR2(C) = 

i 0.9 resulting from serial propagation (cf. (20) and (21) in 5.2) using a rule of type 2: 

CCF(R2) = tf 0.9 + ft 0.15 and CF(E) = 1. Having CCFR1(C) = 0.98 from the ratings of 

experts E1 and E2, we get by applying parallel propagation (cf. (24) in 5.5) the two-

dimensional complex certainty factor CCF(C) = 0.98 + i 0.9 for derivative C. The CCF 

of derivative D being defined as conjunctive composition of A and C is then calculated 

by CCF(D) = and(CCF(C), CCF(A)) = and(0.98 + i 0.9, 0.999) = and(0.98, 0.999) + i 

or(0.9, 0) = 0.98 + i 0.9 (using (17) incorporating de Morgan in 4.3). The rating of 

derivative D was 0.98 without advice of the wise man and 0.80 with his advice using 

the CF model. But the situation changes when applying the CCF model, since disbelief 

of the wise man is now apparent in the disconfirmation part (i 0.9) of CCF(D) being 

MD = 0.9. This MD in CCF(D) = 0.98 + i 0.9 stands opposed to the propagated opinion 

of the two experts of MB = 0.98 represented by the belief part of the same CCF(D). 

The situation can be described as very skeptical and the grade of inconsistency is very 

high, as it is near to the point of absolute contradiction 1 + i (cf. Figure 2 in 4.2). 

6.2 Skepticism factor 

A CCF(H)=MB + i MD for a conclusion in causal reasoning or a hypothesis in diag-

nostic reasoning can easily be translated to a common certainty factor as in (15) by: 

𝐶𝐹(𝐻) =  
𝑀𝐵 −𝑀𝐷

1 −min(𝑀𝐵,𝑀𝐷)
                       𝑓𝑜𝑟 (𝑀𝐵,𝑀𝐷) ≠ (1,1)              (25) 

As this CF obscures the partial inconsistency, we associate another factor reflecting the 

skepticism in CF(H). This skepticism factor SF(H) can be defined as follows: 

𝑆𝐹(𝐻) =  
min (𝑀𝐵,𝑀𝐷)

max (𝑀𝐵,𝑀𝐷)
                            𝑓𝑜𝑟 (𝑀𝐵,𝑀𝐷) ≠ (0,0)              (26) 

As max(MB,MD) signalizes the amplitude of belief/disbelief in direction or sign of CF, 

the skepticism is then the ratio of the amplitude of the disbelief/belief against the CF, 



i.e. min(MB,MD) with respect to the former amplitude max(MB,MD). Applying (25) 

and (26) to our previous result CCF(D) = 0.98 + i 0.9, we get CF(D) = (0.98 – 0 .9) /(1 

– min(0.98,0.9)) = 0.08/(1 – 0,9) = 0.08/0.1 = 0.8, i.e. 80% certainty in belief, but with 

SF(D) = min(0.98,0.9)/max(0.98,0.9) = 0.9/0.98 = 0.92, i.e. 92% of skepticism.  

For points near to the diagonal (MB almost equal MD), formula (26) calculates a SF 

of almost 1 where CF being near to 0 (all point on the diagonal iso-CF line have CF=0, 

cf. figure 2). To account for the amplitude of CCF, i.e. distinguishing cases 0.2 + i 0.2 

and 0.9 + i 0.9, we may integrate avg(MB,MD)=(MB+MD)/2 in (26). Also, the product 

MB*MD, being a t-norm for independent propositions is 1 only for absolute incon-

sistency, but is very small for small MB and MD values (0.04 for 0.2+i 0.2). If setting 

SF= MB*MD, so for a fixed SF0, the formula corresponds to an iso-SF hyperbole MD 

= SF0/MB crossing iso-CF lines of Figure 2. As SF is meant to be an indicator of skep-

ticism, it can be designed as a weighted sum mixture (for (𝑀𝐵,𝑀𝐷) ≠ (0,0),∝𝑖≥ 0): 

        𝑆𝐹(𝐻) = ∝1  
min (𝑀𝐵,𝑀𝐷)

max (𝑀𝐵,𝑀𝐷)
 +∝2

𝑀𝐵 +𝑀𝐷

2
+ ∝3 𝑀𝐵 ∗𝑀𝐷       𝑤𝑖𝑡ℎ ∝1+ ∝2+ ∝3 = 1            (27) 

6.3 Interpretations of gradual inconsistency 

After presenting the CCF model aiming at detecting absolute and partial inconsisten-

cies, we now ask retrospectively what are the possible interpretations of a two-dimen-

sional complex certainty factor CCF = MB + i MD with both strictly positive confirma-

tion MB and disconfirmation MD parts? We principally discovered two types: 

 Type 1: Inherent inconsistency: This type can either be a case of  

─ absolute inconsistency of a knowledge base,     or else a case of  

─ inherent partial inconsistency due to opposite opinions of several experts or 

(partially) self-contradictory knowledge of the same expert 

 Type 2: Apparent inconsistency: Partial inconsistencies of this type can be  

resolved in belief or disbelief by acquiring more specific information (!) 

Let us discuss possible situations for the first type of inherent inconsistency. As shown 

by the financial crisis example, a typical interpretation of gradual inconsistency is that 

of opposite opinions of different experts. As discussed in Sect. 2 another kind of inher-

ent inconsistency emerges when rules of the same expert lead to contradictory conclu-

sions (self-contradictory knowledge). These types may accentuate to a case of globally 

inconsistent knowledge in a logical sense: For instance, the absolute certain facts A and 

B together with the locally consistent rules (R1) if A then C with MB1 = 1 and (R2) if 

B then C with MD2 = 1 lead to a (global) logical contradiction: CCF(C) = 1+i. Self-

inconsistent knowledge of “experts” can also arise, e.g. in politics, when consciously 

using vague or fuzzy notions like “fight on terrorism” without clear definition and hid-

ing some knowledge such as “suspicious economic interest”. Thus, using unspecified / 

vague / fuzzy notions and uncovering expert’s hidden knowledge as a special case of 

detecting implicit knowledge could interpret partial/absolute inherent inconsistency.  

Now, we discuss the second type of resolvable apparent inconsistency. Partial in-

consistency can emerge in case of missing specific information, e.g., due to predictive 

knowledge about future events. Knowing no more specific information about an animal 



than being a bird leads to a high MB for “Flying”, e.g., CF = CCF = 0.95. Upon knowing 

that the bird is a penguin with heavy weight and small wings MD(Flying) = 1, the CCF 

becomes by parallel propagation CCF = 0.95 + i. At a first glance, this example from 

default reasoning represents a situation of high degree of inconsistency. Following the 

interpretation of [11] (cf. 3.4), distrust is nullified upon knowing absolutely certain be-

lief or disbelief (+ i). For this, the knowledge should be consistent (not only locally).  

Generally, a two-dimensional CCF with high skepticism should trigger further anal-

ysis of the situation, in order to interpret this skepticism into a type of opposite opinions 

or any type of contradictions, or else a case of ambiguity, incertitude or ignorance be-

cause of lack of specific or complete information. Let us only know that an animal is a 

bird with heavy weight. Against a high measure of belief applying the rule that “almost 

all birds fly” MB(Flying) = 0.95, we may deduce from another rule, that “animals with 

heavy weights are very likely flightless”, a high measure of disbelief in “Flying”, e.g, 

MD(Flying) = 0.99. Thus, the resulting CCF = 0.95 + i 0.99 indicates that the animal 

at hand is a flightless bird, but with high skepticism. The interpretation of this incon-

sistency of high degree can only be resolved, upon knowing more specific information 

about the examined animals (in general, objects or object subclasses), e.g., whether the 

bird has small or large wings. In the first case, like the example of a penguin, it is 

definitely flightless and in the second case, it may fly like the example of a pelican in 

spite of its heavy weight which may attain 15kg (length of more than 1.80m, cf. English 

Wikipedia entry “list of largest birds”). Therefore, the skepticism gives rise to goal-

driven acquisition of more specific knowledge about the object instance and object sub-

classes as well as about probabilistic and causal relationships between them.  

Acquiring more specific knowledge helps in resolving partial inconsistency in a pro-

cess of disambiguation or mitigation of uncertainties. These aspects are related to the 

phenomenon of missing explanatory attributes, variables, or propositions, known in 

decision theory. Acquiring more specific knowledge may be performed by observations 

of the examined objects (e.g., birds, patients) or learning more about other attributes of 

examined objects (wings, symptoms). Data mining techniques may help finding rela-

tionships to (missing) attributes or properties of examined objects and object classes. 

If no specific knowledge is available, a disambiguation can be represented by means 

of a case analysis on some not sufficiently specified attributes (this is a crucial point 

further discussed in the concluding remarks). For the latter example, the answer could 

be “if the heavy weight bird has large wings, then it is likely to fly else it is flightless”. 

This case analysis recognizes cases with stronger / certain beliefs or disbeliefs.  

The remaining question is now: How to distinguish between inherent inconsistency 

and apparent inconsistency (Type 1 and Type 2 of gradual inconsistency)? The former 

type leads to genuine contradictions and the latter is resolvable upon knowing sufficient 

specific information. For the distinction, one may reason under what is known in deci-

sion theory as perfect information (that is usually absent in uncertainty reasoning). If 

the inconsistency persists, then it is of type 1, i.e. an inherent inconsistency. If the in-

consistency could be resolved under perfect information, it is likely of type 2. If all 

cases of possible perfect information are sketched (all possible worlds), then we have 

exactly a resolvable apparent inconsistency of type 2 and the knowledge base is likely 

to be consistent, at least in the subset of knowledge concerning the derivations. 



7 Conclusion and future work  

In this paper, we disclosed the phenomenon of gradual inconsistencies encountered in 

knowledge processing with uncertainty. We provided new formalism and inference 

tools based on complex certainty factors for rule-based systems capable of detecting 

inconsistencies in argumentations and of propagating them until final derivations. Our 

two-dimensional CCF for facts help visualizing grades of inconsistency and our four-

dimensional CCF for rules, reduced into two types each with only two dimensions, 

suggest that derivation of goals should simultaneously consider belief and disbelief. 

Our interpretation and classification of gradual inconsistencies in inherent and ap-

parent inconsistencies stress the issue of reasoning under incomplete knowledge and the 

usefulness of case analysis for the resolution of inconsistencies. We are now extending 

the CCF rule-based approach to a non-Horn environment of reasoning where case anal-

ysis inference is embedded in consequence chains. This type of inference, presented in 

our earlier work [9] for disjunctive logic programming and for two-, three- and four-

valued logic, is capable of nested case analysis inference for goals and subgoals and of 

message-passing of assumptions in argumentation chains for cases (enabling condition-

ing and summation as in belief networks). Integrating the CCF methodology, we then 

could offer a competitive inference system under uncertainty—without anomalies.    
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