
WLP 2014

28th Workshop on
(Constraint) Logic Programming

WFLP 2014

23rd International
Workshop on Functional and

(Constraint) Logic Programming

September 15-17, 2014, Wittenberg

Proceedings

Table of Contents

About WLP 2014 . 4

About WFLP 2014 . 6

I 28th Workshop on (Constraint) Logic Program-
ming 9

Embedding Defeasible Logic Programs into Gener-
alized Logic Programs 11
Martin Baláž, Jozef Frtús, Martin Homola, Ján Šefránek
and Giorgos Flouris

Describing and Measuring the Complexity of SAT
encodings for Constraint Programs 26
Alexander Bau and Johannes Waldmann

PPI — A Portable Prolog Interface for Java 38
Ludwig Ostermayer, Frank Flederer and Dietmar Seipel

Declarative Evaluation of Ontologies with Rules . . . 53
Dietmar Seipel, Joachim Baumeister and Klaus Prätor

Automated Exercises for Constraint Programming . 66
Johannes Waldmann

Complex Certainty Factors for Rule Based Systems
—Detecting Inconsistent Argumentations (Invited
Talk) . 81
Täıeb Mellouli

II 23rd International Workshop on Functional and
(Constraint) Logic Programming 103

Declarative Multi-paradigm Programming 105

2

Michael Hanus

Interpreting XPath by Iterative Pattern Matching
with Paisley . 108
Baltasar Trancón y Widemann and Markus Lepper

Exploring Non-Determinism in Graph Algorithms . 125
Nikita Danilenko

Curry without Success 140
Sergio Antoy and Michael Hanus

A Partial Evaluator for Curry 155
Michael Hanus and Björn Peemöller

Automatic Testing of Operation Invariance 172
Tobias Gödderz and Janis Voigtländer

3

About WLP 2014

Preface

The first part of this volume contains the papers presented at WLP
2014, the 28th Workshop on (Constraint) Logic Programming. The
workshop was held on September 15-17, 2014 in Wittenberg, at the
Leucorea Conference Center of Halle-Wittenberg University.

The Workshops on (Constraint) Logic Programming are the an-
nual meeting of the German Society of Logic Programming (GLP)
and bring together researchers interested in logic programming, con-
straint programming, answer set programming, and related areas like
databases and artificial intelligence (not only from Germany). Pre-
vious workshops have been held in Germany, Austria, Switzerland
and Egypt. The workshops provide a forum for exchanging ideas on
declarative logic programming, nonmonotonic reasoning and knowl-
edge representation, and facilitate interactions between research in
theoretical foundations and in the design and implementation of
logic-based programming systems. The WLP workshop series started
1988 in Berlin (in the first three years there were two workshops per
year).

The workshop was jointly organized and located with the 23rd
International Workshop on Functional and (Constraint) Logic Pro-
gramming (WFLP 2014). The WFLP workshops series is running
since 1992 and brings together researchers interested in functional
programming, logic programming, as well as their integration.

I thank the invited speaker, authors of papers, programme com-
mittee members, external reviewers, as well as the Leucorea team
and my local organization staff Ramona Vahrenhold, Heike Stephan,
and Alexander Hinneburg. I would also like to thank Johannes Wald-
mann for organizing WFLP 2014. It was a pleasure to work together.

September 12, 2014 Stefan Brass

Program Committee

Andreas Behrend (Universität Bonn)
Christoph Beierle (FernUniversität in Hagen)
Stefan Brass (Martin-Luther-Universität Halle-Wittenberg, chair)
François Bry (Ludwig-Maximilians-Universität München)
Jürgen Dix (TU Clausthal)
Thom Frühwirth (Universität Ulm)
Michael Hanus (Christian-Albrechts-Universität zu Kiel)
Petra Hofstedt (Brandenburgische Technische Universität Cottbus)
Michael Leuschel (Heinrich-Heine-Universität Düsseldorf)
Rainer Manthey (Universität Bonn)
Dietmar Seipel (Julius-Maximilians-Universität Würzburg)
Sibylle Schwarz (HTWK Leipzig)
Hans Tompits (TU Wien)
Armin Wolf (Fraunhofer FOKUS)

Additional Reviewers

Stephan Frank
Gabriele Keller
Ludwig Ostermayer

Local Organization

Stefan Brass
Alexander Hinneburg
Heike Stephan
Ramona Vahrenhold
Johannes Waldmann

5

About WFLP 2014

Preface

The second part of this volume contains the papers presented at
WFLP 2014: 23rd International Workshop on Functional and (Con-
straint) Logic Programming held on September 15-17, 2014 in Wit-
tenberg, at the Leucorea Conference Center of Halle-Wittenberg Uni-
versity.

The WFLP workshops series is running since 1992 and brings to-
gether researchers interested in functional programming, logic pro-
gramming, as well as their integration.

WFLP 2014 was jointly organized and located with WLP 2014:
28th Workshop on (Constraint) Logic Programming. The WLP work-
shops series serves as the scientific forum of the annual meeting of the
Society of Logic Programming (GLP e.V.) and brings together re-
searchers interested in logic programming, constraint programming,
and related areas like databases, artificial intelligence, and opera-
tions research.

The technical program of the workshop included an invited tuto-
rial by Michael Hanus on Declarative Multi-paradigm Programming,
an invited talk by Sven Thiele on Answer Set Programming for Sys-
tems Biology, and presentations of refereed papers.

I thank the invited speakers, authors of papers, programme com-
mittee members, external reviewers, as well as the local organizers
Stefan Brass, Ramona Vahrenhold and Heike Stephan, for creating
a very interesting and enjoyable workshop.

September 4, 2014
Leipzig

Johannes Waldmann

Program Committee

Elvira Albert Complutense University of Madrid
Sergio Antoy Portland State University
Mauricio Ayala-Rincon University of Brasilia
William Byrd University of Utah
Michael Hanus Universität Kiel
Herbert Kuchen University of Münster
Carlos Olarte Pontificia Universidad Javeriana Cali
Peter J. Stuckey University of Melbourne
René Thiemann University of Innsbruck
Janis Voigtländer University of Bonn
Johannes Waldmann HTWK Leipzig (chair)

Additional Reviewers

Maria Christakis
Moreno Falaschi
Keller, Gabriele
Daniele Nantes-Sobrinho
Ana Cristina Rocha Oliveira,
German Vidal

7

8

Part I

28th Workshop on
(Constraint) Logic

Programming

Embedding Defeasible Logic Programs
into Generalized Logic Programs

Martin Baláž1, Jozef Frtús1, Martin Homola1, Ján Šefránek1, and Giorgos
Flouris2

1 Comenius Unversity in Bratislava, Slovakia
2 FORTH-ICS, Greece

Abstract. A novel argumentation semantics of defeasible logic pro-
grams (DeLP) is presented. Our goal is to build a semantics, which
respects existing semantics and intuitions of “classical” logic program-
ming. Generalized logic programs (GLP) are selected as an appropriate
formalism for studying both undermining and rebutting. Our argumenta-
tion semantics is based on a notion of conflict resolution strategy (CRS),
in order to achieve an extended flexibility and generality. Our argumen-
tation semantics is defined in the frame of assumption-based framework
(ABF), which enables a unified view on different non-monotonic for-
malisms. We present an embedding of DeLP into an instance of ABF.
Consequently, argumentation semantics defined for ABF are applicable
to DeLP. Finally, DeLP with CRS is embedded into GLP. This trans-
formation enables to commute argumentation semantics of a DeLP via
semantics of the corresponding GLP.

1 Introduction

Defeasible Logic Programs (DeLPs) [8] combine ideas from Defeasible Logic
[13,12] and Logic Programming. While classically, logic programs (LPs) feature
default negation, which enables to express default assumptions (i.e., propositions
which are supposed to hold unless we have some hard evidence against them),
DeLPs additionally introduce defeasible rules (i.e., rules which are supposedly
applicable unless we have some hard evidence opposing them). Strict rules (i.e.,
regular LP rules) are denoted by → and defeasible rules by ⇒. Let us illustrate
this with an example.

Example 1. Brazil is the home team, and has a key player injured. Home teams
tend to work the hardest, and who works the hardest usually wins. The team
who has a key player injured does not usually win. The program is formalized
into the DeLP:

→ home r1 : home ⇒ works_hard r2 : works_hard ⇒ wins

→ key_player_injured r3 : key_player_injured ⇒ notwins

11

In the program from Example 1 there are two strict and three defeasible
rules. The strict rules are facts, hence home and key_player_injured should
always be true. Based on the first fact we are able to derive that Brazil should
win, using the two defeasible rules r1 and r2, while based on the second fact we
are able to derive that Brazil should not win, again relying on a defeasible rule,
in this case r3. Hence there is a conflict which somehow should be resolved.

Various approaches to DeLP typically rely on argumentation theory in or-
der to determine which rules should be upheld and which should be defeated.
However, as it can be perceived from Example 1, it is not always immediately
apparent how this should be decided.

According to García and Simari [8], both rules immediately causing the con-
flict (r2 and r3) would be undecided, accepting home, key_player_injured and
works_hard as valid derivations while taking both wins and notwins as un-
decided. ASPIC+ [14,11], on the other hand, allows two additional solutions,
one with r2 undefeated, r3 defeated, and wins valid; and the other one with r2
defeated, r3 undefeated, and notwins valid.

Some approaches, like ASPIC+, allow to specify a preference relation on
rules. In such a case conflict resolution may take this into account. Specifically,
ASPIC+ has two built-in conflict resolution strategies, weakest-link principle by
which the rule with smallest preference is defeated among those involved in each
conflict, and last-link principle by which only the rules immediately causing the
conflict are considered and the least preferred is defeated.

We observe that more ways to resolve conflicts may be needed. This is due to
the fact that defeasible rules are domain specific, a different conflict resolution
strategy may be needed for a different domain, or in distinct application. We
therefore argue that the conflict resolution strategy should be a user-specified
parameter of the framework, and any DeLP framework should allow a generic
way how to specify it (alongside some predefined strategies).

Some of the semantics proposed for DeLP satisfy the well accepted rationality
properties for defeasible reasoning, such as consistency (extensions should be
conflict-free) and closure (extensions should be closed w.r.t. the strict rules),
as defined by Caminada and Amgoud [4]. While these properties are important,
DeLP is an extension of LP, and some attention should be also devoted to keeping
it in line with it. Specifically, we would like to have the semantics backward-
compatible with the underlying language of logic programs – if no defeasible
rules are present, the extensions should be in line with the respective class of
models.

In our previous work [2] we have formalized the notion of conflict resolution
strategy (CRS) and we have proposed a DeLP framework which allows to use
any such strategy. The relationship with the underlying class of LPs was not
investigated though. In the current paper we extend this work as follows:

– We rebuild the argumentation semantics (including the notion of conflict
resolution strategy) using the Assumption Based Framework (ABF), an ar-
gumentation formalism very close in spirit to logic programming.

12

– We show that the semantics satisfies the closure and consistency properties
[4], and we also show two additional properties which govern the handling
of defeasible rules.

– We provide an alternative transformational semantics, which translates the
DeLP and the given CRS into a regular logic program. We show that both
semantics are equivalent. Thanks to the transformational semantics we also
show full backward compatibility with the underlying class of generalized
logic programs. What is more, the semantics of DeLP can now be computed
using existing LP solvers.

All proofs can be found in a technical report which appears at http://
kedrigern.dcs.fmph.uniba.sk/reports/download.php?id=58.

2 Preliminaries

Generalized logic programs and assumption-based frameworks provide a back-
ground for our investigation. We are aiming at a computation of our argumenta-
tion semantics of DeLP in the frame of classical logic programs. Generalized logic
programs (with default negations in the heads of rules) are selected as a simplest
LP-formalism, which enables to consider both undermining and rebutting.

Assumption-based frameworks are used in our paper as a basis for building a
semantics of DeLP. ABF is a general and powerful formalism providing a unified
view on different non-monotonic formalisms using argumentation semantics.

2.1 Generalized Logic Programs

We will consider propositional generalized logic programs (GLPs) in this paper.
Let At be a set of atoms and notAt = {notA | A ∈ At} be a set of default

literals. A literal is an atom or a default literal. The set of all literals is denoted
by LAt . If L = notA and A ∈ At , then by notL we denote A. If S ⊆ LAt , then
notS = {notA | A ∈ S}.

A rule over LAt is an expression r of the form L1, . . . ,Ln → L0 where 0 ≤ n
and Li ∈ LAt for each 0 ≤ i ≤ n. The literal head(r) = L0 is called the head of
r and the set of literals body(r) = {L1, . . . ,Ln} is called the body of r .

A generalized logic program is a finite set of rules. We will often use only the
term program. If At is the set of all atoms used in a program P, it is said that
P is over At . If heads of all rules of a program P are atoms, it is said that P is
normal. A program P is called positive if the head of every rule is an atom and
the body of every rule is a set of atoms or propositional constants t,u, f .

Note that a GLP P can be viewed as consisting of two parts, a normal logic
program P+ = {r ∈ P | head(r) ∈ At} (also called the positive part of P) and
a set of “constraints” P− = P \ P+ (also called the negative part of P).

Our definitions of some basic semantic notions follow the ideas of Przymusin-
ski [17] (see also [6]); however, an adaptation to the case of rules with default
negations in head is needed. In our approach we will use the positive part P+ of

13

the program as a generator of a broad set of candidate models and consecutively
we will use the negative part P− to filter out some of the models.

Definition 1 (Partial and Total Interpretation). A set of literals S is con-
sistent, if it does not contain a pair A,notA where A ∈ At . A partial interpreta-
tion is a consistent set of literals. A total interpretation is a partial interpretation
I such that for every A ∈ At either A ∈ I or notA ∈ I .

Each interpretation can be viewed as a mapping I : At 7→ {0, 12 , 1} where
I (A) = 0 if notA ∈ I , I (A) = 1

2 if A 6∈ I and notA 6∈ I , and I (A) = 1 if A ∈ I .
A valuation given by an interpretation I is a mapping Î : LAt 7→ {0, 12 , 1} where
Î (A) = I (A) and Î (notA) = 1 − I (A) for each atom A ∈ At , and Î (t) = 1,
Î (u) = 1

2 , Î (f) = 0. An interpretation I satisfies a rule r (denoted I |= r) iff
Î (head(r)) ≥ Î (body(r)) = min{Î (L) | L ∈ body(r)}.

Definition 2 (Model). An interpretation I is a model of a generalized logic
program P iff I satisfies each rule in P.

As usual in logic programming, “classical” model, as defined above, are too
broad and a number of more fine-grained semantics, based on certain notion
of minimality are used. We proceed by defining these semantics summarily for
GLPs. Not all of them were thoroughly investigated in literature, however we use
analogy with other classes of logic programs, especially normal logic programs.

The notions of truth ordering and knowledge ordering on partial interpreta-
tions will be needed. For a partial interpretation I , let T (I) = {A ∈ At | I (A) =
1} and F (I) = {A ∈ At | I (A) = 0}.

Definition 3 (Truth and Knowledge Ordering). If I , J are partial inter-
pretations, then

– I ≤t J iff T (I) ⊆ T (J) and F (I) ⊇ F (J),
– I ≤k J iff T (I) ⊆ T (J) and F (I) ⊆ F (J).

Definition 4 (Program Reduct). Let I be an interpretation. The reduct of
a normal logic program P is a positive logic program PI obtained from P by
replacing in every rule of P all default literals which are true (resp. unknown,
resp. false) in I by propositional constant t (resp. u, resp. f).

Finally a fixed-point condition is expressed on a reduced program, which is
formally captured by the operator ΓP .

Definition 5 (Operator ΓP). Let P be a normal logic program and I be an
interpretation. By ΓP(I) we denote the t-least model of PI .

Definition 6 (Semantics Family for GLPs). Let P be a generalized logic
program and I be a model of P. Then
– I is a partial stable model of P iff ΓP+(I) = I
– I is a well-founded model of P iff I is a k-minimal partial stable model of P

14

– I is a maximal stable model of P iff I is a k-maximal partial stable model
of P

– I is a least-undefined stable model of P iff I is a partial stable model of P
with subset-minimal {A ∈ At | I (A) = 1

2}
– I is a total stable model of P iff I is a partial stable model of P which is

total

The produced semantics properly generalize existing semantics for normal
logic programs.

Proposition 1. If P is a normal logic program, the notion of partial stable
model in Definition 6 coincides with the definition of partial stable models in [17],
the notion of total stable model in Definition 6 coincides with the definition of
stable models in [10], the notion of well-founded model in Definition 6 coincides
with the definition of well-founded model in [9], and the notions of maximal
and least-undefined stable model in Definition 6 coincides with the definition of
maximal and least-undefined stable models in [18].

If P is a generalized logic program, the definition of stable models in Defini-
tion 6 coincides with the definition of stable models in [1].

2.2 Assumption-based Framework

Assumption-based frameworks (ABF) [3] enable to view non-monotonic reason-
ing as a deduction from assumptions. Argumentation semantics of [7,5] were
applied to sets of assumptions. As a consequence, a variety of semantic charac-
terizations of non-monotonic reasoning has been provided.

An ABF is constructed over a deductive system. A deductive system is a pair
(L,R) where L is a language and R is a set of inference rules over L. A language
is a set L of all well-formed sentences. Each inference rule r over L is of the
form ϕ1, . . . , ϕn → ϕ0 where 0 ≤ n and ϕi ∈ L for each 0 ≤ i ≤ n. The
sentence head(r) = ϕ0 is called the head of r and the set of sentences body(r) =
{ϕ1, . . . , ϕn} is called the body of r .

A theory is a set S ⊆ L of sentences. A sentence ϕ is an immediate conse-
quence of a theory S iff there exists an inference rule r ∈ R with head(r) = ϕ
and body(r) ⊆ S . A sentence ϕ is a consequence of a theory S iff there is a se-
quence ϕ1, . . . , ϕn, 0 < n, of sentences such that ϕ = ϕn and for each 0 < i ≤ n
holds ϕi ∈ S or ϕi is an immediate consequence of {ϕ1, . . . , ϕi−1}. By CnR(S)
we denote the set of all consequences of S .

An assumption-based framework is a tuple F = (L,R,A,) where (L,R) is
a deductive system, A ⊆ L is a set of assumptions, and : A 7→ L is a mapping
called contrariness function. We say that α is the contrary of an assumption α.

A context is a set ∆ ⊆ A of assumptions. We say that ∆ is conflict-free
iff {α, α} * CnR(∆) for each assumption α. A context ∆ is closed iff ∆ =
CnR(∆)∩A, i.e., only such assumptions, which are members of ∆, are derivable
from ∆. A context ∆ attacks an assumption α iff α ∈ CnR(∆). A context
∆ defends an assumption α iff each closed context attacking α contains an
assumption attacked by ∆.

15

ABFs enable to apply argumentation semantics to sets of assumptions and,
consequently, subtle and rich semantic characterizations of sets of assumptions
(and of their consequences) can be specified. A closed context ∆ is

– attack-free iff ∆ does not attack an assumption in ∆;
– admissible iff ∆ is attack-free and defends each assumption in ∆;
– complete iff ∆ is admissible and contains all assumptions defended by ∆;
– grounded iff ∆ is a subset-minimal complete context;
– preferred iff ∆ is a subset-maximal admissible context;
– semi-stable iff ∆ is a complete context such that ∆∪ {α ∈ A | ∆ attacks α}

is subset-maximal;
– stable iff ∆ is attack-free and attacks each assumption which does not belong

to ∆.

3 Defeasible Logic Programs

Our knowledge can be divided according to its epistemological status into two
categories: on the one hand, one that is gained by deductively valid reasoning
and on the other hand, knowledge that is reached by defeasible reasoning [13].
Defeasible logic programs (DeLPs) [15,8,14,11] consider two kinds of rules: strict
and defeasible. Strict rules represent deductive reasoning: whenever their pre-
conditions hold, we accept the conclusion. Defeasible rules formalize tentative
knowledge that can be defeated and validity of preconditions of a defeasible rule
does not necessarily imply the conclusion. Given a set of literals LAt , a strict
(resp. defeasible) rule is an expression L1, . . . ,Ln → L0 (resp. L1, . . . ,Ln ⇒ L0)
where 0 ≤ n and Li ∈ LAt for each 0 ≤ i ≤ n. We will use to denote ei-
ther a strict or a defeasible rule. Each defeasible rule r has assigned its name
name(r). The name of r is a default literal from separate language LN . The
intuitive meaning of name(r) = notA is “by default, the defeasible rule r can
be used”, and consequently, the intuitive meaning of notname(r) = A is “the
defeasible rule r can not be used”. In the following, we will denote the defeasible
rule r = L1, . . . ,Ln ⇒ L0 with name(r) = notA as A : L1, . . . ,Ln ⇒ L0.

Definition 7 (Defeasible Logic Program). Let At be a set of atoms, N be
a set of names, and At ∩ N = ∅. A defeasible logic program is a tuple P =
(S,D,name) where S is a set of strict rules over LAt , D is a set of defeasible
rules over LAt , and name : D 7→ notN is an injective naming function.

3.1 From Arguments to Conflict Resolutions

The argumentation process usually consists of five steps [15,16,8,14,11]. At the
beginning, a knowledge base is described in some logical language. The notion of
an argument is then defined within this language. Then conflicts between argu-
ments are identified. The resolution of conflicts is captured by an attack relation
(also called “defeat relation” in some literature) among conflicting arguments.
The status of an argument is then determined by the attack relation. In this

16

paper, conflicts are not resolved by attacking some of the conflicting arguments,
but by attacking some of the weak parts of an argument called vulnerabilities.
This helps us to satisfy argumentation rationality postulates [4] and to keep the
semantics aligned with LP intuitions.

Two kinds of arguments can usually be constructed in the language of defea-
sible logic programs. Default arguments correspond to default literals. Deductive
arguments are constructed by chaining of rules.

We define several functions prems, rules and vuls denoting premises (i.e. de-
fault literals) and rules occurring in an argument. Intended meaning of vuls(A) is
a set of vulnerabilities of an argument A (i.e., weak parts which can be defeated)
consisting of premises and names of defeasible rules of an argument A.

Definition 8 (Argument). Let P = (S,D,name) be a defeasible logic pro-
gram. An argument A for a literal L is

1. a default argument L where L is a default literal.

prems(A) = {L}
rules(A) = ∅

2. a deductive argument [A1, . . . ,An L] where 0 ≤ n, each Ai, 0 < i ≤ n, is
an argument for a literal Li, and r = L1, . . . ,Ln L is a rule in P.

prems(A) = prems(A1) ∪ · · · ∪ prems(An)

rules(A) = rules(A1) ∪ · · · ∪ rules(An) ∪ {r}

For both kinds of an argument A,

vuls(A) = prems(A) ∪ name(rules(A) ∩ D)

Example 2. Consider a defeasible logic program consisting of the only defeasi-
ble rule r : not b ⇒ a. Two default arguments A1 = [not a], A2 = [not b] and
one deductive argument A3 = [A2 ⇒ a] can be constructed. We can see that
vuls(A1) = {not a}, vuls(A2) = {not b}, vuls(A3) = {not b,not r}.

The difference between a default and a deductive argument for a literal notA
is in the policy of how the conflict is resolved. Syntactical conflict between ar-
guments is formalized in the following definition. As usual in the literature [14],
we distinguish two kinds of conflicts: undermining3 and rebutting. While an un-
dermining conflict is about a falsification of a hypothesis (assumed by default),
a rebutting conflict identifies a situation where opposite claims are derived.

Definition 9 (Conflict). Let P be a defeasible logic program. The pair of ar-
guments C = (A,B) is called a conflict iff

– A is a deductive argument for a default literal notL and B is a deductive
argument for the literal L; or

3 Also called undercutting in [15].

17

– A is a default argument for a default literal notL and B is a deductive
argument for the literal L.

The first kind is called a rebutting conflict and the second kind is called an
undermining conflict.

The previous definition just identifies the conflict, but does not say how to
resolve it; the notion of conflict resolution (to be formalized below) captures a
possible way to do so. In our paper, conflicts are not resolved through attack be-
tween arguments as in [8,15,14,11], but by attacking some of the vulnerabilities
in the conflicting arguments. Since our goal is to define semantics for DeLP re-
specting existing semantics and intuitions in LP, we assume that all undermining
conflicts are resolved in a fixed way as in LP: by attacking the default argument.
On the other hand, rebutting conflict is resolved by attacking some defeasible
rule. Since, in general, there can be more reasonable ways how to choose which
defeasible rules to attack, resolving of all rebutting conflicts is left as domain
dependent for the user as an input. Note, that an attack on a defeasible rule r
is formalized as an attack on the default literal name(r) which is interpreted as
“a defeasible rule r can be used”.

Definition 10 (Conflict Resolution). Let P be a defeasible logic program. A
conflict resolution is a tuple ρ = (A,B ,V) where C = (A,B) is a conflict, A is
an argument for notL, and V is a default literal

– notL if C is an undermining conflict; or
– name(r) where r is a defeasible rule in rules(A)∪rules(B) if C is a rebutting

conflict.

A conflict resolution strategy of P is a set R of conflict resolutions.

Let ρ = (A,B ,V) be a conflict resolution. The contrary of V is called the
resolution of ρ, and denoted by res(ρ). The set of vulnerabilities of ρ, denoted
by vuls(ρ), is defined as:

vuls(ρ) =

{
(vuls(A) ∪ vuls(B)) whenever V ∈ vuls(A) ∩ vuls(B)
(vuls(A) ∪ vuls(B)) \ {V } otherwise

Usually, there may be more ways how to resolve a conflict and a conflict
resolution may resolve other conflicts as well, thus causing other conflict resolu-
tions to be irrelevant or inapplicable. Intuitively, if all vulnerabilities in vuls(ρ)
are undefeated (i.e. true), then in order to resolve the conflict in ρ, the contrary
res(ρ) of the chosen vulnerability in ρ should be concluded (i.e. true). Notions
of vuls(ρ) and res(ρ) will be used for definition of the argumentation semantics
in the next subsection.

Example 3. Consider the defeasible logic program P = {not a→ a} and under-
cutting arguments A = [not a] and B = [[not a] → a]. Then ρ = (A,B ,not a)
is a conflict resolution with res(ρ) = a and vuls(ρ) = {not a}. Please note that
although not a has to be removed to resolve conflict between A and B , it remains
a vulnerability of ρ since not a is self-attacking.

18

Example 4. Consider the following defeasible logic program P

r1 : ⇒ a r2 : ⇒ b a→ not c b→ c

and arguments A = [[⇒ a]→ not c] and B = [[⇒ b]→ c]. The rebutting conflict
(A,B) can be resolved in two different ways, namely ρ1 = (A,B ,not r1) is a con-
flict resolution with res(ρ) = r1 and vuls(ρ) = {not r2}, and ρ2 = (A,B ,not r2)
is another conflict resolution with res(ρ) = r2 and vuls(ρ) = {not r1}.

The previous example shows that there are more reasonable ways how to
resolve rebutting conflicts. We show two examples of different conflict resolu-
tion strategies – the weakest-link and the last-link strategy inspired by ASPIC+

[14]. In both strategies, a user-specified preference order ≺ on defeasible rules is
assumed. In the last-link strategy, all last-used defeasible rules of conflicting ar-
guments are compared and ≺-minimal defeasible rules are chosen as resolutions
of the conflict. In the weakest-link strategy, each ≺-minimal defeasible rule of
conflicting arguments is a resolution of the conflict.

Example 5. Given the defeasible logic program

r1 : ⇒ b
r2 : b ⇒ a
r3 : ⇒ not a

and the preference order r1 ≺ r3, r1 ≺ r2, r2 ≺ r3, deductive arguments are

A1 = [⇒ b] A2 = [A1 ⇒ a] A3 = [⇒ not a]

Then R1 = {(A3,A2,not r3)} is the last-link strategy and R2 = {(A3,A2,not r1)}
is the weakest-link strategy.

In the weakest-link strategy from Example 5, a non-last defeasible rule r1 is
used as a resolution of the conflict. Please note that in [15,8,14,11], such conflict
resolutions are not possible, which makes our approach more flexible and general.

3.2 Argumentation Semantics

In the previous subsection, definition of an argument structure, conflicts iden-
tification and examples of various conflict resolutions were discussed. However,
the status of literals and the actual semantics has not been stated.

Argumentation semantics for defeasible logic programs will be formalized
within ABF – a general framework, where several existing non-monotonic for-
malisms have been embedded [3]. In order to use some of the existing argumen-
tation semantics, we need to specify ABF’s language L, set of inference rules
R, set of assumptions A, and the contrariness function . Since ABF provides
only one kind of inference rules (i.e. strict), we need to transform defeasible rules
into strict. We transform defeasible rule r by adding a new assumption name(r)

19

into the preconditions of r . Furthermore, chosen conflict resolutions R determin-
ing how rebutting conflicts will be resolved are transformed into new inference
rules. Intuitively, given a conflict resolution ρ, if all assumptions in vuls(ρ) are
accepted, then, in order to resolve the conflict in ρ, the atom res(ρ) should be
concluded. To achieve this, an inference rule vuls(ρ) → res(ρ) for each conflict
resolution ρ ∈ R is added to the set of inference rules R.

Definition 11 (Instantiation). Let P = (S,D,name) be a defeasible logic
program built over the language LAt and R be a set of conflict resolutions. An
assumption based framework respective to P and R is (L,R,A,) where

– L = LAt ∪ LN ,
– R = S ∪{body(r)∪{name(r)} → head(r) | r ∈ D}∪{vuls(ρ)→ res(ρ) | ρ ∈

R},
– A = notAt ∪ notN ,
– notA = A for each atom A ∈ At ∪N .

Example 6. Consider the defeasible logic program P and the conflict resolution
strategy R = {ρ1, ρ2} from Example 4. Assumption-based framework respective
to P and R is following:

– L = {a,not a, b,not b, c,not c} ∪ {r1,not r1, r2,not r2}
– R = {b → not c, a → c} ∪ {not r1 → b,not r2 → a} ∪ {not r1 → r2,not r2 →

r1}
– A = {not a,not b,not c} ∪ {not r1,not r2}
– notA = A for each A ∈ {a, b, c} ∪ {r1, r2}

Now we define the actual semantics for defeasible logic programs. Given an
ABF F = (L,R,A,), by F+ we denote its flattening – that is, F+ is the ABF
(L, {r ∈ R | head(r) /∈ A},A,).

Definition 12 (Extension). Let P = (S,D,name) be a defeasible logic pro-
gram, R be a set of conflict resolutions, and F = (L,R,A,) an assumption-
based framework respective to P and R. A set of literals E ⊆ L is

1. a complete extension of P with respect to R iff E is a complete extension of
F+ with CnR(E) ⊆ E and CnR(E ′) ⊆ E ′;

2. a grounded extension of P with respect to R iff E is a subset-minimal com-
plete extension of P with respect to R;

3. a preferred extension of P with respect to R iff E is a subset-maximal com-
plete extension of P with respect to R;

4. a semi-stable extension of P with respect to R iff E is a complete extension
of P with respect to R with subset-minimal E ′ \ E ;

5. a stable extension of P with respect to R iff E is a complete extension of P
with respect to R and E ′ = E .

where E ′ = L \ notE .

20

Example 7. Consider the assumption-based framework from Example 6. Then
E1 = ∅, E2 = {not r1, r2,not a, b,not c}, and E3 = {r1,not r2, a,not b, c} are
complete extensions of P with respect to R. Furthermore, E1 is the grounded
extension and E2, E3 are preferred, semi-stable and stable extensions of P with
respect to R.

3.3 Transformational Semantics

The argumentation semantics defined above allows us to deal with conflict-
ing rules and to identify the extensions of a DeLP, given a CRS, and hence
it constitutes a reference semantics. This semantics is comparable to existing
argumentation-based semantics for DeLP, and, as we show below, it satisfies
the expected desired properties of defeasible reasoning. In this section we in-
vestigate on the relation of the argumentation-based semantics and classical
logic programming. As we show, an equivalent semantics can be obtained by
transforming the DeLP and the given CRS into a classical logic program, and
computing the respective class of models.

In fact the transformation that is required is essentially the same which
we used to embed DeLPs with CRS into ABFs. The names of rules become
new literals in the language, intuitively if name(r) becomes true it means that
the respective defeasible rule is defeated. By default name(r) holds and so all
defeasible rules can be used unless the program proves otherwise. The conflict
resolution strategy R to be used is encoded by adding rules of the form vuls(ρ)→
res(ρ) for each conflict resolution ρ ∈ R, where the head of such rules is always
an atom and the body is a set of default literals.

Formally the transformation is defined as follows:

Definition 13 (Transformation). Let P = (S,D,name) be a defeasible logic
program and R be a set of conflict resolutions. Transformation of P with respect
to R into a generalized logic program, denoted as T (P,R), is defined as

T (P,R) = S ∪ {body(r) ∪ {name(r)} → head(r) | r ∈ D} ∪
{vuls(ρ)→ res(ρ) | ρ ∈ R}

Thanks to the transformation, we can now compute the semantics of each
DeLP, relying on the semantics of generalized logic programs. Given a DeLP P
and the assumed CRS R, the extensions of P w.r.t. R corresponds to the respec-
tive class of models. Complete extensions correspond to partial stable models,
the grounded extension to the well-founded model, preferred extensions to max-
imal stable models, semi-stable extensions to least-undefined stable models, and
stable extensions to total stable models.

Proposition 2. Let P be a defeasible logic program and R be a set of conflict
resolutions. Then

1. E is a complete extension of P with respect to R iff E is a partial stable
model of T (P,R).

21

2. E is a grounded extension of P with respect to R iff E is a well-founded
model of T (P,R).

3. E is a preferred extension of P with respect to R iff E is a maximal partial
stable model of T (P,R).

4. E is a semi-stable extension of P with respect to R iff E is a least-undefined
stable model of T (P,R).

5. E is a stable extension of P with respect to R iff E is a total stable model of
T (P,R).

A remarkable special case happens when the input program P does not
contain defeasible rules, and hence it is a regular GLP. In such a case our
argumentation-based semantics exactly corresponds to the respective class of
models for the GLP. This shows complete backward compatibility of our seman-
tics with the underlying class of logic programs.

Proposition 3. Let S be a generalized logic program and P = (S, ∅, ∅) a defea-
sible logic program with the empty set of conflict resolutions. Then

1. E is a complete extension of P iff E is a partial stable model of S.
2. E is a grounded extension of P iff E is a well-founded model of S.
3. E is a preferred extension of P iff E is a maximal partial stable model of S.
4. E is a semi-stable extension of P iff E is a least-undefined partial stable

model of S.
5. E is a stable extension of P iff E is a total stable model of S.

4 Properties

In this section we will have a look on desired properties for defeasible reason-
ing, and show that our semantics satisfies these properties. The properties are
formulated in general, that is, they should be satisfied for any a defeasible logic
program P, any set of conflict resolutions R, and any extension E of P w.r.t. R.

The first two properties formulated below are well known, they were pro-
posed by Caminada and Amgoud [4]. The closure property originally requires
that nothing new can be derived from the extension using strict rules. We use
a slightly more general formulation, nothing should be derived using the conse-
quence operator Cn which applies all the strict rules and in addition also all the
defeasible rules which are not defeated according to R. The original property [4]
is a straightforward consequence of this.

Property 1 (Closure). Let R′ = S ∪ {body(r) ∪ {name(r)} → head(r) | r ∈ D}.
Then CnR′(E) ⊆ E .

The consistency property [4] formally requires that all conflicts must be re-
solved in any extension.

Property 2 (Consistency). E is consistent.

22

In addition we propose two new desired properties which are concerned with
handling of the default assumptions. Reasoning with default assumptions is a
fixed part of the semantics of GLPs (and most other classes of logic programs),
and therefore in DeLPs it should be governed by similar principles. The first
property (dubbed positive defeat) requires that for each default literal notA,
this literal should be always defeated in any extension E such that there is a
conflict resolution ρ ∈ R whose assumptions are all upheld by E ; and, in such a
case the opposite literal A should be part of the extension E .

Property 3 (Positive Defeat). For each atom A ∈ LN , if there exists a conflict
resolution ρ ∈ R with res(ρ) = A and vuls(ρ) ⊆ E then A ∈ E .

The previous property handles all cases when there is an undefeated evidence
against notA and requires that A should hold. The next property (dubbed nega-
tive defeat) handles the opposite case. If there is no undefeated evidence against
notA, in terms of a conflict resolution ρ ∈ R whose assumptions are all upheld
by E , then notA should be part of the extension E .

Property 4 (Negative Defeat). For each default literal notA ∈ LN , if for each
conflict resolution ρ ∈ R with res(ρ) = A holds not vuls(ρ)∩E 6= ∅ then notA ∈
E .

Closure and consistency trivially hold for our semantics, as the semantics
was designed with these properties in mind. They are assured by the definition
of complete extension of a DeLP (Definition 12).

Proposition 4. Each complete extension E of a defeasible logic program P with
respect to a set of conflict resolutions R has the property of closure.

Proposition 5. Each complete extension E of a defeasible logic program P with
respect to a set of conflict resolutions R is consistent.

Satisfaction of a positive and a negative defeat properties follow from the
instantiation of an ABF (Definition 11), where an inference rule vuls(ρ)→ res(ρ)
is added for every conflict resolution ρ ∈ R.

Proposition 6. Each complete extension E of a defeasible logic program P with
respect to a set of conflict resolutions R has the property of positive defeat.

Proposition 7. Each complete extension E of a defeasible logic program P with
respect to a set of conflict resolutions R has the property of negative defeat.

5 Related Work

There are two well-known argumentation-based formalisms with defeasible in-
ference rules – defeasible logic programs [8] and ASPIC+ [14,11]. It is known
that the semantics in [8] does not satisfy rationality postulates formalized in [4],
especially the closure property. Although ASPIC+ satisfies all postulates in [4],

23

it uses transposition or contraposition which violate directionality of inference
rules [2] and thus violating LP intuitions. It also does not satisfy positive or
negative defeat property introduced in this paper.

Francesca Toni’s paper [19] describes a mapping of defeasible reasoning into
assumption-based argumentation framework. The work takes into account the
properties [4] that we also consider (closedness and consistency), and it is for-
mally proven that the constructed assumption-based argumentation framework’s
semantics is closed and consistent. However no explicit connection with existing
LP semantics is discussed in [19].

The paper [20] does not deal with DeLP, but on how to encode defeasible
semantics inside logic programs. The main objective is on explicating a preference
ordering on defeasible rules inside a logic program, so that defeats (between
defeasible logic rules) are properly encoded in LP. This is achieved with a special
predicate defeated with special semantics.

Caminada et al. [6] investigated how abstract argumentation semantics and
semantics for normal logic programs are related. Authors found out that abstract
argumentation is about minimizing/maximizing argument labellings, whereas
logic programming is about minimizing/maximizing conclusion labellings. Fur-
ther, they proved that abstract argumentation semantics cannot capture the
least-undefined stable semantics for normal logic programs.

6 Conclusion

In this paper we investigated the question of how to define semantics for defeasi-
ble logic programs, which satisfies both the existing rationality postulates from
the area of structured argumentation and is also aligned with LP semantics and
intuitions. To achieve these objectives, we diverged from the usual argumentation
process methodology. Most importantly, conflicts are not resolved by attacking
some of the conflicting arguments, but by attacking some of the weak parts of
an argument called vulnerabilities. Main contributions are as follows:

– We presented an argumentation semantics of defeasible logic programs, based
on conflict resolution strategies within assumption-based frameworks, whose
semantics satisfies desired properties like consistency and closedness under
the set of strict rules.

– We constructed a transformational semantics, which takes a defeasible logic
program and a conflict resolution strategy as an input, and generates a cor-
responding generalized logic program. As a consequence, a computation of
argumentation semantics of DeLP in the frame of GLP is enabled.

– Equivalence of a transformational and an argumentation semantics is pro-
vided.

Acknowledgements

This work resulted from the Slovak–Greek bilateral project “Multi-context Rea-
soning in Heterogeneous environments”, registered on the Slovak side under no.

24

SK-GR-0070-11 with the APVV agency and co-financed by the Greek General
Secretariat of Science and Technology and the European Union. It was further
supported from the Slovak national VEGA project no. 1/1333/12. Martin Baláž
and Martin Homola are also supported from APVV project no. APVV-0513-10.

References

1. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.:
Dynamic logic programming. In: APPIA-GULP-PRODE 1998. pp. 393–408 (1998)

2. Baláž, M., Frtús, J., Homola, M.: Conflict resolution in structured argumentation.
In: LPAR-19 (Short Papers). EPiC, vol. 26, pp. 23–34. EasyChair (2014)

3. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation
theoretic approach to default reasoning. Artif. Intell. 93(1-2), 63–101 (1997)

4. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif.
Intell. 171(5-6), 286–310 (2007)

5. Caminada, M., Carnielli, W.A., Dunne, P.E.: Semi-stable semantics. J. Log. Com-
put. 22(5), 1207–1254 (2011)

6. Caminada, M., Sá, S., Alcântara, J.: On the equivalence between logic program-
ming semantics and argumentation semantics. In: ECSQARU 2014 (2013)

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

8. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative ap-
proach. TPLP 4(2), 95–138 (2004)

9. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic
programs. J. ACM 38(3), 619–649 (1991)

10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. pp. 1070–1080. MIT Press (1988)

11. Modgil, S., Prakken, H.: Revisiting preferences and argumentation. In: IJCAI 2001.
pp. 1021–1026. AAAI Press (2011)

12. Nute, D.: Defeasible reasoning and decision support systems. Decision Support
Systems 4(1), 97–110 (1988)

13. Pollock, J.L.: Defeasible reasoning. Cognitive Science 11(4), 481–518 (1987)
14. Prakken, H.: An abstract framework for argumentation with structured arguments.

Argument & Computation 1(2), 93–124 (2010)
15. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-

sible priorities. Journal of Applied Nonclassical Logics 7(1), 25–75 (1997)
16. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Gabbay, D.,

Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 219–318. Springer
(2002)

17. Przymusinski, T.C.: The well-founded semantics coincides with the three-valued
stable semantics. Fundam. Inform. 13(4), 445–463 (1990)

18. Saccà, D.: The expressive powers of stable models for bound and unbound DATA-
LOG queries. J. Comput. Syst. Sci. 54(3), 441–464 (Jun 1997)

19. Toni, F.: Assumption-based argumentation for closed and consistent defeasible
reasoning. In: JSAI 2007. LNCS, vol. 4914, pp. 390–402. Springer (2008)

20. Wan, H., Grosof, B., Kifer, M., Fodor, P., Liang, S.: Logic programming with
defaults and argumentation theories. In: ICLP 2009. LNCS, vol. 5649, pp. 432–
448. Springer (2009)

25

Describing and Measuring the Complexity of
SAT encodings for Constraint Programs

Alexander Bau? and Johannes Waldmann

HTWK Leipzig, Fakultät IMN, 04277 Leipzig, Germany
abau|waldmann@imn.htwk-leipzig.de

Abstract. The CO4 language is a Haskell-like language for specifying
constraint systems over structured finite domains. A CO4 constraint sys-
tem is solved by an automatic transformation into a satisfiability problem
in propositional logic that is handed to an external SAT solver.
We investigate the problem of predicting the size of formulas produced by
the CO4 compiler. The goal is to help the programmer in understanding
the resource consumption of CO4 on his program. We present a basic cost
model, with some experimental data, and discuss ongoing work towards
static analysis. It turns out that analysis steps will use constraint systems
as well.

1 Introduction

CO4 is a constraint programming language that allows to write a constraint
problem as declarative specification. The CO4 compiler solves it by transforming
the constraint to a propositional satisfiability problem, so that a SAT solver
can be applied. Syntactically, the language is a subset of the purely functional
programming language Haskell [3] that includes user-defined algebraic data types
and recursive functions defined by pattern matching, as well as higher-order
polymorphic types.

In CO4, a constraint system over elements of set U is specified by a parametrized
predicate constraint : P ×U → Bool, where P denotes the parameter domain.
Thus, constraint does not denote a single constraint, but a family of con-
straints. For a given constraint and parameter p ∈ P , u ∈ U is a solution if
constraint (p, u) = True.

For the CO4 compiler to generate a propositional encoding, the input constraint
is transformed into an abstract program constraint’ that operates on abstract
values. An abstract value represents an undetermined value of the input program
by encoding the constructor’s index using propositional formulas. Evaluating the
abstract program generates the final formula that is passed to the external SAT
solver.

It is desirable to predict the runtime of the SAT solver for a generated propo-
sitional encoding. Such a prediction is hard because as it depends on a lot of
design and implementation decisions of the SAT solver. Therefore we take the
? This author is supported by ESF grant 100088525

26

size of the SAT encoding as a reasonable indicator for its hardness. To esti-
mate the size of the encoding, we introduce a cost model for abstract values
and abstract programs. This cost model captures two important facts: the size
of intermediate abstract values and the costs to evaluate them. Especially the
evaluation of case distinctions on abstract values is not obvious, and often they
cannot be evaluated in a straightforward manner.

This paper has three parts. The first part illustrates the syntax and seman-
tics of CO4 (Section 2) and gives an overview on of the propositional encoding
(Section 3). This is a summary of material that has already been published[1].
The second part presents current work on cost analysis: in Section 4 we present
our cost model, and in Section 5 we analyze the cost of the merge operation,
which is a basic operator in our translation scheme. Section 6 illustrates how the
current CO4 implementation measures concrete costs of SAT-compiled function
calls. The third part outlines future work in static analysis of CO4 programs.
Section 7 describes moded types and their inference, which will allow a more effi-
cient propositional encoding of case distinctions. Section 8 describes an approach
to bound function costs by resource types.

2 Syntax and Semantics of CO4

Syntactically, CO4 is a subset of Haskell. Domains are specified by algebraic data
types (ADT), where constructors enumerate the values of the type.

1 data Bool = False | True
2 data Color = Red | Green | Blue
3 data Monochrome = Black | White
4 data Pixel = Colored Color | Background Monochrome

CO4 supports recursive ADTs as well, but recursions must be restricted while
generating a propositional encoding. We do not deal with recursions in the scope
of this paper.

A constructor may be parametrized either by types or type variables.
1 data Pair a b = Pair a b
2 data Either a b = Left a | Right b

Inspecting the constructor of a value d of some ADT is done by a case
distinction on d (the discriminant of the case distinction):

1 case color of Blue -> True
2 otherwise -> False

Case distinctions provides conditional branching of the control-flow. Other
kinds of expressions in CO4 are constructor calls, applications, abstractions and
local bindings. CO4 provides restricted support of higher-order, polymorphic
functions. Besides type definitions, constraint systems in CO4 contain global
function bindings with constraint being the top-level function:

27

1 data Bool = False | True
2 data Color = Red | Green | Blue
3 data Monochrome = Black | White
4 data Pixel = Colored Color | Background Monochrome
5

6 constraint :: Bool -> Pixel -> Bool
7 constraint p u = case p of
8 False -> case u of Background m -> True
9 otherwise -> False

10 True -> isBlue u
11

12 isBlue :: Pixel -> Bool
13 isBlue u = case u of
14 Colored color -> case color of Blue -> True
15 otherwise -> False
16 Background m -> False

Listing 1.1. A trivial constraint over pixels

Semantically, a constraint system in CO4 over elements of set U is a binary
predicate constraint : P × U → Bool on U and some parameter domain P . In
Listing 1.1, P = Bool and U = Pixel.

For a given parameter p ∈ P , u ∈ U is a solution if constraint (p, u) = True.
One advantage of specifying constraint systems in a functional language like
CO4 is that a solution can be tested against the constraint simply by evaluat-
ing constraint (p, u). Note that CO4 expressions are evaluated strictly, while
Haskell features a non-strict evaluation strategy.

3 Propositional Encoding of CO4 constraints

In the following, we call the source constraint a concrete program. Concrete
programs operate on concrete values, e.g., the concrete program in Listing 1.1
operates on concrete values like False, White or Colored Red.

To find a solution u ∈ U for a constraint constraint : P ×U → Bool and a
parameter p ∈ P , CO4 performs the following steps:

1. The concrete program is transformed into an abstract program. An abstract
program doesn’t operate on concrete values, but on abstract values.

2. Evaluating the abstract program for an abstract value that represents pa-
rameter p gives a formula f ∈ F in propositional logic.

3. An external SAT solver is called to find a satisfying assignment σ ∈ Σ for f .
4. If there is a satisfying assignment, the solution u ∈ U is constructed from
σ. Optionally, testing whether constraint p u = True ensures that there
are no implementation errors. This check must always succeed if there is a
solution.

In the following we briefly illustrate the first two steps of this process. Firstly,
an abstract program is generated from a given concrete program. This transfor-
mation not only modifies the program structure, the domain is changed as well.

28

Data Transformation An abstract program is an untyped, first-order and im-
perative program on abstract values.

Definition 1. Assume F being the set of propositional formulas. Then, the set
of abstract values A is the smallest set with A = F∗×A∗ where F∗ denotes the
set of sequences with elements from F. An abstract value a ∈ A is a tuple (−→f ,−→a)
of flags −→f and arguments −→a .

An abstract value a ∈ A represents a (maybe unknown) value of a concrete
type T . The flags of an abstract value a ∈ A encode the indices of T ’s constructors
in binary code using propositional formulas.

Example 1. For an abstract value a1 ∈ A to represent a value of the ADT data
Color = Red | Green | Blue | Purple it must contain two flags f1, f2 ∈ F
because Color has four constructors. Thus, a1 = ((f1, f2), ()). a1 has no argu-
ments because none of Color’s constructors has any arguments.

Consider an ADT data Maybe a = Nothing | Just a and an abstract value
a2 ∈ A that is supposed to represent a value of type Maybe Color. As Maybe con-
sists of two constructors, one flag f3 ∈ F is needed to discriminate both. Thus,
(f3, a1) is a proper value for a2. Note that a2 has a single argument a1 that
encodes the constructor argument of type Color of Maybe’s Just constructor.

As the flags of an abstract value a ∈ A may contain propositional variables,
a can be decoded to different values according to the Boolean values that are
assigned to these variables. By decodeT : A×Σ → T we denote a mapping from
abstract values and propositional assignments Σ to concrete values.

If the flags of an abstract value a ∈ A don’t contain propositional variables,
then the flags of a index a particular constructor and a can only be decoded to a
single concrete value. By encodeT : T → A we denote a mapping from concrete
values to abstract values that represent a fixed value.

Example 2. Recall the ADTs defined in Example 1 and assume the flags of an
abstract value reference a constructor’s index using binary code where the first
flag encodes the most significant bit. Then:

encodeColor(Blue) = ((True,False), ())
encodeMaybe Color(Just Blue) = (True, ((True,False), ()))

As we’ve omitted details about abstract values we don’t provide definitions
for encode and decode.

Program Transformation The program structure of abstract programs resem-
bles the structure of their concrete counterparts. The most important difference
concerns case distinctions: while concrete values may be examined by matching
on their constructor, this is often not possible for abstract values. That’s be-
cause an abstract value’s flags may contain propositional variables. Therefore, it

29

is undetermined which constructor is indexed by the flags and there is no way
to known which branch to evaluate. Thus, all branches must be evaluated and
their result is merged according to the discriminant of the case distinction.

Example 3. The following case distinction matches on a Boolean value x in a
concrete program:

r = case x of { False -> g ; True -> h }

In the abstract counterpart of this expression, the abstract values g′ and h′ of
both branches are evaluated and merged according to x

r′ = let _1 = g′

_2 = h′

in mergex′ (_1,_2)

where r′ (resp. x′, g′, h′) denote the abstract counterpart of r (resp. x, g, h).

The function mergex : A∗ → A encodes a case distinction on a value x ∈ A
using the flags of x and the abstract values of all evaluated branches. We don’t
give a definition for merge, but illustrate its semantics by the following example.

Example 4. Recall the case distinction in Example 3 and assume r′ (resp. x′, g′, h′)
denotes the abstract counterpart of r (resp. x, g, h). The following two clauses
are emitted when evaluating mergex′(g′, h′):

(x′ ≡ encodeBool(False) =⇒ r′ ≡ g′)
∧ (x′ ≡ encodeBool(True) =⇒ r′ ≡ h′)

Informally, both clauses encode the semantics of the original case distinction
in terms of abstract values: r′ equals g′ if x′ equals encodeBool(False), otherwise
r′ equals h′.

However, if none of the flags of an abstract value contain any propositional
variables, then the constructor that is indexed by these flags can be determined
and the associated branch can be evaluated. In this case it is not necessary to
evaluate the other branches.

Evaluation of Abstract Programs The constraint : P × U → Bool function in
a concrete program has a counterpart constraint’ : A×A→ A in the abstract
program of the same arity. Evaluating constraint’ p′ u′ on

– p′ = encodeP (p) for some parameter p ∈ P , and
– u′ ∈ A, which represents a undetermined value in U ,

gives a value a ∈ A that represents a Boolean value, i.e., a contains a single
flag f ∈ F. Solving f using an external SAT solver gives a satisfying assignment
σ ∈ Σ for all variables in f if there is such an assignment. The final solution
u ∈ U can be constructed by decodeU (u′, σ).

We refer to [1] for more technical details on the transformation process.

30

4 Cost Model

We illustrate an approach for formalizing the costs associated with a function
in a CO4 program. For readability we stick to unary functions and omit details
about functions of higher arities.

We measure the cost of a function f : A → B in a concrete program by
analyzing its counter part f ′ : A → A in the corresponding abstract program.
The costs of f ′ depend on the size of its argument. Thus, we introduce a function
size : A→ N to measure the size of an abstract value.

Example 5. There are at least two naive definitions for size: one that counts the
number of nested abstract values

size1(−→f , (a1, . . . , an)) = 1 +
n∑

i=1
size1(ai)

and one that counts the number of flags in an abstract value

size2((f1, . . . , fm), (a1, . . . , an)) = m+
n∑

i=1
size2(ai)

Fixing a particular implementation for size, the cost of the abstract function
f ′ is described by a pair of functions sf , cf : N→ N.

Definition 2. sf (n) gives the maximal output size for all arguments of f ′ with
size n or smaller:

sf (n) = max{size(f(encodeA(x))) | x ∈ A ∧ size(encodeA(x)) ≤ n}

Whereas sf quantifies the size of a function’s result, cf measures the evalu-
ation costs of f ′.

Definition 3. cf (n) gives the evaluation costs for all arguments of f ′ with size
n or smaller

cf (n) = max{work(f, encodeA(x)) | x ∈ A ∧ size(encodeA(x)) ≤ n}

where work(f, x) equals the cost of evaluating f ′(encodeA(x)) in the abstract
program.

We can instantiate this scheme in several ways: for example, work(f, x) could
give the number of propositional variables or clauses that are allocated while
computing the abstract value f ′(encodeA(x)). Other techniques may include ad-
ditional characteristics about the propositional encoding, like the number of
literals or the depth of the formula.

31

5 Cost of merge

Example 4 illustrated the semantics of the merge operation on abstract values.
Now we quantify the cost of merge in terms of the cost model in Section 4.

Assume the following case distinction with n branches b1, . . . , bn in a function
f :

f(x) = case x of C1 -> b1
. . .

Cn -> bn

Listing 1.2. A case distinction over n branches

where f ′ : A → A denotes the abstract counterpart of f . In order to evalu-
ate f ′(x′) for some abstract argument x′ ∈ A we need to evaluate all abstract
branches b′i ∈ A for i ∈ [1, n] and merge the results by mergex′(b′1, . . . , b′n). We
denote the result of this merge by r′ ∈ A.

A first cost measure determines the numbers of variables that are needed to
represent the result of an application of merge (variable-cost).

Definition 4. workV(f, x) denotes the variable-cost of function f in Listing 1.2
and equals the maximum number of flags in the branches, i.e., if mi denotes the
number of flags in branch b′i for i ∈ [1, n], then

workV(f, x) = max{mi | 1 ≤ i ≤ n}

As the result of f ′(x) must equal one of the branches b′i (c.f. Example 4) it
is reasonable for workV to assume that r′ must consist of the maximum number
of flags that are present in the abstract branches b′i ∈ A for 1 ≤ i ≤ n.

Furthermore, we define the clause-cost of an application of merge. Example 4
illustrated that the flags in a result of merge encode the case distinction in
terms of abstract values. The clause-costs represent the number of clauses in a
propositional formula that are needed to encode a case distinction.

Definition 5. workC(f, x) denotes the clause-cost of function f in Listing 1.2
where n denotes the number of branches:

workC(f, x) = 2 ∗ workV(f, x) ∗ n

workC is reasonable because two clauses are emitted for each of the workV(f, x)
flags in r′ and each of the n branches.

6 Profiling CO4

In the following we compare the profiling output of CO4 for some examples and
show the relation to the previously defined cost-model.

The first example illustrates the difference between the cost of evaluating a
concrete program and an abstract program.

32

1 data Bool = False | True deriving Show
2 data T = T1 | T2 | T3 deriving Show
3

4 g :: T -> Bool
5 g t = case t of T1 -> True
6 T2 -> False
7 T3 -> False
8

9 f1 :: Bool -> Bool
10 f1 b = case b of False -> g T1
11 True -> g T2
12

13 f2 :: Bool -> Bool
14 f2 b = g (case b of False -> T1
15 True -> T2)

Listing 1.3. Profiling two semantically equivalent functions

Listing 1.3 defines two functions f1,f2 with the same concrete semantics.
Assume f1’ (resp. f2’,g’) being the abstract counterpart of f1 (resp. f2,g).
Further assume that b ∈ A is an abstract value that represents an undetermined
value of type Bool. Then, evaluating f1’ b gives

("f1’", {numCalls = 1, numVariables = 1, numClauses = 4})
("g’", {numCalls = 2, numVariables = 0, numClauses = 0})

g’ does not allocate any variables nor clauses as its argument is constant in
both calls g T1 and g T2 in the concrete program. Thus, the case distinction in
g’ can be evaluated straightforwardly without applying merge.

f1’ is called once and allocates one variable (resp. four clauses). That matches
the workV (resp. workC) cost function, because

– workV(f1, b) = max{1, 1} = 1 as each branch in f1’ is represented by an
abstract value with one flag (because Bool has two constructors)

– workC(f1, b) = 2 ∗ workV(f1, b) ∗ 2 = 4 as there are n = 2 branches in f1’

On the other hand, evaluating f2’ b gives
("f2’", {numCalls = 1, numVariables = 2, numClauses = 8})
("g’", {numCalls = 1, numVariables = 1, numClauses = 6})

Again, the profiling information matches with the cost functions workV and
workC defined in Section 5, because

– workV(f2, b) = max{2, 2} = 2 as each branch in f2’ is represented by an
abstract value with two flags (because T has three constructors)

– workC(f2, b) = 2 ∗ workV(f2, b) ∗ 2 = 8 as there are n = 2 branches in f2’
– workV(g, t) = max{1, 1, 1} = 1 as each branch in g’ is represented by an

abstract value with one flag (because Bool has two constructors)
– workC(g, t) = 2 ∗ workV(g, t) ∗ 3 = 6 as there are n = 3 branches in g’

33

Note that f2’ allocates more variables than f1’ because it merges branches
of type T, which has more constructors than Bool. In the second case, g’ is only
called once, but this time with an unknown argument: its argument indirectly
depends on the unknown b. Thus, g’ allocates variables and emits clauses.

We give a more complex example: CO4 has been applied to problems of
termination analysis of term rewriting systems. One exemplary problem is the
specification of a lexicographic path order (LPO) that proves the termination of
a given term rewriting system1.

Profiling (inner-under):
("constraint’", {numCalls = 1, numVariables = 160, numClauses = 514})
("allHOInst’", {numCalls = 1, numVariables = 160, numClauses = 514})
("mapHOInst’", {numCalls = 4, numVariables = 157, numClauses = 506})
("globalLam’", {numCalls = 3, numVariables = 157, numClauses = 506})
("globalLamSat’", {numCalls = 3, numVariables = 157, numClauses = 506})
("lpo’", {numCalls = 41, numVariables = 154, numClauses = 500})
...

Listing 1.4. Exemplary inner-under-profiling

Listing 1.4 shows the inner-under-profiling for a LPO constraint. For each
function f in the abstract program, inner-under-profiling associates the number
of variables and clauses to f that has been allocated by f and by all func-
tions transitively called in f . Unsurprisingly, constraint’ allocates the most
resources according to inner-under-profiling as it is the top-level function in ev-
ery abstract program.

Profiling (inner):
("gtNat’", {numCalls = 9, numVariables = 36, numClauses = 171})
("lpo’", {numCalls = 41, numVariables = 30, numClauses = 92})
("ordNat’", {numCalls = 9, numVariables = 27, numClauses = 63})
("eqNat’", {numCalls = 19, numVariables = 27, numClauses = 99})
("and2’", {numCalls = 26, numVariables = 20, numClauses = 44})
("eqOrder’", {numCalls = 31, numVariables = 18, numClauses = 40})
...

Listing 1.5. Exemplary under-profiling

Listing 1.5 shows the under-profiling for a LPO constraint. For each function
f in the abstract program, under-profiling only associates the number of variables
and clauses to f that has been allocated by f . Listing 1.5 shows that for the
LPO constraint the abstract function gtNat’ allocates the most propositional
variables.

CO4 also provides information about the number of variables and clauses
allocated in the abstract program as a whole:

#variables: 167, #clauses: 517, #literals: 1365

1 available at https://github.com/apunktbau/co4/blob/master/test/CO4/
Example/LPO.hs

34

We give one more example: Listing 1.6 shows the profiling data for a CO4

specification of the n-queens problem (with n = 8)2.
Profiling (inner-under):
("constraint’", {numCalls = 1, numVariables = 2324, numClauses = 6447})
("allSafe’", {numCalls = 9, numVariables = 2251, numClauses = 6237})
("safe’", {numCalls = 36, numVariables = 2244, numClauses = 6217})
("noAttack’", {numCalls = 28, numVariables = 2216, numClauses = 6140})
("equal’", {numCalls = 717, numVariables = 1724, numClauses = 5100})
("noDiagon’", {numCalls = 28, numVariables = 1488, numClauses = 4012})
("noStraight’", {numCalls = 28, numVariables = 700, numClauses = 2044})
...

Profiling (inner):
("equal’", {numCalls = 717, numVariables = 1724, numClauses = 5100})
("add’", {numCalls = 359, numVariables = 352, numClauses = 704})
("and2’", {numCalls = 101, numVariables = 100, numClauses = 291})
("not’", {numCalls = 84, numVariables = 84, numClauses = 168})
("less’", {numCalls = 65, numVariables = 64, numClauses = 184})

#variables: 2397, #clauses: 6522, #literals: 16697
Listing 1.6. Exemplary profiling for the n-queens problem (with n = 8)

Here, inner-profiling reveals that the equal’ function allocates the most re-
sources. This is reasonable because the n-queens constraint pair-wisely compares
the position of all queens in order to exclude all possibilities for two queens to
attack each other.

7 Moded Types and Mode Inference

For the future work on CO4, we plan to develop a mode inference system that
allows the generation of propositional encodings with fewer variables and clauses.
That is desirable as smaller formulas are often solved in less time by a SAT solver.

Moded types allow the differentiation between expressions that are constant
during abstract evaluation and expressions that are not. This information would
allow the CO4 compiler to determine case distinctions that have a constant
discriminant, i.e., that can be evaluated during abstract evaluation without al-
locating any propositional variables.

In this context, a mode is either ! or ?. Mode ! states that the constructor
of a value is known during abstract evaluation, while mode ? states that the
constructor of a value is not known during abstract evaluation. A moded type is
a type that has been annotated by modes. For example, List! Bool? denotes a
list type, where each of list constructor is known, but each element of type Bool
has an unknown constructor. Thus, such a type encodes a list of known length
with unknown Boolean elements.
2 available at https://github.com/apunktbau/co4/blob/master/test/CO4/

Example/QueensSelfContained.hs

35

We consider a moded program to be a typed program where each type is
annotated by modes. For a moded program to be dynamically well-moded, it
is required that the constructor of all case distinctions’ discriminants must be
constant that have mode !, i.e., their flags are constant.

We plan to develop a static mode analysis as a safe approximation for dy-
namically well-moded programs. One possible approach for a mode inference
algorithm is the construction of a Boolean constraint (because there are two
different modes) that can be solved by a SAT solver.

A similar approach has been successfully applied to infer modes in for the
Mercury language[4].

8 Resource Types and Resource Inference

Mode analysis allows a more strict analysis on the estimated cost for a CO4

constraint system.
A possible approach to predict the resource cost is to annotate each function

in a CO4 constraint with a resource type, where a resource type for function
f according to the cost model introduced in Section 4 is a pair of functions
sf , cf : N→ N.

A dynamically well-resource-typed program is a program where each function
f has a resource type annotation, so that for each call of f with argument x the
actual cost work(f, encode(x)) is less or equal to cf (size(encode(x))) for some
cost function work (see Section 4).

A resource-typed program is considered statically well-typed, if all resource
annotations are consistent with some sound set of rules for cost of case distinc-
tions, merge operations and function compositions.

These rules should guarantee that the static resource type is a safe approxi-
mation for actual costs. We are especially interested in polynomial upper bounds.

Related work consists of amortized resource analysis in Resource Aware ML
(RAML)[2], where polynomial potential functions are used as costs functions.
The coefficients for these polynomial are determined by a constraint system.

We want to emphasize again that this approach is ongoing work and there
are currently no results nor experimental data to verify it. We plan to extend
this approach into a reasonable formalism to capture the resource constraints of
CO4 programs in order to estimate the size of the propositional encodings.

References

1. Alexander Bau and Johannes Waldmann. Propositional Encoding of Constraints
over Tree-Shaped Data. In 22nd International Workshop on Functional and (Con-
straint) Logic Programming, 2013.

2. Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate Amortized Re-
source Analysis. ACM Trans. Program. Lang. Syst., 34(3):14:1–14:62, November
2012.

36

3. Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press, 2003.

4. David Overton, Zoltan Somogyi, and Peter J. Stuckey. Constraint-based mode
analysis of mercury. In PPDP, pages 109–120, 2002.

37

PPI- A Portable PROLOG Interface for JAVA

Ludwig Ostermayer, Frank Flederer, Dietmar Seipel

University of Würzburg, Department of Computer Science
Am Hubland, D – 97074 Würzburg, Germany

{ludwig.ostermayer,dietmar.seipel}@uni-wuerzburg.de

Abstract. As a first step to combine the two programming paradigms – object-
oriented programming and logic programming – we have introduced a generic
default mapping for JAVA objects and PROLOG terms. This mapping can be used
without any modification to the JAVA classes that stand behind the objects. We
also can generate automatically JAVA classes from predicates in PROLOG that
map to each other. Apart from the default mapping it is further possible to cus-
tomise the mapping by JAVA annotations. This allows for different Prolog-Views
on a given class in JAVA. The data exchange format between JAVA and PROLOG is
a simple textual representation of the JAVA objects and of the terms in PROLOG.
Because this textual representation already conforms PROLOG’s syntax, it can be
directly used within PROLOG.
In a second step we have to develop the link between JAVA and PROLOG that
executes the mapping and communication. We already have presented a connec-
tor architecture for PROLOG and JAVA and an example interface that successfully
uses our object term mapping with high performance. However, this interface
depends heavily on a single PROLOG implementation: SWI-PROLOG. But as we
have a generic mapping between JAVA objects and PROLOG terms, we also strive
for an interface that also is generic and can be used independently of the PROLOG

implementation.
In this paper, we present the Portable Prolog Interface (PPI) for JAVA that uses
the standard streams stdin, stdout and stderr to communicate with a PRO-
LOG instance. Because these standard streams are available for all popular oper-
ating systems and are used by most of the PROLOG implementations for the user
interaction, the PPI works for a broad range of PROLOG implementations. We
evaluate our new generic interface PPI with different PROLOG engines and with-
out changing the underlying JAVA or PROLOG source code of our tests.

Keywords. Multi-Paradigm Programming, Logic Programming, Prolog, Java.

1 Introduction

The object-oriented software engineering concept is one of the most used in the field
of software development. However, there are other programming paradigms which are
eminently suitable for particular problem domains. One of those programming concepts
is the logic programming paradigm. The best known logical programming language is
PROLOG. PROLOG programs consist of a collection of rules that describe horn clauses.
In PROLOG programs, these rules are used by the inference mechanism to find solutions

38

for which the rules are true. Due to the simple definition of those rules, PROLOG is
eligible, for instance, for a simple definition of business rules.

It is desirable to combine different programming paradigms in order to use the
strength of each individual concept for suitable parts in a piece of software. Several
approaches for an interaction between JAVA and PROLOG have been proposed in the
past. But most of those concepts are specialized to specific PROLOG implementations.
The benefit of such a strong binding to a PROLOG implementation leads to a good per-
formance, but it lacks of portability across several PROLOG implementations. A well
known interface between JAVA and PROLOG is JPL. JPL, however, makes use of the
foreign language interface (FLI) of SWI-PROLOG. Because of this strong binding to
SWI-PROLOG it is not easily usable for other PROLOG implementations as XSB- or
YAP-PROLOG. Another interface for PROLOG and JAVA is Interprolog. Also this in-
terface is heavily dependent of a single PROLOG implementation: XSB-PROLOG. Al-
though support for SWI- and YAP-PROLOG are announced, they have to put a lot of
effort into porting Interprolog to those other PROLOG implementations. There are other
implementations of interfaces between JAVA and PROLOG that attach importance to the
portability regarding PROLOG implementations. One of those interfaces is JPC [5]. But
also for this interface much porting effort has to be expended.

The main contribution of this paper is for our connector a new generic Portable Pro-
log Interface (PPI) which uses our object term mapping [14] for a smooth communica-
tion between JAVA and PROLOG. The PPI extends our connector architecture for PRO-
LOG and JAVA as presented in [15] and allows the usage of the connector with several
PROLOG implementations and operating systems. The PPI uses the standard streams
stdin, stdout and stderr to communicate with a PROLOG instance. These stan-
dard streams are part of the operating systems and are also used by most of the PROLOG
implementations for the interaction with users.

The rest of the paper is structured as follows: In Section 2 we discuss work that
is related to the results presented in this paper. In Section 3 we recap our object term
mapping and how it is realised for JAVA and PROLOG. This is followed by the presen-
tation of the PPI in Section 4 which we evaluate in Section 5. Finally in Section 6, we
conclude and discuss future work.

2 Related Work

The results in this paper are the continuation of our work with a portable connector
architecture for JAVA and PROLOG that allows a smooth communication between both
programming languages.

In [13], we have presented the framework PBR4J (PROLOG Business Rules for
JAVA) that allows to request a given set of PROLOG rules from a JAVA application.
To overcome the interoperability problems, a JAVA archive (JAR) has been generated
containing methods to query the set of PROLOG rules. PBR4J uses XML Schema to de-
scribe the data exchange format. From the XML Schema description, we have generated
JAVA classes for the JAVA archive. For our connector the mapping information for JAVA
objects and PROLOG terms is not saved to an intermediate, external layer. It is part of
the JAVA class we want to map and though we can get rid of the XML Schema as used in

2
39

PBR4J. Either the mapping is given indirectly by the structure of the class or directly by
annotations. While PBR4J just provides with every JAR only a single PROLOG query,
we are now able to use every object as goal in PROLOG and depending on which vari-
ables are bound different queries are possible. PBR4J transmitted along with a request
facts in form of a knowledge base. The result of the request was encapsulated in a result
set. With our connector we do not need any more wrapper classes for a knowledge base
and the result set as it was with PBR4J. That means that we have to write less code in
JAVA. We either assert facts from a file or persist objects with JAVA methods directly to
PROLOG’s database.

The generic mapping mechanism as described in Section 3 was introduced first
in [14]. Using the default mechanism, nearly every class in JAVA can be mapped to
a PROLOG term without any modification to the class’ source code. Additionally, if
a customised mapping is needed, we provide JAVA annotations in order to realise the
modification easily. These annotations do not affect the original program code in JAVA.
Apart from the mapping, we have proposed the Prolog-View-Notation (PVN) to de-
scribe existing PROLOG terms and to create JAVA classes that map under the default
mapping to the described terms. Because there are nested references of different JAVA
objects, the mapping is done recursively. However, we observed a mapping anomaly
that we call Reference Cycle. A Reference Cycle occurs if a JAVA object is referenced
by itself. Using our mapping mechanism as proposed this leads to a cyclic term. We
want to avoid cyclic terms because our mapping mechanism in this case leads to infi-
nite long strings in JAVA. We have proposed a solution that replaces an attribute which
is a member of the Reference Cycle by a list that contains all referenced objects. If any
of those objects is referenced, a reference identifier is used instead of the nested term
representations. Because the list is restricted to the referenced objects, we avoid the
cyclic term problem and are able to map objects that have a self-reference.

In [15] we have introduced our general connector architecture for JAVA and PRO-
LOG. The presented implementation of the connector is lightweight. The object term
mapping is realised with only two classes. As communication interface we have pre-
sented the Prolog-Interface (PI) for SWI-PROLOG. The PI uses the Foreign Language
Interface (FLI) of SWI-PROLOG and is therefore only applicable for this single PRO-
LOG implementation. An evaluation of the performance has shown that the PI in com-
bination with our object term mapping is as fast as JPL [16], a highly optimized JAVA
interface for SWI-PROLOG. However, the implementations for the evaluation with our
connector have proven simpler, clearer and shorter as with the reference JPL. We re-
quired with our connector 25% less lines of code than with JPL.

There are other approaches how to establish a communication between JAVA and
PROLOG like [3,4,5,7,10] that we already have discussed in [14,15]. In contrast to our
work, all these approaches are limited to single PROLOG implementations and none of
these approaches allow the mapping of already existing classes to terms in PROLOG,
especially without any modifications to the underlying source code. The implementa-
tion of our connector itself is much more lightweight and programs using our connector
need less lines of code than with the other approaches.

3
40

3 The Object Term Mapping between JAVA and PROLOG

In [14] we have proposed a customisable mapping between JAVA objects and PROLOG
terms. The mapping provides a default mapping of JAVA classes to PROLOG terms. This
makes it possible to use almost any already existing JAVA class without any modification
to the classes in JAVA. Thus, a JAVA developer can make use of PROLOG functionalities
with minimal effort. If the default mapping of JAVA objects to PROLOG terms does not
match already existing PROLOG predicates or any needed data structure on the PROLOG
side, we also have proposed a customisable mapping of JAVA objects to PROLOG terms.
This customisation allows the user to change the functor as well as the composition and
the type of a term’s arguments. In this section we want to recap the default and the
customisable mapping of JAVA objects to PROLOG terms with some examples.

3.1 Default Mapping

To provide JAVA developers an easy way to use PROLOG, our approach implements a
smart default mapping. For the default mapping JAVA classes can be used without any
modifications. The JAVA programmer does not need to know the syntax and only little
of the functionalities in PROLOG in order to establish a connection.

The mapping target of an object is a term in PROLOG, also referred as target term
in this paper. The default mapping from a JAVA object to a PROLOG term uses the
object’s class name as the target term’s functor. Class names in JAVA are usually written
in Upper Camel Case notation. But upper first characters in predicate names are not
allowed in PROLOG because functors are atoms. Atoms in PROLOG usually begin with
lowercase characters, otherwise the predicate’s name must be escaped by surrounding
single quotes, e.g. 'Book'.

For the default mapping, we have decided to convert the in JAVA common Camel
Case notation to the in PROLOG common Snake Case notation. This is done, by replac-
ing uppercase characters by their lowercase equivalent and add an underscore prefix,
if the character is not the first one. For instance, the class’ name MyBook maps to the
atom my_book.

Classes usually contain member variables. The default mapping just maps every
member variable to an argument of the target term. This is done, by getting all these
variables via Java Reflections. The order of the arguments in the target term is given
by the getDeclaredFields() method in JAVA. According to JavaDoc, there is no
assured order but Oracle’s JVM (JAVA Virtual Machine) returns an array of fields that
is sorted by the position of the variables’ declarations in the JAVA class files.

Another aspect of our default mapping is the fix conversion of some types in JAVA
to certain types/structures in PROLOG. A natural mapping of JAVA types (to PROLOG)
is as follows: short (integer), int (integer), long (integer), float (float), double (float),
String (atom), Array (PROLOG list), List (PROLOG list) and Object (compound PRO-
LOG term). For other data types, only existing in certain PROLOG implementations like
string in SWI-PROLOG [18], the default mapping can be further extended or changed.
It is possible to save these changes to the default mapping to a configuration file.

A special part in logical programming are logical variables. The inference mecha-
nism of PROLOG tries to assign valid values to them for which the rules of the PROLOG

4
41

program are true. Because different values for a logical variable might be true, several
solutions can be found for a single request made available through backtracking.

The inference mechanism and the unification of logical variables to valid values is
a strong feature of PROLOG. In order to make this unification process available in JAVA
we have introduced the concept of Object Unification.

When transforming JAVA objects to PROLOG terms, we transform specific variables
of an object into a logical variable in PROLOG. We map null values in JAVA to vari-
ables in PROLOG. More precise, every time we map an object to PROLOG, all member
variables with a null value are substituted in PROLOG with different variables. Then,
these variables can be unified within the inference process of PROLOG. Finally, a in
PROLOG unified term leads to a substitution of the initial null values in JAVA by the
values of the in PROLOG unified variables.

To illustrate the default mapping mechanism, different implementations of a Book
class follow. In each step, further details are implemented in order to show another
detail of the default mapping mechanism. The first Book class does not implement any
member variable at all:

class Book {
}

When we create a instance of the Book class and transform it via the default map-
ping to a term in PROLOG, any instance will result in the same term with an arity of
zero:

book

The name of the class Book is transformed to a snake case notation which in this
case just leads to the lowercase book.

We extend the Book class of the previous implementation by the title of the
book:

class Book {
private String title;
// ... constructor\ getter\ setter

}

For lack of space, we omit the implementation details of a class’ constructor, getter
and setter methods. Now, we create again an instance:

Book b = new Book();
b.setTitle("Sophie's World");

The target term in PROLOG then looks like in the following listing:

book('Sophie\'s World')

The single member variable title is used for the single argument of the book
term. Because the member variable is of the data type String in JAVA, it is transformed
by the default mapping into an atom in PROLOG.

In the next step we extend the Book class by another member variable, the amount
of pages. This time, we use the int data type in JAVA:

5
42

class Book {
private String title;
private int pages;
// ... constructor\ getter\ setter

}

We create again an instance of the Book class:

Book b = new Book();
b.setTitle("Sophie's World");
b.setPages(518);

The instance b of Book then is transformed via the default mapping to:

book('Sophie\'s World', 518)

The resulting term in PROLOG contains the values of both member variables, be-
cause the default mapping just transforms all of the member variables of a JAVA class.
The pages variable, however, is not set within quotes, as the default mapping trans-
formes a JAVA int to a integer in PROLOG. The order of the two member variables
within the PROLOG term is defined by the return of the getDeclaredFields()
method of the JAVA reflection API. In this case, the sorting of the member variables is
the declaration order of them within the Book class.

We give now an example where one of the member variables is set to null. For
this, we instantiate a Book object and do not set the pages member variable:

Book b = new Book();
b.setTitle("Sophie's World");

Not setting the pages amount leads to an uninitialized variable that is set to null.
According to the default mapping, all member variables that have a value of null are
transformed to variables in PROLOG:

book('Sophie\'s World', Book@123_pages)

The name of the logical variable is composed of the object’s reference in JAVA
(Book@123) and the name of the member variable (pages). Generating the name of
logical variables this way we obtain an unique variable name. Its uniqueness results
from the unique object reference within a JAVA program and the unique name of the
member variable within a JAVA class. Even if the same JAVA object is transformed
multiple times to PROLOG, it is sufficient. Because we need just one single unification
for a member variable of an object, the multiple occurrence of a member variable of the
same object, leads to a single unification on the PROLOG side.

But we are not limited by transforming a single JAVA object to PROLOG. Referenced
objects are transformed recursively. To show this, we extend the book class again and
create a new class named Author:

class Book {
private String title;
private Author author;

6
43

private int pages;
// ... constructor\ getter\ setter

}

class Author {
private String name;
// ... constructor\ getter\ setters

}

As one can see, we now have a reference from the Book class to the Author class.

Author a = new Author();
a.setName("Jostein Gaarder");

Book b = new Book();
b.setTitle("Sophie's World");
b.setAuthor(a);

The target term in PROLOG of the book b now is a complex compound term:

book('Sophie\'s World', author('Jostein Gaarder'),
Book@123_pages)

The Author class just contains a single member variable, so does the resulting tar-
get term in PROLOG. The resulting term for the author object a is contained as argument
within the target term for the book b.

3.2 Customised Mapping
If the default mapping does not map an object to a desired term structure, the user is
able to modify the mapping with a special purpose annotation layer in JAVA. With JAVA
annotations we can add the necessary meta-data of a desired mapping to the source code
in JAVA. Note, that annotations are not part of a JAVA program, i.e. they do usually not
affect the code itself they annotate. Annotations are parsed in JAVA with the methods of
the Reflection API. To customise the mapping between objects and terms we only need
three annotations in a nested way: @PlView, @Arg and @PlViews.

@PlView is used to describe a single Prolog-View on a given class in JAVA. With
Prolog-View we mean single mapping of a given class in JAVA to term in PROLOG.
It is possible to define different Prolog-Views on the same class. We achieve this with
different @PlView annotations which are collected within a @PlViews annotation in
the given class. A @PlView annotations consists of several elements:

viewId is a mandatory element and identifies the Prolog-View. The predicate
name normally set by the default mapping can be written over by the element functor.
There are three remaining elements of a @PlView annotation that are lists consisting
of strings: orderArgs, ignoreArgs and modifyArgs. These lists are used to
manipulate the structure of the target term corresponding to the desired Prolog-View.

orderArgs determines which member variable values, defined by their JAVA
names, are used within the textual term representation. As the name orderArgs sug-
gests the order of members in this list matters. The order of the resulting term arguments
corresponds to the order of the member variable names in this list.

7
44

ignoreArgs removes one or a few member variables from the default mapping.
The user simply can add the names of the ignored member variables in this list instead
of writing all the other names into the orderArgs list. As ignoreArgs contains
all the missing arguments, there is no order information that describes the order of
the arguments left over to the mapping. Therefore, the relative order of the arguments
within the default mapping is unaffected. The user is told not to use orderArgs and
ignoreArgs together within the same @PlView annotation, as this could lead to
anomalies like member variable names that are in both or in none of the two lists.
To prevent an accidental wrong use, an exception is raised if both elements are used
together within an @PlView annotation. The orderArgs and ignoreArgs are just
to define which member variables are considered for the mapping and which not, as well
as the order of those parameters.

modifyArgs modifies the mappings of single member variables to arguments of
the target terms. It is an array consisting of @Arg annotations.

@Arg has three elements for the modifications: valueOf, type and viewId. As
long as there is no @PlArg annotation in an @PlView annotation, the default mapping
is applied for all mapped member variables.

valueOf references the name of the member variable whose mapping is going
to be manipulated by the @Arg annotation. In a single @PlView annotation only one
@Arg annotation is allowed for every member variable referenced by valueOf.

type defines the PROLOG type which will be used within the target term in PRO-
LOG. Options for type are elements of an enumeration representing certain PROLOG
types like atom, float, integer or structures like compound term, list. In case of com-
pound term and list, it is possible that again several Prolog-Views in a referenced class
exist. Though, the user again can select a Prolog-View for the referenced class via an
according viewId. The type compound is always a reference to another object. Be-
cause an object can be mapped to a list, the type list can also be a reference.

viewId is used for member variables that reference a class for which different
Prolog-Views are defined.

To illustrate the meaning of the different annotations and their arguments, we give
an example of a Book class with three different Prolog-Views defined on it by @PlView
annotations:

@PlViews({
@PlView(viewId="book1", orderArgs={"title"}),
@PlView(viewId="book2", ignoreArgs={"author"}),
@PlView(viewId="book3", functor="tome",

modifyArgs={@PlArg(valueOf="pages", type=ATOM)}
)}

)
class Book {
private String title;
private Author author;
private int pages;

// ... setters / getters
}

8
45

The first Prolog-View, identified by book1, just selects the member variable title
to be part of the resulting PROLOG term. Therefore, the resulting term just contains the
title of the book.

The second Prolog-View book2 uses the selection list ignoreArgs. The only
entry in this list is the member variable author. That means all the other member
variables, namely title and pages, are still contained in the resulting target term in
PROLOG.

The last Prolog-View book3 has no restriction on the included member variables
at all. Thus, all member variables are mapped to PROLOG. However, two modifications
to the mapping are done within the annotation: the functor of the target term is
changed from book to tome; the type in PROLOG of the mapping of the member
variable pages is changed in PROLOG from integer as in the default mapping to atom.
Therefore, the resulting term in PROLOG has a single quoted value for the pages of the
book.

The resulting three target terms in PROLOG are summarised in the following listing:

book('Sophie\'s World').
book('Sophie\'s World', 518).
tome('Sophie\'s World', author('Jostein Gaarder'), '518').

3.3 Creating Textual Term Representations

All the information needed for the creation of textual term representations can be de-
rived from the classes involved in the mapping. The default mapping uses the infor-
mation of the class structure itself. The customised mapping uses the information con-
tained in the JAVA annotations @PlView that are identified by the string viewId. As
in [15] shown the object to term conversion as well as the parsing is implemented in
a wrapper class called OTT (Object-Term-Transformer). An example for the usage of

query

o1

o3

o2

ott1

ott2

ott3

Fig. 1: A tree of OTT Objects

OTT instances is shown in Figure 1. The object o1 is destined to be unified in PROLOG.
It has references to two other objects o2 and o3 which lead to a nested term structure
in PROLOG. The class Query is a wrapper for a call to PROLOG. To its constructor o1
is passed and an instance of OTT is created, here ott1. For all the other references in

9
46

o1 instances of OTT are created in a nested way, namely ott2 for o2 and ott3 for
o3.

In order to create the textual term representation of o1, the instance query causes
ott1 to call its toTerm() method that triggers a recursive call of toTerm() in all
involved instances of OTT. In doing so, the first operation is to determine which fields
have to be mapped. Depending on a requested Prolog-View or the default mapping an
array of Field references is created that contains all the needed member variables for the
particular view in the corresponding order. The information about the Fields is retrieved
with help of the Reflection API in JAVA. The same way, additional information like
PROLOG types and viewIds for particular member variables are saved within such
arrays. As the information of a Prolog-View on a class is solid and does not change
with the instances, this field information is just created once and cached for further use.
For the creation of the textual term representation, the functor is determined either from
a customised functor element of an @PlView annotation or from the class name in
the default case. After that, the Field array is iterated and the string representation for
its elements are created. The pattern of those strings depend on the PROLOG type that
is defined for a member. If a member is a reference to another object, the toTerm()
method for the reference is called recursively.

3.4 Parsing Textual Term Representations

After query has received the textual representation of the unified term from PROLOG,
it is parsed to set the unified values to the appropriate member variables of the JAVA ob-
jects involved. The parsing uses again the structure of nested OTT objects as shown in
Figure 1. The class OTT has the method fromTerm(String term). This method
splits the passed string into functor and arguments. The string that contains all the ar-
guments is split into single arguments. This is done under consideration of nested term
structures. According to the previously generated Field array the arguments are parsed.
This parsing happens in dependence of the defined PROLOG type of an argument. For
instance, an atom either has single quotes around its value or, if the first character is low-
ercase, there are no quotes at all. If there is a quote detected, it is removed from the string
before assigning it as a value for the appropriate member variable. Assignments for
referenced objects in o1 are derived recursively by calling the fromTerm(String
term) method of the appropriate instances of OTT, in our example ott2 and ott3.

4 PPI - The Portable PROLOG Interface

In a previous paper [15] we already have presented our connector architecture for PRO-
LOG and JAVA. Figure 2 gives an overview of the components and how the connec-
tor works. An object is transformed to a PROLOG term in string format via the object
term mapping (OTM) as described in Section 3. This string is transmitted via a Prolog-
Interface (PI). Then the string is parsed in PROLOG. Because the string already con-
forms to PROLOG’s syntax, this is an easy task. The resulting term is unified and sent
back again in string format which is finally processed by a parser in JAVA. The used PI

10
47

Object
Term

Java Prolog

OTM

Parser
Term

PI

PI

Fig. 2: Components of the Connector

can be any Prolog Interface for JAVA that is available for the considered PROLOG im-
plementation. We already have implemented a high performance PI for SWI-PROLOG
based on its Foreign Language Interface. The combination of our mapping and the PI
for SWI has been optimized to the point where our connector works as fast as an imple-
mentation with JPL [16] which is the standard JAVA interface bundled with SWI. It is
more complex to operate with JPL than with our connector. We have this quantified by
the amount of lines of code necessary to call PROLOG from JAVA: an implementation
with our connector needs 25% less lines of code. In addition, a user developing with
JPL must have a deeper understanding for PROLOG and its structures.

However, the PI is only applicable with SWI-PROLOG. In order to conserve an inde-
pendence regarding the PROLOG implementations we introduce in this paper a generic
interface suitable for almost every PROLOG implementation and operating systems, the
Portable Prolog Interface (PPI). Instead of a specialized interface between JAVA and
a certain PROLOG implementation, we use standard streams of every operating sys-
tem to connect to a PROLOG process: the standard input (stdin), the standard output
(stdout) and the standard error (stderr). Every PROLOG implementation usually
provides user interaction via these streams. To write as user a request directly to PRO-
LOG the stdin stream is used. The output is channelled via the stdout or stderr
stream to a user interface. The output contains the resulting bindings of the variables
that have been unified by PROLOG’s inference engine.

Java Prolog
<stdin>

<stdout>
<stderr>

Fig. 3: Structure of the Pipe Interface

Our object term mapping can be combined with the PPI in a native way because the
textual term representation that we transmit already conforms to PROLOG’s syntax. Our
connector using the PPI now is deployable for a broad range of operating systems and
PROLOG implementations. Normally, these streams are used for writing and calling
goals as well as for getting the variable bindings of a solution. In addition, the user
is able to kick off features in most PROLOG systems like backtracking by typing the
character semicolon. This is just an input for stdin and therefore our interface is also
able to use such meta commands.

11
48

Another difference of the PPI and the interface PI in [15] is that the PI returned the
unified term as a whole. Using the standard streams PROLOG returns only the binding
of the variables, e.g. X=4. In order to make this separate bindings usable for our map-
ping process, the variables in the initial term are replaced by the appropriate bindings.
Fig. 4 shows the schematic flow between the individual pipes that process the informa-
tion flow. When opening a connection from a JAVA program to a PROLOG engine two
classes are initialised in JAVA: OutPipe and InPipe. The class OutPipe shares the
main thread of the underlying JAVA program and has the job to write text to PROLOG’s
stdin. When the unify method is called within the JAVA program, OutPipe writes
the the textual term representation, which should be unified, to PROLOG’s stdin. The
class InPipe runs a separate thread and receives the results from PROLOG by reading
the stdout or stderr stream.

OutPipe InPipe PrologJavaProg

unify

wait

write

wait resume
read

return
wait

resume

return

stdin

stdout
/stderr

t

Fig. 4: Information Flow via the PPI

To avoid unnecessary overhead the two threads are paused if they are not needed.
Because we want the result as return of the method unify, we pause the calling thread
in order to wait for the result from PROLOG. We have sent a request to PROLOG and
await the result to be written to PROLOG’s stdout or stderr. Therefore, after writ-
ing the text to stdin, the InPipe thread is resumed in order to collect the unifi-
cation result. As soon as the resulting data has arrived via stdout or stderr, the
InPipe returns it to OutPipewhich resumes its computations and thread of InPipe
is paused. After the result, in form of variable bindings, is converted back to the tex-
tual representation of the in PROLOG unified term, the resulting string is returned by
unify.

5 Evaluation

In this section we evaluate the combination of the generic PPI with our connector ar-
chitecture for PROLOG and JAVA. We have implemented three tests for the evaluation.
For the computations, we have successfully used the following freely available PRO-
LOG implementations: B-, CIAO-, GNU-, SWI-, YAP- and XSB-PROLOG. In doing so,
no modifications to the original program files in JAVA and PROLOG have been neces-

12
49

sary. We have tested1 consecutively 50000 calls. The resulting average execution time
for the different PROLOG implementations are presented in the tables that follow the
short descriptions of the tests. Note, that the resulting execution times in tables always
include the time necessary to process the goal on the different PROLOG engines.

In the first test the goal, that we send from JAVA to PROLOG, is just the atom true
which is always true and needs no unification. We do this, to better estimate the time
that only is spent for establishing a connection and the transmission of the data.

B-PROLOG CIAO GNU SWI XSB YAP

3.0 sec 15.5 sec 3.0 sec 7.4 sec 3.7 sec 2.9 sec

The second test has two different implementations. The first implementation sends
as goal to PROLOG a variable assignment to an atom consisting of 100 characters. The
second implementation has an increased character count of 1000 for the assigned atom.
The purpose of this test is to analyse the influence of the length of a goal, measured in
characters, on the execution time.

Characters B-PROLOG CIAO GNU SWI XSB YAP

100 4.4 sec 15.5 sec 4.2 sec 12.5 sec 5.5 sec 8.6 sec
1000 18.4 sec 33.4 sec 18.5 sec 40.5 sec 18.6 sec 61.7 sec

Third test considers underground railway networks, as in [15] the London Under-
ground. These networks are represented as undirected graphs with stations as nodes and
lines as edges connecting the individual stations. In PROLOG this is simply realised via
the facts connected. The first and the second argument of a connected fact is a
station. The third argument is the line connecting the two stations. The next listing gives
some examples for connected facts for the London Underground:

connected(station(green_park), station(charing_cross),
line(jubilee)).

connected(station(bond_street), station(green_park),
line(jubilee)).

...

In this third test we request for a station adjacent to a given station and line. We
process the graphs for the London Underground, Sydney and Vienna. The number of
edges in these graphs decreases from London with 412 edges over Sydney with 284
edges to Vienna with only 90 edges.

B-PROLOG CIAO GNU SWI XSB YAP

London 7.8 sec 25.5 sec 4.6 sec 15.3 sec 8.5 sec 5.0 sec
Sydney 6.3 sec 22.8 sec 4.4 sec 15.2 sec 7.7 sec 4.9 sec
Vienna 5.2 sec 22.0 sec 3.8 sec 13.7 sec 7.6 sec 4.7 sec

1 on Core i5 2x2.4 GHz, 6 GB RAM, Ubuntu 14.04

13
50

As one can see in the second table the amount of data which is transmitted to and
from PROLOG has a huge influence on the execution time. All the times of the execution
with 1000 characters are up to 7 times slower than the execution with 100 characters.

In the last table, one can see that the decrement of execution time for the PROLOG
inference mechanism has only a slight effect on the complete execution time includ-
ing the input and output operations. The slowest execution in this evaluation is the
1000 character benchmark for YAP. But 61.7 seconds for 50000 executions means an
execution time of 1.234 milliseconds for a single execution. Because in real world ap-
plications 50000 executions in a row are unusual, this delay of about one millisecond is
still a good value.

6 Conclusions and Future Work

In this paper we have presented the portable PROLOG interface (PPI) for our connector
architecture. The PPI is based on standard streams that are part of nearly every operat-
ing system and are used by most PROLOG implementations for the user interaction. In
a first evaluation we could verify the applicability of the PPI within our connector for
several PROLOG implementations, and that with a decent performance. This way, we
have improved the portability of our connector architecture for PROLOG and JAVA.

In a future work, we want to extend our tests with the PPI to other PROLOG im-
plementations, maybe to commercial PROLOG systems, too. In addition, we currently
work on the integration of existing high performance interfaces into our connector. In
doing this, we expect to get better execution times for our mapping technique between
JAVA and PROLOG.

References

1. A. Amandi, M. Campo, A. Zunino. JavaLog: a framework-based integration of Java and
Prolog for agent-oriented programming. Computer Languages, Systems & Structures 31.1,
2005. 17-33.

2. M. Banbara, N. Tamura, K. Inoue. Prolog Cafe: A Prolog to Java Translator.
Proc. Intl. Conference on Applications of Knowledge Management, INAP 2005, Lecture
Notes in Artificial Intelligence, Vol. 4369, Springer, 2006. 1-11.

3. M. Calejo. InterProlog: Towards a Declarative Embedding of Logic Programming in Java.
Proc. Conference on Logics in Artificial Intelligence, 9th European Conference, JELIA, Lis-
bon, Portugal, 2004.

4. S. Castro, K. Mens, P. Moura. LogicObjects: Enabling Logic Programming in Java through
Linguistic Symbiosis. Practical Aspects of Declarative Languages. Springer Berlin Heidel-
berg, 2013. 26-42.

5. S. Castro, K. Mens, P. Moura. JPC: A Library for Modularising Inter-Language Conversion
Concerns between Java and Prolog. International Workshop on Advanced Software Devel-
opment Tools and Techniques (WASDeTT), 2013.

6. S. Castro, K. Mens, P. Moura. Customisable Handling of Java References in Prolog Pro-
grams. arXiv preprint arXiv:1405.2693, 2014.

7. M. Cimadamore, M. Viroli. A Prolog-oriented extension of Java programming based on
generics and annotations. Proc. 5th international symposium on Principles and practice of
programming in Java. ACM, 2007. 197-202.

14
51

8. K. Gybels. SOUL and Smalltalk - Just Married: Evolution of the Interaction Between a Logic
and an Object-Oriented Language Towards Symbiosis. Proc. of the Workshop on Declarative
Programming in the Context of Object-Oriented Languages, 2003.

9. M. D’Hondt, K. Gybels, J. Viviane Seamless Integration of Rule-based Knowledge and
Object-oriented Functionality with Linguistic Symbiosis. Proc. of the 2004 ACM sympo-
sium on Applied computing. ACM, 2004.

10. T. Majchrzak, H. Kuchen. Logic java: combining object-oriented and logic programming.
Functional and Constraint Logic Programming. Springer Berlin Heidelberg, 2011. 122-137.

11. L. Ostermayer, D. Seipel. Knowledge Engineering for Business Rules in Prolog.
Proc. Workshop on Logic Programming (WLP), 2012.

12. L. Ostermayer, D. Seipel. Simplifying the Development of Rules Using Domain Specific Lan-
guages in Drools. Proc. Intl. Conf. on Applications of Declarative Programming and Knowl-
edge Management (INAP), 2013.

13. L. Ostermayer, D. Seipel. A Prolog Framework for Integrating Business Rules into Java
Applications. Proc. 9th Workshop on Knowledge Engineering and Software Engineering
(KESE), 2013.

14. L. Ostermayer, F. Flederer, D. Seipel. A Customisable Mapping between Java Objects and
Prolog Terms.
http://www1.informatik.uni-wuerzburg.de/database/papers/otm_
2014.pdf

15. L. Ostermayer, F. Flederer, D. Seipel. CAPJa - A Connector Architecture for Prolog and
Java. http://www1.informatik.uni-wuerzburg.de/pub/ostermayer/
paper/capja_2014.html

16. P. Singleton, F. Dushin, J. Wielemaker. JPL 3.0: A Bidirectional Prolog/Java Interface.
http://www.swi-prolog.org/packages/jpl/

17. J. Wielemaker, T. Schrijvers, T. Markus, L. Torbjörn. SWI-Prolog.
Theory and Practice of Logic Programming. Cambridge University Press, 2012. 67-96.

18. J. Wielemaker. SWI Prolog.
http://www.swi-prolog.org

15
52

Declarative Evaluation of Ontologies with Rules

Dietmar Seipel, Joachim Baumeister, and Klaus Prätor

University of Würzburg, Institute of Computer Science, Germany

{seipel,baumeister}@informatik.uni-wuerzburg.de
praetor@mac.com

Abstract. Currently, the extension of ontologies by a rule representation is a very
popular research issue. A rule language increases the expressiveness of the under-
lying knowledge in many ways. Likewise, the integration creates new challenges
for the design process of such ontologies, but also existing evaluation method-
ologies have to cope with the extension of ontologies by rules. In this work, we
introduce supplements to existing verification techniques to support the design
of ontologies with rule enhancements, and we focus on the detection of anoma-
lies that can especially occur due to the combined use of rules and ontological
definitions.

Keywords. evaluation, anomalies, OWL, SWRL, RULEML, PROLOG, DATALOG

1 Introduction

The use of ontologies has shown its benefits in many applications of intelligent systems
in the last years. It is not only a fantasy of computer scientists, but it correesponds to
real needs. E.g., in scholarly editions, the lack of semantic search is very obvious. The
works of the poet Stifter, e.g., are full of geological metaphors but the word geological is
never mentioned. The philosopher Wittgenstein is dealing with philosophical problems,
but does not use traditional philosophical terminology. So the editors are considering an
ontology for the work of Wittgenstein. In the context of [PZW13], Pichler and Zöllner–
Weber were also exploring the potential of PROLOG ontologies and logic reasoning as
tools in the Humanities [Zoe09].

Whereas, the implementation of lower parts of the semantic web stack has suc-
cessfully led to standardizations, the upper parts, especially rules and the logic frame-
work, are still heavily discussed in the research community, e.g., see Horrocks et al. [3].
This insight has led to many proposals for rule languages compatible with the semantic
web stack, e.g., the definition of SWRL (semantic web rule language) originating from
RULEML and similar approaches [4]. It is well agreed that the combination of ontolo-
gies with rule–based knowledge is essential for many interesting semantic web tasks,
e.g., the realization of semantic web agents and services. SWRL allows for the combi-
nation of a high–level abstract syntax for Horn–like rules with OWL, and a model the-
oretic semantics is given for the combination of OWL with SWRL rules. An XML syn-
tax derived from RULEML allows for a syntactical compatibility with OWL. However,
with the increased expressiveness of such ontologies, new demands for the development

53

and for maintenance guidelines arise. Thus, conventional approaches for evaluating and
maintaining ontologies need to be extended and revised in the light of rules, and new
measures need to be defined to cover the implied aspects of rules and their combination
with conceptual knowledge in the ontology.

Concerning the expressiveness of the ontology language we focus on the basic sub-
set of OWL DL (that should make the work transferable to ontology languages other
than OWL) and we mostly describe syntactic methods for the analysis of the considered
ontology. We also focus on the basic features of SWRL: we consider Horn clauses with
class or property descriptions as literals, and we omit a discussion of SWRL built–ins.
Due to the use of rules with OWL DL the detection of all anomalies is an undecidable
task, cf. [4].

Here, the term verification denotes the syntactic analysis of ontologies for detecting
anomalies. On one hand, the discussed issues of the presented work originate from the
evaluation of taxonomic structures in ontologies introduced by Gómez–Pérez [5]. On
the other hand, in the context of rule ontologies classical work on the verification of
rule–based knowledge has to be reconsidered as done, e.g., by Preece and Shinghal [6,
7]. In their works, the verification of ontologies (mostly taxonomies) and rules (based on
predicate logic), respectively, has been investigated separately. However, the combina-
tion of taxonomic and other ontological knowledge with a rule extension leads to new
evaluation metrics that can cause redundant or even inconsistent behavior. The main
contribution of our work is the extension of these measures by novel anomalies that
are emerging from the combination of rule–based and ontological knowledge. Here, the
concept of dependency graphs from deductive databases can be used [8]. Of course, the
collection of possible anomalies may always be incomplete, since additional elements
of the ontology language may also introduce new possibilities of occurring anomalies.

In detail, we investigate the implications and problems that can be drawn from rule
definitions in combination with some of the following ontological descriptions: 1. class
relations like subclass of, complement of, disjointness 2. basic property characteristics
like transitivity, ranges and domains, and cardinality restrictions. We distinguish the
following classes of anomalies:

– Circularity in taxonomies and rule definitions.
– Redundancy due to duplicate or subsuming knowledge.
– Inconsistency because of contradicting definitions.
– Deficiency as a category comprising subtle issues describing questionable design in

an ontology.

The presented work is different from the evaluation of an ontology with respect
to the intended semantic meaning: the OntoClean methodology [9] is an example for
semantic checks of taxonomic decisions made in an ontology. We also do not consider
common errors that can be implemented due to the incorrect understanding of logical
implications of OWL descriptions as described by Rector et al. [12].

This paper is organized as follows: The next section gives basic definitions and
describes the expressiveness of the underlying knowledge representation; in the context
of this work a subset of OWL DL is used. Then, the four main classes of anomalies are
discussed. In Section 3, we present a case study with anomalies in OWL ontologies. The
paper is concluded with a discussion.

54

2 Expressiveness and Basic Notions

For the analysis of ontologies with rules, we restrict the range of the considered con-
structs to a subset of OWL DL: we investigate the implications of rules that are mixed
with subclass relations and/or the property characteristics transitivity, cardinality re-
strictions, complement, and disjointness.

Given a class C and a property P . When used in rules, we call C(x) a class atom and
P (x, y) a property atom. For the following it will be useful to extend the relations on
classes and properties to relations on class and property atoms. Given two atoms A,A′,
we write �(A,A′), if both atoms have the same argument tuple, and their predicate
symbols are related by �, i.e., if A and A′ both are

– class atoms, such that A = C(x), A′ = C ′(x), and �(C,C ′), or
– property atoms, such that A = P (x, y), A′ = P ′(x, y), and �(P, P ′).

E.g., the relation � can be sub_class, isa, disjoint, complement, etc. From
a relationship �(A,A′) it follows that A and A′ are of the same type.

2.1 Implementation in DATALOG?

The detection of anomalies has been done using a PROLOG meta–interpreter DATA-
LOG?, which we have implemented in SWI PROLOG [13]. Due to their compactness
and conciseness, we give the corresponding formal definitions for the anomalies, which
are evaluated using a mixed bottom–up/top–down approach based on DATALOG and
PROLOG concepts, respectively.

Variables such A, B, C, . . . , A′, or Bi can denote both class atoms and property
atoms, whereas As, Bs, . . . , denote sets of class atoms and property atoms. We denote
a relationship A is-a A’ by isa(A, A’). SWRL rules B1 ∧ · · · ∧Bn⇒ A are repre-
sented as non–ground DATALOG? facts rule(A-Bs) (with variable symbols), where
Bs = [B1, . . . , Bn] is the list of body atoms and A is the head atom. Since SWRL rules
with conjunctive rule heads can be split into several rules, we can – without loss of gen-
erality – assume rule heads are atomic. In DATALOG? and PROLOG rules, conjunction
(and) is denoted by ”,”, disjunction (or) is denoted by ”;”, and negation by ”\+”.

Incompatible Classes: Complements and Disjointness. For classes, there exists the con-
struct complementOf to point to instances that do not belong to a specified class. In
DATALOG?, the complement relation between two classes C1 and C2 is denoted by
complement(C1,C2). In OWL, the disjointness between two classes is defined by
the disjointWith constructor; with disjoint(C1,C2) we denote the disjointness be-
tween two classes C1 and C2. We call two classes C1 and C2 incompatible, if there
exists a disjoint or a complement relation between them. This is detected by the follow-
ing PROLOG predicate:

incompatible(C1, C2) :-
(complement(C1, C2)
; disjoint(C1, C2)).

55

Taxonomic Relationships and Rules An obvious equivalence exists between the rela-
tionships B is-a A – where A and B are both class atoms or both property atoms with
the same arguments – and rules of the form B⇒ A with a single atom B in the body
having the same argument as A. Thus, we combine them into the single formalism
derives in DATALOG?:

derives(C1, C2) :-
(isa(C1, C2)
; rule(A-[B]) B =.. [C1, X1], A =.. [C2, X2],
var(X1), X1 == X2).

isa(C1, C2) :-
sub_class(C1, C2).

isa(C1, C3) :-
isa(C1, C2), sub_class(C2, C3).

Observe, that the call var(X1), X1 == X2 tests if X1 and X2 are bound to the
same variable.

With the existence of equivalence definitions E1 ≡ E2 in an ontology language,
e.g., the OWL definitions equivalent_class and equivalent_property, we
can further extend the definition of derives: an element E1 is derived by an element
E2, if the elements are equivalent classes or properties. Since such an equivalence is
symmetrical, the predicate derives/2 always creates cyclic dervations of equivalent
elements with length 1.

derives(E1, E2) :-
(equivalent_class(E1, E2)
; equivalent_property(E1, E2)).

We compute the transitive closure tc_derives of derives using the following
simple, standard DATALOG? scheme:

tc_derives(E1, E2) :-
derives(E1, E2).

tc_derives(E1, E3) :-
derives(E1, E2), tc_derives(E2, E3).

Subsequently, the reflexive transitive closure tcr_derives of derives is com-
puted using the following PROLOG predicate:

tcr_derives(E1, E2) :-
(E1 = E2
; tc_derives(E1, E2)).

Remark on Examples. In the following we give examples for most of the described
anomalies. For this task, we use a printer domain, because to its popularity and intuitive
understanding.

56

2.2 Mixing DATALOG and PROLOG: Forward and Backward Chaining

The detection of anomalies in SWRL ontologies could not be formulated using PROLOG
backward chaining or DATALOG forward chaining alone, since we may need recursion
on cyclic data, function symbols (mainly for representing lists), non–ground facts, nega-
tion and disjunction in rule bodies, aggregation, and stratification.

Thus we have developed a new approach that extends the DATALOG paradigm to
DATALOG? and mixes in with PROLOG. However, an intuitive understanding of the
presented, mixed rule sets is possible without understanding the new inference method.
The interested reader can run the analysis using our DisLog system [2].

DATALOG?. We distinguish between DATALOG? rules and PROLOG rules. DATALOG?

rules are forward chaining rules (not necessarily range–restricted) that may contain
function symbols (in rule heads and bodies) as well as negation, disjunction, and PRO-
LOG predicates in rule bodies. DATALOG? rules are evaluated bottom–up, and all pos-
sible conclusions are derived.

The supporting PROLOG rules are evaluated top–down, and for efficiency reasons
only on demand, and they can in turn refer to DATALOG? facts. The PROLOG rules are
also necessary for expressivity reasons: the are used for some computations on complex
terms, and more importantly for computing very general aggregations of DATALOG?

facts.

Ontology Evaluation in DATALOG?. For ontology evaluation, we have implemented
two layers D1 and D2 of DATALOG? rules:

– The upper layer D2 consists of the rules for the predicate anomaly/2 and some
DATALOG? rules that are stated together with them.

– The lower layer D1 consists of all other DATALOG? rules. E.g., the rules for predi-
cates derives and tc_derives are in D1.

D1 is applied to the DATALOG? facts for the following basic predicates, which have to
be derived from the underlying SWRL document:

rule, class, sub_class, complement, incompatible,
equivalent_class, equivalent_property,
transitive_property, symmetric_property,
property_restriction, min_cardinality_restriction,
max_cardinality_restriction, class_has_property.

The resulting DATALOG? facts are the input for D2. The stratification into two layers is
necessary, because D2 refers to D1 through negation and aggregation. Most PROLOG
predicates in this paper support the layer D2.

E.g., the following predicates with calls to DATALOG? facts generalize tc_derives
and incompatible to atoms:

tc_derives_atom(A1, A2) :-
tc_derives(P1, P2), A1 =.. [P1|Xs], A2 =.. [P2|Xs].

incompatible_atoms(A1, A2) :-
incompatible(P1, P2), A1 =.. [P1|Xs], A2 =.. [P2|Xs].

57

We cannot evaluate these rules using forward chaining, since Xs is a unknown list.
The head and body predicates of a rule can be determined using the following pure

PROLOG predicates:

head_predicate(A-_, P) :-
functor(A, P, _).

body_predicate(_-Bs, P) :-
member(B, Bs), functor(B, P, _).

The following PROLOG rules define siblings and aggregate the siblings Z of a class
X to a list Xs using the well–known meta–predicate findall, respectively:

sibling(X, Y) :-
sub_class(X, Z), sub_class(Y, Z), X \= Y.

siblings(Xs) :-
sibling(X, _),
findall(Z,

sibling(X, Z),
Xs).

These rules could also be evaluated in DATALOG? using forward chaining. But, since
we need siblings only for certain lists Xs, this would be far to inefficient.

Evaluation of DATALOG?. DATALOG? rules cannot be evaluated in PROLOG or DATA-
LOG alone for the following reasons: Current DATALOG engines cannot handle function
symbols and non–ground facts, and they do not allow for the embedded computations,
which we need. Standard PROLOG systems cannot easily handle recursion with cycles,
because of non–termination, and are inefficient, because of subqueries that are posed
and answered multiply. Thus, they have to be extended by some DATALOG? facilities
(our approach) or memoing/tabling facilities (the approach of the PROLOG extension
XSB). Since we wanted to use SWI PROLOG – because of its publicly available graphi-
cal API – we have implemented a new inference machine that can handle mixed, strati-
fied DATALOG?/PROLOG rule systems.

3 Case Study

Knowledge representation in the Semantic Web is based on ontologies and logic. The
reasoning tasks require search (query answering) and knowledge engineering / mod-
eling (analysis of the structure of the ontologies for anomalies). Knowledge engineer-
ing and reasoning in the Semantic Web is based on ontology editors and specialized
databases. It can further be supported by deductive databases and logic programming
techniques.

In the Semantic Web, it is possible to reason about the ontology / taxonomy (i.e.,
the schema) and the instances. This is called terminological or assertional (T–Box or A–
Box) reasoning, respectively. This makes search in the Semantic Web more effective.

58

– In the following printer ontology, we could search for a printer from HP, and the
result could be a laser–jet printer from HP, since the system knows that hpLaser-
JetPrinter is a sub–class of hpPrinter.

– It can also be derived, that all laser–jet printers from HP are no laser writers from
Apple; in this case, this is very easy, since it is explicitely stored in the ontology.

product

printer

personalPrinter laserJetPrinter hpPrinter

hpLaserJetPrinter

hpApplePrinter

hpProduct

appleLaserWriter

{disjoint}

ibmLaserPrinter

Moreover, we will show in the following how to support knowledge engineering by
detecting anomalies in OWL ontologies. In the Web Ontology Language (OWL), we can
mix concepts from rdf (Resource Description Framework) for defining instances and

59

rdfs (rdf Schema) for defining the schema of an application. Moreover, tags with the
namespace owl are allowed. The Semantic Web Rule Language (SWRL) incorporates
logic programming rules into OWL ontologies. There exist well–known, powerful tools
for asking queries on and for reasoning with OWL ontologies.

3.1 The Printer Ontology in OWL

The following examples are given in Turtle syntax [15] using the namespace p for re-
sources of the printer ontology. First of all, every laserJetPrinter is a printer, and every
hpPrinter is an hpProduct:

p:printer rdf:type owl:Class .
p:hpProduct rdf:type owl:Class .
p:laserJetPrinter rdfs:subClassOf p:printer .
hpPrinter rdfs:subClassOf p:hpProduct .

The following owl:Class element defines the class appleLaserWriter:

p:appleLaserWriter rdf:type owl:Class ;
rdfs:comment "Apple laser writers are laser jet printers" ;
rdfs:subClassOf p:laserJetPrinter ;
owl:disjointWith p:hpLaserJetPrinter .

The rdfs:subClassOf sub–element states that appleLaserWriter is a sub–class of
laserJetPrinter. The owl:disjointWith sub–element states that appleLaser-
Writer is disjoint from hpLaserJetPrinter.

The following owl:Class element defines a class of printers from a joint venture
of HP and Apple:

p:hpApplePrinter
rdfs:comment "Printers from a joint venture of HP and Apple" ;
rdfs:subClassOf p:hpLaserJetPrinter, p:appleLaserWriter .

The existence of such printers would contradict the disjointWith restriction be-
tween the classes hpLaserJetPrinter and apperLaserWriter. The emptiness of
the class hpApplePrinter can be detected by reasoners used, for instance, by on-
tology editors like Protégé.

Redundant subClassOf Relation. Since hpLaserJetPrinter is a sub–class of the
class hpPrinter, and hpPrinter is a sub–class of hpProduct, it is redundant to
explicitly state that hpLaserJetPrinter is a sub–class of hpProduct.

p:hpLaserJetPrinter
rdfs:subClassOf p:laserJetPrinter, p:hpPrinter, p:hpProduct ;
owl:disjointWith p:appleLaserWriter .

This redundancy is not an error. We could simply consider it as an anomaly, that should
be reported to the knowledge engineer. This anomaly is usually not reported by reason-
ers in standard ontology editors.

60

Instances. Finally, we have some instances of the defined classes:

p:1001 rdf:type p:appleLaserWriter .
p:1002 rdf:type p:appleLaserWriter .
p:1003 rdf:type p:hpLaserJetPrinter .
p:1004 rdf:type p:hpLaserJetPrinter .

As mentioned before, there cannot exist instances of the class hpApplePrinter.
The ontology editor Protégé offers plugged–in reasoners, such as FaCT++, HermiT,

and Racer. The ontology reasoner FaCT++ can inferr that the class hpApplePrinter
is EquivalentTo the empty class Nothing. By clicking the question mark, an ex-
planation can be shown. There are also databases for handling rdf data, so called triple
stores, such as Sesame or Jena. They use extensions of SQL– most notably SPARQL –
as a query language.

Please note, that for the presented Turtle syntax the corresponding XML syntax can
be generated. For instance, the definition of the joint HP and Apple printer would read
as follows:

<rdf:Description rdf:about="printer#hpLaserJetPrinter">
<rdfs:subClassOf rdf:resource="printer#hpPrinter"/>
<rdfs:subClassOf rdf:resource="printer#laserJetPrinter"/>

</rdf:Description>

Protégé. Figure 1 shows the printer ontology in the standard ontolgy editor Protégé.

3.2 Declarative Queries in FNQuery

In PROLOG, an XML element can be represented as a term structure T:As:C, called
FN–triple. T is the tag of the element, As is the list of the attribute/value pairs A:V of
the element, and C is a list of FN–triples for the sub–elements.

’owl:Class’:[’rdf:ID’:’appleLaserWriter’]:[
’rdfs:comment’:[’Apple laser ...’],
’rdfs:subClassOf’:[

’rdf:resource’:’#laserJetPrinter’]:[],
’owl:disjointWith’:[

’rdf:resource’:’#hpLaserJetPrinter’]:[]]

In an OWL knowledge base Owl, there exists an isa relation between two classes
C1 and C2, if a subclassOf relation is stated explicitely, or if C1 was defined as the
interesection of C2 and some other classes:

% isa(+Owl, ?C1, ?C2) <-

isa(Owl, C1, C2) :-
C := Owl/’owl:Class’::[@’rdf:ID’=C1],
(R2 := C/’rdfs:subClassOf’@’rdf:resource’
; R2 := C/’owl:intersectionOf’/’owl:Class’@’rdf:about’),
owl_reference_to_id(R2, C2).

61

Fig. 1. The Printer Ontology in Protégé

% owl_reference_to_id(+Reference, ?Id) <-

owl_reference_to_id(Reference, Id) :-
(concat(’#’, Id, Reference)
; Id = Reference).

Disjointness of Classes.

% disjointWith(+Owl, ?C1, ?C2) <-

disjointWith(Owl, C1, C2) :-
R2 := Owl/’owl:Class’::[@’rdf:about’=R1]

/’owl:disjointWith’@’rdf:resource’,
owl_reference_to_id(R1, C1),
owl_reference_to_id(R2, C2).

In the following, we often suppress the ontology argument Owl.

62

Transitive Closure of isa.

% subClassOf(?C1, ?C2) <-

subClassOf(C1, C2) :-
isa(C1, C2).

subClassOf(C1, C2) :-
isa(C1, C), subClassOf(C, C2).

3.3 Anomalies in Ontologies

Cycle.

?- isa(C1, C2), subClassOf(C2, C1).

C1 = personalPrinter,
C2 = printer

Partition Error. The class C is a sub–class of two disjoint classes C1 and C2.

?- disjointWith(C1, C2),
subClassOf(C, C1), subClassOf(C, C2).

C = hpApplePrinter,
C1 = hpLaserJetPrinter,
C2 = appleLaserWriter

Incompleteness. The class C has three sub–classes C1, C2 and C3, from which only
the two sub–classes C1 and C2 are declared as disjoint in the knowledge base.

?- isa(C1, C), isa(C2, C), isa(C3, C),
disjointWith(C1, C2), not(disjointWith(C2, C3)).

C = laserJetPrinter,
C1 = hpLaserJetPrinter,
C2 = appleLaserWriter,
C3 = ibmLaserPrinter

The fact that C2 and C3 are disjoint and that C1 and C3 are disjoint as well, possibly
was forgotten by the knowledge engineer during the creation of the knowledge base.

Redundant subClassOf/instanceOf Relations. The sub–class relation between C1 and
C3 can be derived by transitivity over the class C2.

% redundant_isa(?Chain) <-

redundant_isa(C1->C2->C3) :-
isa(C1, C2), subClassOf(C2, C3),
isa(C1, C3).

?- redundant_isa(Chain).

Chain = hpLaserJetPrinter -> hpPrinter -> hpProduct

Here, isa(C1, C2), subClassOf(C2, C3), requires that this deduction is
done over at least two levels.

63

Undefined Reference. During the development of an ontology in OWL, it is possible
that we reference a class that we have not yet defined.

% undefined_reference(+Owl, ?Ref) <-

undefined_reference(Owl, Ref) :-
rdf_reference(Owl, Ref),
not(owl_class(Owl, Ref)).

rdf_reference(Owl, Ref) :-
(R := Owl/descendant_or_self::’*’@’rdf:resource’
; R := Owl/descendant_or_self::’*’@’rdf:about’),
owl_reference_to_id(R, Ref).

owl_class(Owl, Ref) :-
Ref := Owl/’owl:Class’@’rdf:ID’.

If we load such an ontology into Protégé, then the ontology reasoners may produce
wrong results, even for unrelated parts of the ontology.

4 Discussion

In the last years ontologies have played a major role for building intelligent systems.
Currently, standard ontology languages like OWL are extended by rule–based elements,
e.g., RULEML and the semantic web rule language SWRL.

We have shown that with the increased expressiveness of ontologies – now also in-
cluding rules – a number of new evaluation issues have to be considered. In this paper,
we have presented a framework for verifying ontologies with rules comprising a collec-
tion of anomalies, that verify the represented knowledge in a combined methodology.
For all anomalies, we have described a DATALOG? implementation which is used in
a prototype for ontology verification. Due to its declarative nature, new methods for
anomaly detection can be easily added to the existing work. From our point of view, the
declarative approach is crucial because of the incompleteness of the presented anoma-
lies: in principle, an entire overview of possible anomalies is not possible, since the
number of anomalies depends on the used expressiveness of the ontology and the rule
representation, respectively.

The actual frequency of the introduced anomalies is an interesting issue. However,
only a small number of ontologies (mostly toy examples) is available that actually use
a rule extension. A sound review of anomaly occurrences would require a reasonable
number of ontologies having a significant size.

For many real–world applications, we expect a more expressive rule language to
be used than SWRL. With SWRL FOL, an extension of SWRL to first–order logic is
currently discussed as a proposal. Furthermore, larger systems may also include parts of
a non–monotonic rule base. Here, some work has been done on the verification of non–
monotonic rule bases [16], that has to be re–considered in the presence of an ontological
layer.

64

References

1. J.Baumeister, D. Seipel: Anomalies in Ontologies with Rules.. Journal of Web Semantics:
Science, Services and Agents on the World Wide Web 8 (2010), No. 1, pp. 55–68.

2. D. Seipel, DisLog – A System for Reasoning in Disjunctive Deductive Databases,
http://www1.pub.informatik.uni-wuerzburg.de/databases/DisLog/dislog_nmr.html.

3. I. Horrocks, B. Parsia, P. Patel-Schneider, J. Hendler, Semantic Web Architecture: Stack
or Two Towers?, in: F. Fages, S. Soliman (Eds.), Principles and Practice of Semantic Web
Reasoning (PPSWR), No. 3703 in LNCS, Springer, 2005, pp. 37–41.

4. I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, D. Tsarkov, OWL Rules: A Proposal and
Prototype Implementation, Journal of Web Semantics 3 (1) (2005) pp. 23–40.

5. A. Gómez–Pérez, Evaluation of Ontologies, International Journal of Intelligent Systems
16 (3) (2001), pp. 391–409.

6. A. Preece, R. Shinghal, Foundation and Application of Knowledge Base Verification, Inter-
national Journal of Intelligent Systems 9 (1994), pp. 683–702.

7. A. Preece, R. Shinghal, A. Batarekh, Principles and Practice in Verifying Rule-Based Sys-
tems, The Knowledge Engineering Review 7 (2) (1992), pp. 115–141.

8. S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Springer, Berlin, 1990.
9. N. Guarino, C. Welty, Evaluating Ontological Decisions with OntoClean, Communications

of the ACM 45 (2).
10. OWL 2: Web Ontology Language, Document Overview (Second Edition), W3C Recommen-

dation, http://www.w3.org/TR/owl2-overview/ (December 2012).
11. A. Pichler, A. Zöllner–Weber, Sharing and Debating Wittgenstein by Using an Ontology,

Wittgenstein Archives at the University of Bergen, Norway, Literary and Linguistic Com-
puting 2013.

12. A. L. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang,
C. Wroe, OWL Pizzas: Practical Experience of Teaching OWL–DL: Common Errors &
Common Patterns, in: Engineering Knowledge in the Age of the Semantic Web: 14th In-
ternational Conference (EKAW), LNAI 3257, Springer, 2004, pp. 157–171.

13. J. Wielemaker, An Overview of the SWI-Prolog Programming Environment, in: Proc. of the
13th International Workshop on Logic Programming Environments (WLPE), 2003, pp. 1–16.

14. Y. Guo, Z. Pan, J. Heflin, LUBM: A Benchmark for OWL Knowledge Base Systems, Journal
of Web Semantics 3 (2) (2005), pp. 158–182.

15. W3C, RDF 1.1 Turtle – W3C Recommendation, http://www.w3.org/TR/turtle/ (February
2014).

16. N. Zlatareva, Testing the Integrity of Non-Monotonic Knowledge Bases Containing Semi-
Normal Defaults, in: Proc. of the 17th International Florida Artificial Intelligence Research
Society Conference (FLAIRS), AAAI Press, 2004, pp. 349–354.

17. A. Zöllner–Weber, Ontologies and Logic Reasoning as Tools in Humanities, in: DHQ: Digi-
tal Humanities Quarterly 2009, Vol. 3, Nr. 4.

65

Automated Exercises
for Constraint Programming

Johannes Waldmann

HTWK Leipzig, Fakultät IMN, 04277 Leipzig, Germany

Abstract. We describe the design, implementation, and empirical eval-
uation of some automated exercises that we are using in a lecture on
Constraint Programming. Topics are propositional satisfiability, resolu-
tion, the DPLL algorithm, with extension to DPLL(T), and FD solving
with arc consistency. The automation consists of a program for grad-
ing student answers, and in most cases also a program for generating
random problem instances. The exercises are part of the autotool E-
assessment framework. The implementation language is Haskell. You can
try them at https://autotool.imn.htwk-leipzig.de/cgi-bin/Trial.
cgi?lecture=199.

1 Introduction

I lecture on Constraint Programming [Wal14a], as an optional subject for master
students of computer science. The lecture is based on the books Principles of
Constraint Programming by Apt[Apt03] and Decision Procedures by Kroening
and Strichman [KS08]. Topics include propositional satisfiability (SAT) and res-
olution, the DPLL algorithm for deciding SAT, with extension to DPLL(T) for
solving satisfiability modulo theory (SMT), and FD solving with arc consistency.

I do want to assign homework problems, but I do not have a teaching assis-
tant for grading. This is one motivation for writing software that automates the
grading of solutions, and also the generation of random (but reasonable) prob-
lem instances. Another motivation is that the software is much more available,
reliable and patient than a human would be, so I can pose homework problems
that would require super-human teaching assistants.

This software is part of the autotool E-assessment framework [GLSW11,RRW08].
It provides the following functionality (via a web interface):

– the tutor can choose a problem type, then configure parameters of an in-
stance generator,

– the student can view “his” problem instance (that had been generated on
first access) and enter a solution candidate,

– the grading program immediately evaluates this submission and gives feed-
back, sometimes quite verbose,

– based on that, the student can enter modified solutions, any number of times.
The exercise counts as “solved” if the student had at least one correct solu-
tion during a given time interval (say, two weeks).

66

A distinctive feature is that autotool exercises are graded “semantically”
— as opposed to “schematically”, by syntactic comparison with some prescribed
master solution. E.g., for propositional satisfiability, the student enters an as-
signment, and the program checks that it satisfies all clauses of the formula, and
prints the clauses that are not satisfied (see more detail in Section 2).

In the language of complexity theory, the student has to find a witness for the
membership of the problem instance in a certain problem class, and the software
just verifies the witness. In many cases, the software does not contain an actual
solver for the class, so even looking at the source code does not provide shortcuts
in solving the exercises. But see Section 5 for an example where a solver is built
in for the purpose of generating random but reasonable instances.

Section 6 shows an example for an “inverse” problem, where the witness (a
structure that is a model) is given, and the question (a formula of a certain
shape) has to be found.

If the software just checks a witnessing property, then it might appear that
it cannot check the way in which a student obtained the witness. This seems to
contradict the main point of lecturing: it is about methods to solve problems,
so the teacher wants to check that the methods are applied properly. In some
cases, a problem instance appears just too hard for brute force attempts, so the
only way of solving it (within the deadline) is by applying methods that have
been taught.

Another approach for designing problems is presented in Sections 5,7,8.
There, the solution is a sequence of steps of some algorithm, e.g., Decide, Prop-
agate and Backtrack in a tree search, and the witnessing property is that each
step is valid, and that the computation arrives in a final state, e.g., a solution in a
leaf node, or contradiction in the root. Here, the algorithm is non-deterministic,
so the student must make choices.

Another feature of autotool is that most output and all input is textual.
There is no graphical interface to construct a solution, rather the student has to
provide a textual representation of the witness. This is by design, the student
should learn that every object can be represented as a term. Actually, we use
Haskell syntax for constructing objects of algebraic data types throughout.

For each problem type, the instructor can pose a fixed problem instance
(the same for all students). For most problem types, there is also a generator
for random, but reasonable instances. Quite often, the generator part of the
software is more complicated than the grading part. Then, each student gets an
individual problem instance, and this minimizes unwanted copying of solutions.

For fixed problem instances, autotool can compute a “highscore” list. Here,
correct solutions are ranked by some (problem-specific) measure, e.g., for res-
olution proofs, the number of proof steps. Some students like to compete for
positions in that list and try to out-smart each other, sometimes even writing
specialized software for solving the problems, and optimizing solutions. I wel-
come this because they certainly learn about the problem domain that way.

In the following sections, I will present exercise problems. For each problem
type I’ll give

67

– the motivation (where does the problem fit in the lecture),
– the instance type, with example,
– the solution domain type,
– the correctness property of solutions,
– examples of system answers for incorrect solution attempts,
– the parameters for the instance generator (where applicable).

The reader will note that the following sections show inconsistent concrete syn-
tax, e.g., there are different representations for literals, clauses, and formulas.
Also, some system messages are in German, some in English. These inconsisten-
cies are the result of incremental development of the autotool framework over
> 10 years. The exercises mentioned in this paper can also be tried online (with-
out any registration) at https://autotool.imn.htwk-leipzig.de/cgi-bin/

Trial.cgi?lecture=199

2 Propositional Satisfiability

– instance: a propositional logic formula F in conjunctive normal form,
– solution: a satisfying assignment for F

Motivation: At the very beginning of the course, the student should try this
by any method, in order to recapitulate propositional logic, and to appreciate
the NP-hardness of the SAT problem, and (later) the cleverness of the DPLL
algorithm. We use the problem here to illustrate the basic approach.

Problem instance example:

(p || s || t) && (q || s || t) && (r || ! q || ! s)

&& (p || t || ! r) && (q || s || t) && (r || ! s || ! t)

&& (p || ! q || ! s) && (q || t || ! p) && (s || t || ! q)

&& (p || ! q || ! t) && (q || ! p || ! s) && (s || ! r || ! t)

&& (p || ! r || ! t) && (r || s || ! q) && (! p || ! q || ! r)

&& (q || r || ! p) && (r || ! p || ! t) && (! p || ! r || ! s)

Problem solution domain: partial assignments, example

listToFM [(p , False), (q, True), (s,True)]

Correctness property: the assignment satisfies each clause.

Typical system answers for incorrect submissions: the assignment is partial, but
already falsifies a clause

gelesen: listToFM

[(p , False) , (q , True) , (s , True)]

Diese vollständig belegten Klauseln sind nicht erfüllt:

[(p || ! q || ! s)]

68

No clause is falsified, but not all clauses are satisfied:

gelesen: listToFM

[(p , False) , (s , False) , (t , True)]

Diese Klauseln noch nicht erfüllt:

[(p || ! q || ! t) , (p || ! r || ! t) , (r || s || ! q)

, (s || ! r || ! t)]

Instance generator: will produce a satisfiable 3-SAT instance according to algo-
rithm hgen2 [SDH02]. Parameters are the set of variables, and the number of
clauses, for example,

Param { vars = mkSet [p , q , r , s , t] , clauses = 18 }

3 SAT-equivalent CNF

– instance: formula F in conjunctive normal form with variables x1, . . . , xn,
– solution: formula G in conjunctive normal form with variables

in x1, . . . , xn, y1, . . . , yk such that ∀x1 · · · ∀xn : (F ↔ ∃y1 · · · ∃yk : G)
– measure: number of clauses of G.

Motivation: for arbitrary F , this is solved by the Tseitin transform [Tse70]. The
student learns the underlying notion of equivalence, and that auxiliary variables
may be useful to reduce formula size. The problem is also of practical relevance:
for bit-blasting SMT solvers, it is important to encode basic operations by small
formulas.

Problem instance example:

(x1 + x2 + x3 + x4 + x5) * (x1 + x2 + x3 + -x4 + -x5) *

(x1 + x2 + -x3 + x4 + -x5) * (x1 + x2 + -x3 + -x4 + x5) *

(x1 + -x2 + x3 + x4 + -x5) * (x1 + -x2 + x3 + -x4 + x5) *

(x1 + -x2 + -x3 + x4 + x5) * (x1 + -x2 + -x3 + -x4 + -x5) *

(-x1 + x2 + x3 + x4 + -x5) * (-x1 + x2 + x3 + -x4 + x5) *

(-x1 + x2 + -x3 + x4 + x5) * (-x1 + x2 + -x3 + -x4 + -x5) *

(-x1 + -x2 + x3 + x4 + x5) * (-x1 + -x2 + x3 + -x4 + -x5) *

(-x1 + -x2 + -x3 + x4 + -x5) * (-x1 + -x2 + -x3 + -x4 + x5)

Correctness property: existential closure of G is equivalent to F , and |G| < |F |.

Typical system answers for incorrect submissions:

gelesen: (x1 + x2 + x3 + x6) * (-x6 + x1)

nicht äquivalent, z. B. bei Belegung(en)

listToFM [(x1 , True) , (x2 , True) , (x3 , False)

, (x4 , False) , (x5 , False)]

69

The equivalence check uses a BDD implementation [Wal14b].
Hint for solving the example: invent an extra variable that represents the

XOR of some of the xi.
This problem type is a non-trivial highscore exercise. The given example

instance (size 16) has a solution of size 12.

4 Propositional Logic Resolution

– instance: an unsatisfiable formual F in conjunctive normal form,
– solution: a derivation of the empty clause from F by resolution,
– measure: number of derivation steps.

Motivation: the student should see “both sides of the coin”: resolution proves
unsatisfiability. Also, the student sees that finding resolution proofs is hard, and
they are not always short (because if they were, then SAT ∈ NP ∩ coNP, which
nobody believes).

Resolution of course has many applications. In the lecture I emphasize cer-
tification of UNSAT proof traces in SAT competitions.

Problem instance example: clauses are numbered for later reference

0 : ! a || b || c 6 : a || ! b || d

1 : a || b || c 7 : a || ! b || ! d

2 : a || ! c || ! d 8 : ! a || d

3 : ! a || ! c || ! d 9 : ! c || ! d

4 : a || c 10 : ! b || c || ! d

5 : ! c || d 11 : a || b || ! d

Problem solution domain: sequence of resolution steps, example:

[Resolve { left = 4 , right = 8 , literal = a }

, Resolve { left = 12, right = 5, literal = c }

]

Correctness property: for each step s it holds that literal s occurs in clause
left s, and ! (literal s) occurs in clause right s. If so, then the system
computes the resolvent clause and assigns the next number to it. The clause
derived in the last step is the empty clause.

Typical system answer for an incomplete submission:

nächster Befehl Resolve { left = 4 , right = 8 , literal = a }

entferne Literal a aus Klausel a || c ergibt c

entferne Literal ! a aus Klausel ! a || d ergibt d

neue Klausel 12 : c || d

nächster Befehl Resolve { left = 12 , right = 5 , literal = c }

entferne Literal c aus Klausel c || d ergibt d

entferne Literal ! c aus Klausel ! c || d ergibt d

neue Klausel 13 : d

letzte abgeleitete Klausel ist Zielklausel? Nein.

70

Instance generator: is controlled by, for example,

Config { num_variables = 5 , literals_per_clause_bounds = (2 , 3) }

The implementation uses a BDD implementation [Wal14b] to make sure that
the generated formula is unsatisfiable. The generator does not actually produce
a proof trace, because it must exist, by refutation completeness.

5 Backtracking and Backjumping: DPLL (with CDCL)

– instance: a CNF F ,

– solution: a complete DPLL proof trace determining the satisfiability of F .

Motivation: The DPLL algorithm [DP60,DLL62] is the workhorse of modern
SAT solvers, and the basis for extensions in SMT.

This exercise type should help the student to understand the specification of
the algorithm, and also the design space that an implementation still has, e.g.,
picking the next decision variable, or the clause to learn from a conflict, and the
backjump target level.

This is an instance of the “non-determinism” design principle for exercises:
force the student to make choices, instead of just following a given sequence
of steps. It fits nicely with abstract descriptions of algorithms that postpone
implementation choices, and instead give a basic invariant first, and prove its
correctness.

Problem instance example:

[[3 , -4] , [4 , 5] , [3 , -4 , 5] , [1 , -2]

, [3 , 4 , 5] , [1 , 2 , 4 , 5] , [-1 , 4 , -5]

, [-1 , -2] , [2 , 3 , -4] , [-3 , -4 , -5] , [2 , 3 , -5]

, [-2 , -3 , 4] , [-1 , -4] , [-3 , 4] , [1 , -3 , -4 , 5]]

Problem solution domain: sequence of steps, where

data Step = Decide Literal

| Propagate { use :: Clause, obtain :: Literal }

| SAT

| Conflict Clause

| Backtrack

| Backjump { to_level :: Int, learn :: Clause }

| UNSAT

Correctness property: the sequence of steps determines a sequence of states (of
the tree search), where

71

data State = State { decision_level :: Int

, assignment :: M.Map Variable Info

, conflict_clause :: Maybe Clause

, formula :: CNF

}

data Info = Info { value :: Bool, level :: Int, reason :: Reason }

data Reason = Decision | Alternate_Decision

| Propagation { antecedent :: Clause }

A state represents a node in the search tree. For each state (computed by the
system), the next step (chosen by the student) must be applicable, and the last
step must be SAT or UNSAT.

The reason for a variable shows whether its current value was chosen by a
Decision (then we need to take the Alternate_Decision on backtracking) or
by Propagation (then we need to remember the antecedent clause, for checking
that a learned clause is allowed).

A SAT step asserts that the current assignment satisfies the formula. A
Conflict c step asserts that Clause c is falsified by the current assignment.
The next step must be Backtrack (if the decision level is below the root) or
UNSAT (if the decision level is at the root, showing that the tree was visited
completely).

A Step Propagate {use=c, obtain=l} is allowed if clause c is a unit clause
under the current assignment, with l as the only un-assigned literal, which is
then asserted. A Decide step just asserts the literal.

Then following problem appears: if the student can guess a satisfying assign-
ment σ of the input formula, then she can just Decide the variables, in sequence,
according to σ, and finally claim SAT. This defeats the purpose of the exercise.

The following obstacle prevents this: each Decide must be negative (assert
that the literal is False). This forces a certain traversal order. It would then
still be possible to “blindly” walk the tree, using only Decide, Conflict (in
the leaves), and Backtrack. This would still miss a main point of DPLL: tak-
ing shortcuts by propagation. In the exercise, this is enforced by rejecting all
solutions that are longer than a given bound.

Instance generator: will produce a random CNF F . By completeness of DPLL, a
solution for F (that is, a DPLL-derivation) does exist, so the generator would be
done here. This would create problem instances of vastly different complexities
(with solutions of vastly different lengths), and this would be unjust to students.
Therefore, the generator enumerates a subset S of all solutions of F , and then
checks that the minimal length of solutions in S is near to a given target.

The solver is written in a “PROLOG in Haskell” style, using Control.Monad.Logic
[KcSFS05] with the fair disjunction operator to model choices, and allow a
breadth-first enumeration (where we get shorter solutions earlier).

There is some danger that clever students extract this DPLL implementation
(autotool is open-sourced) to solve their problem instance. I think this approach

72

requires an amount of work that is comparable to solving the instance manually,
so I tolerate it.

DPLL with CDCL (conflict driven clause learning): in this version of the ex-
ercise, there is no Backtrack, only Backjump { to_level = l, learn = c }.
This step is valid right after a conflict was detected, and if clause c is a conse-
quence of the current antecedents that can be checked by reverse unit propaga-
tion: from not c and the antecedents, it must be possible to derive the empty
clause by unit propagation alone. This is a “non-deterministic version” of Algo-
rithm 2.2.2 of [KS08].

I introduced another point of non-determinism in clause learning: the student
can choose any decision level to backjump to. Textbooks prove that one should
go to the second most recent decision level in the conflict clause but that is a
matter of efficiency, not correctness, so we leave that choice to the student.

If the Backjump does not go high enough, then learning the clause was not
useful (it is just a Backtrack). If the Backjump does go too high (in the extreme,
to the root), then this will lead to duplication of work (re-visiting parts of the
tree). Note that the target node of the backjump is re-visited: we return to a
state with a partial assignment that was seen before. But this state contains
the learned clause, so the student should use it in the very next step for unit
propagation, and only that avoids to re-visit subtrees.

A challenge problem: the following pigeonhole formula is unsatisfiable for n > m,
but this is hard to see for the DPLL algorithm: “there are n pigeons and m holes,
each pigeon sits in a hole, and each hole has at most one pigeon” [Cla11]. I posed
this problem for n = 5,m = 4. The resulting CNF on 20 variables (vp,h: pigeon
p sits in hole h) has 5 clauses with 4 literals, and 40 clauses with 2 literals.
My students obtained a DPLL solution with 327 steps, and DPLL-with-CDCL
solution with 266 steps. (Using software, I presume.)

6 Evaluation in Finite Algebras

– instance: a signature Σ, two Σ-algebras A,B, both with finite universe U ,

– solution: a term t over Σ with tA 6= tB .

Motivation: the introduction, or recapitulation, of predicate logic basics. The
exercise emphasizes the difference and interplay between syntax (the signature,
the term) and semantics (the algebras).

This exercise type shows the design principle of inversion: since we usually
define syntax first (terms, formulas), and semantics later (algebras, relational
structures), it looks natural to ask “find an algebra with given property”. Indeed
I have such an exercise type (“find a model for a formula”), but here I want the
other direction.

73

Problem instance example:

Finden Sie einen Term zur Signatur

Signatur

{ funktionen = listToFM [(p , 2) , (z , 0)]

, relationen = listToFM []

, freie_variablen = mkSet []

}

, der in der Struktur

A = Struktur

{ universum = mkSet [1 , 2 , 3]

, predicates = listToFM []

, functions = listToFM

[(p

, {(1 , 1 , 3) , (1 , 2 , 3) , (1 , 3 , 3) , (2 , 1 , 2) ,

(2 , 2 , 1) , (2 , 3 , 1) , (3 , 1 , 3) , (3 , 2 , 1) ,

(3 , 3 , 2)}

)

, (z , {(3)})

]

}

eine anderen Wert hat

als in der Struktur

B = Struktur

{ universum = mkSet [1 , 2 , 3]

, predicates = listToFM []

, functions = listToFM

[(p

, {(1 , 1 , 1) , (1 , 2 , 3) , (1 , 3 , 3) , (2 , 1 , 2) ,

(2 , 2 , 1) , (2 , 3 , 1) , (3 , 1 , 3) , (3 , 2 , 1) ,

(3 , 3 , 2)}

)

, (z , {(3)})

]

}

here, k-ary functions are given as sets of (k + 1)-tuples, e.g., (2, 2, 1) ∈ p means
that p(2, 2) = 1.

Problem solution domain: terms t over the signature, e.g.,

p (p (p (p (z () , z ()) , z ()) , z ()) , z ())

Correctness property: value of term t in A is different from value of t in B.
Example solution: the student first notes that the only difference is at pA(1, 1) =

3 6= 1 = pB(1, 1), so the solution can be p(s, s) where sA = 1 = sB . Since
zA() = 3, pA(3, 3) = 2, pA(3, 2) = 1, a solution is

p (p (p (z(),z()),z()),p (p (z(),z()),z()))

74

Instance generator: is configured by the signature, and the size of the universe.
It will build a random structure A, and apply a random mutation, to obtain B.
It also checks that the point of mutation is reachable by ground terms, and none
of them are too small.

7 Satisfiability modulo Theories: DPLL(T)

– instance: a conjunction F of clauses, where a clause is a disjunction of literals,
and a literal is a Boolean literal or a theory literal

– solution: a DPLL(T) proof trace determining the satisfiability of F .

Motivation: Satisfiability modulo Theories (SMT) considers arbitrary Boolean
combinations of atoms taken from a theory T , e.g., the theory of linear inequali-
ties over the reals. DPLL(T) is a decision procedure for SMT that combines the
DPLL algorithm with a “theory solver” that handles satisfiability of conjunctions
of theory literals [NOT06].

E.g., the Fourier-Motzkin algorithm (FM) for variable elimination is a theory
solver for linear inequalities. It is not efficient, but I like it for teaching: it has
a nice relation to propositional resolution, and it is practically relevant as a
pre-processing step in SAT solvers [EB05]. Also, some students took the linear
optimization course, some did not, so I do not attempt to teach the simplex
method.

We treated DPLL in Section 5, and give only the differences here.

Problem instance example:

[[p , q] , [! p , ! 0 <= + x]

, [! q , 0 <= + 2 -1 * x] , [0 <= -3 + x]]

this represents a set of clauses, where ! p is a (negative) Boolean literal, and
0 <= -3 + x is a (positive) theory literal.

Problem solution domain: sequence of steps, where

data Step = Decide Literal

| Propagate { use :: Conflict , obtain :: Literal }

| SAT

| Conflict Conflict

| Backtrack

| Backjump { to_level :: Int, learn :: Clause }

| UNSAT

data Conflict = Boolean Clause | Theory

Note that this Step type results from that of Section 5 by replacing Clause with
Conflict in two places (arguments to Propagate and Conflict).

75

Correctness property: The sequence of steps determines a sequence of states
(of the tree search). As long as we use only the Boolean Clause :: Conflict

constructor, we have a DPLL computation — that may use theory atoms, but
only combines them in a Boolean way. The underlying theory solver is only used
in the following extra cases:

A Conflict Theory step is valid if the conjunction of the theory literals
in the current assignment is unsatisfiable in the theory. E.g., ! 0 <= x and
0 <= -3 + x is not a Boolean conflict, but a theory conflict.

A Propagate { use = Theory, obtain = l } step is valid if l is a theory
literal that is implied by the theory literals in the current assignment, in other
words, if ! l together with these literals is unsatisfiable in the theory.

Example solution:

[Propagate {use = Boolean [0 <= -3 + x], obtain = 0 <= -3 + x }

, Propagate {use = Theory, obtain = 0 <= + x }

, Propagate {use = Boolean [! p , ! 0 <= + x], obtain = ! p }

, Propagate {use = Boolean [p , q], obtain = q}

, Propagate {use = Boolean [! q , 0 <= + 2 -1 * x], obtain = 0 <= + 2 -1 * x }

, Conflict Theory

, UNSAT]

E.g., to validate the second step (theory propagation), the T-solver checks that
the conjunction of (0 <= -3+x) (from the current assignment) and !(0 <= x)

(negated consequence) is unsatisfiable. We arrive at a T-conflict at the root
decision level, so the input formula is unsatisfiable.

8 Solving Finite Domain Constraints

– instance: a relational Σ-structure R over finite universe U , and a conjunction
F of Σ-atoms

– solution: a complete FD tree search trace determining the satisfiability of F .

Motivation: Finite Domain (FD) constraints can be seen as a mild generaliza-
tion of propositional SAT. Methods for solution are similar (tree search), but
have differences. In particular, I use FD constraints to discuss (arc) consistency
notions, as in [Apt03], and this automated exercise type also makes that point.

The design principle is again non-determinism: the student has to make a
choice among several possible steps. In particular, propagation and conflict de-
tection are done via arc consistency deduction.

Problem instance example:

Give a complete computation of an FD solver

that determines satisfiability of:

[P (x , y , z) , P (x , x , y) , G (y , x)]

in the structure:

76

Algebra

{ universe = [0 , 1 , 2 , 3]

, relations = listToFM

[(G , mkSet

[[1 , 0] , [2 , 0] , [2 , 1]

, [3 , 0] , [3 , 1] , [3 , 2]])

, (P , mkSet

[[0 , 0 , 0] , [0 , 1 , 1] , [0 , 2 , 2]

, [0 , 3 , 3] , [1 , 0 , 1] , [1 , 1 , 2]

, [1 , 2 , 3] , [2 , 0 , 2] , [2 , 1 , 3]

, [3 , 0 , 3]])]

}

Problem solution domain: sequence of steps, where (u is the universe)

data Step u = Decide Var u

| Arc_Consistency_Deduction

{ atoms :: [Atom], variable :: Var, restrict_to :: [u] }

| Solved

| Backtrack

| Inconsistent

Correctness property: the sequence of steps determines a sequence of states (of
the tree search) where a state is a Stack containing a list of domain assignments
(for each variable, a list of possible values)

data State u = Stack [M.Map Var [u]]

A state is Solved if each instantiation of the current assignment (at the top
of the stack) satisfies the formula. A state is conflicting if the current assign-
ment contains a variable with empty domain. In a conflicting state, we can do
Backtrack (pop the stack) or claim Inconsistent (if the stack has one element
only).

A step Decide v e pops an assignment a off the stack, and pushes two
assignments back: one where the domain of v is the domain of v in a, without
e (that is where we have to continue when backtracking), and the other where
the domain of v is the singleton [e]

A step Arc_Consistency_Deduction { atoms, var, restrict } is valid
if the following holds:

– atoms is a subset of the formula
– for each assignment from var to current-domain var without restrict: it

cannot be extended to an assignment that satisfies atoms.

This constitutes a proof that the domain of v can be restricted to restrict.
We have non-determinism here, as we are not enforcing that the restricted set
is minimal. If the restricted set is empty, we have detected a conflict. Since we
want a minimal design, there is no other Step constructor for stating conflicts.

There are several arc consistency concepts in the literature. Ours has these
properties:

77

– we allow to consider a set of atoms (its conjunction), but we can restrict its
size (to one, then we are considering each atom in isolation)

– we can restrict the number of variables that occur in the set of atoms.
this number is the size of the hyper-edges that are considered for hyperarc-
consistency. For 1, we get node consistency; for 2, standard arc consistency.

– from this number, we omit those variables that are uniquely assigned in
the current state. This allows to handle atoms of any arity: we just have to
Decide enough of their arguments (so their domain is unit), and can apply
arc consistency deduction on those remaining.

Example solution: starts like this:

[Decide x 0

, Arc_Consistency_Deduction

{ atoms = [P (x , x , y) , G (y , x)]

, variable = y , restrict_to = []

}

, Backtrack

, Decide x 1

, Arc_Consistency_Deduction

{ atoms = [P (x , x , y) , G (y , x)]

, variable = y , restrict_to = [2]

}

]

After the first step (Decide x 0), the state is

Stack [listToFM [(x , [0])

, (y , [0 , 1 , 2 , 3])

, (z , [0 , 1 , 2 , 3])]

, listToFM [(x , [1 , 2 , 3])

, (y , [0 , 1 , 2 , 3])

, (z , [0 , 1 , 2 , 3])]]

Typical system answers for incorrect submissions: hyperarc size restriction is
violated:

current

Stack

[listToFM

[(x , [0 , 1 , 2 , 3])

, (y , [0 , 1 , 2 , 3])

, (z , [0 , 1 , 2 , 3])]]

step

Arc_Consistency_Deduction

{ atoms = [P (x , x , y) , G (y , x)]

, variable = y , restrict_to = [2] }

78

these atoms contain 2 variables with non-unit domain:

mkSet [x , y]

but deduction is only allowed for hyper-edges of size up to 1

elements are incorrectly excluded from domain:

current

Stack [listToFM [(x , [0])

, (y , [0 , 1 , 2 , 3])

, (z , [0 , 1 , 2 , 3])]]

step

Arc_Consistency_Deduction

{ atoms = [P (x , x , y)]

, variable = y , restrict_to = [1]

}

these elements cannot be excluded from the domain of the variable,

because the given assignment is a model for the atoms:

[(0 , listToFM [(x , 0) , (y , 0)])]

Instance generator: uses the same idea as for DPLL: generate a random instance,
solve it breadth-first, and check for reasonable solution length.

9 Related Work and Conclusion

We have shown automated exercises for constraint programming, and also pre-
sented the intentions behind their design. In particular, we described how to
test the student’s understanding of constraint solving algorithms by making use
of non-determinism, similar in spirit to the inference systems (proof rules) in
[Apt03]. These exercise types are part of the autotool framework for generat-
ing exercise problem instances, and grading solutions semantically.

There are several online courses for constraint programming, Few of them
seem to contain online exercises. In all cases, computerized exercises (offline or
online) focus on teaching a specific constraint language, as a means of modelling,
e.g., Gnu-Prolog [Sol04], ECLIPSe [Sim09], CHR [Kae07].

The exercises from the present paper do not focus much on modelling, and
learning a specific language. The aim is to teach the semantics of logical formulas,
and fundamental algorithms employed by constraint solvers. One could say that
each exercise uses a different problem-specific language. Each exercise is graded
automatically, and immediately, while giving feedback that helps the student.

So, the approaches are not competing, but complementary.

Acknowledgments: Many thanks to the students of my Constraint Programming
course (Sommersemester 2014) for working on these exercises, fighting for high-
scores, and reporting bugs in the software and in a draft of this report; and
to Alexander Bau, Carsten Fuhs, and Sibylle Schwarz for helpful comments on
exercise design and implementation.

79

References

Apt03. Krzystztof R. Apt. Principles of Constraint Programming. Cambridge Uni-
versity Press, 2003.

Cla11. Edmund M. Clarke. Assignment 2. http://www.cs.cmu.edu/~emc/

15414-f11/assignments/hw2.pdf, 2011.
DLL62. Martin Davis, George Logemann, and Donald Loveland. A machine program

for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.
DP60. Martin Davis and Hilary Putnam. A computing procedure for quantification

theory. J. ACM, 7(3):201–215, July 1960.
EB05. Niklas Eén and Armin Biere. Effective preprocessing in sat through variable

and clause elimination. In Fahiem Bacchus and Toby Walsh, editors, SAT,
volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer,
2005.

GLSW11. Hans-Gert Gräbe, Frank Loebe, Sibylle Schwarz, and Johannes Wald-
mann. autotool und autotool-Netzwerk. http://www.imn.htwk-leipzig.

de/~waldmann/talk/11/hds/, 2011. HDS-Jahrestagung, TU Dresden,
November 4.

Kae07. Martin Kaeser. WebCHR examples. http://chr.informatik.uni-ulm.de/

~webchr/, 2007.
KcSFS05. Oleg Kiselyov, Chung chieh Shan, Daniel P. Friedman, and Amr Sabry.

Backtracking, interleaving, and terminating monad transformers: (func-
tional pearl). In Olivier Danvy and Benjamin C. Pierce, editors, ICFP,
pages 192–203. ACM, 2005.

KS08. Daniel Kroening and Ofer Strichman. Decision Procedures, an Algorithmic
Point of View. Springer, 2008.

NOT06. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). J. ACM, 53(6):937–977, 2006.

RRW08. Mirko Rahn, Alf Richter, and Johannes Waldmann. The Leipzig auto-
tool E-Learning/E-Testing System. http://www.imn.htwk-leipzig.de/

~waldmann/talk/08/ou08/, 2008. Symposium on Math Tutoring, Tools and
Feedback, Open Universiteit Nederland, September 19.

SDH02. Laurent Simon, Daniel Le Berre, and Edward A. Hirsch. The SAT 2002
Competition (preliminary draft). http://www.satcompetition.org/2002/

onlinereport.pdf, 2002.
Sim09. Helmut Simonis. Lessons learned from developing an on-line constraint

programming course. http://4c.ucc.ie/~hsimonis/lessons_abstract.

pdf, 2009. 14th Workshop on Constraint Solving and Constraint Logic
Programming CSCLP 2009, Barcelona.

Sol04. Christine Solnon. An on-line course on constraint programming. http:

//www.ep.liu.se/ecp/012/001/ecp012001.pdf, 2004. First International
Workshop on Teaching Logic Programming TeachLP 2004.

Tse70. G. S. Tseitin. On the complexity of derivation in propositional calculus.
Leningrad Seminar on Mathematical Logic, 1970.

Wal14a. Johannes Waldmann. Skript Constraint-Programmierung. http://www.

imn.htwk-leipzig.de/~waldmann/edu/ss14/cp/folien/, 2014. lecture
slides (in German).

Wal14b. Johannes Waldmann. The Haskell OBDD Package. https://hackage.

haskell.org/package/obdd, 2014.

80

Complex Certainty Factors for Rule Based Systems –

Detecting Inconsistent Argumentations

Taïeb Mellouli

Department of Business Information Systems and Operations Research,

Faculty of Law and Economics, Martin Luther University Halle-Wittenberg

mellouli@wiwi.uni-halle.de

Abstract. This paper discusses the anomaly of gradually inconsistent argumen-

tations when reasoning under uncertainty. It is argued that in several domains,

uncertain knowledge modeling experts’ opinions may induce inconsistencies to

a certain degree in interim and final conclusions. In order to model gradual/partial

inconsistency, complex certainty factors are introduced and their serial and par-

allel propagation within rule-based expert systems is presented. Our complex cer-

tainty factor model, representing and propagating belief and disbelief separately,

sheds light on the meaning of inconsistency degrees and their persistence within

argumentations under uncertainty. For the methodology capable of this separate

propagation, complex certainty factors for facts are designed as two- and for rules

as four-dimensional value tuples. Requiring local consistency of knowledge, we

show that only two dimensions are necessary for rules, and based on this finding,

deliver a simple graphical visualization suitable for expert’s knowledge acquisi-

tion. Finally, we categorize gradual inconsistencies and discuss their handling.

1 Motivation: Rules, uncertainty handling, and inconsistency

Assisting experts in their decisions and actions can be performed by modeling the en-

vironment by a knowledge base and asking for entailed consequences in form of deri-

vations for expert’s expressed goals from the knowledge base. A widely used form of

knowledge representation consists of facts (data) and if-then rules (production rules)

for expert systems or rule-based systems. Efficient basic algorithms are known which

act either in a forward-chaining, data-driven, bottom-up manner by applying rules from

facts over derived interim results to goals (production view), or in a backward-chaining,

goal-driven, top-down manner reducing derivations of goals to those of subgoals until

reaching facts (goal/problem reduction). In case of certain knowledge, a goal may ad-

mit several derivations using a collection of facts and rules and it is known that only

one derivation suffices to show entailment from a consistent (Horn) knowledge base.

In case of uncertain knowledge, the methodology of rule-based systems, logic, and

logic programming cannot be transferred in a straightforward manner. In their seminal

work on modeling inexact reasoning in medicine, Shortliffe and Buchanan [11] propose

the use of certainty factors (CF), real numbers between -1 and 1, for facts and rules,

expressing measures of increased belief (positive CF) or disbelief (negative CF)

81

according to acquired evidence, and describe within their MYCIN diagnosis system the

propagation of certainty factors for derived interim and final conclusions/goals within

a forward-chaining inference framework. Besides calculating CFs for logical expres-

sions of rule conditions and propagating CFs in rule application (serial propagation), a

new issue occurs whenever several derivations exist for the same conclusion/goal, such

as for the same hypothesis in medical diagnosis. Whereas such a situation is not very

interesting for certain knowledge—simply taking one of the derivations/argumenta-

tions as a proof for a goal (with certainty)—two derivations for the same hypothesis,

each with an uncertain belief measure out of different pieces of evidences, are regarded

to constitute a situation of incrementally acquired evidence for the same hypothesis and

would lead to a stronger belief in that hypothesis (parallel propagation).

This parallel propagation can not only be applied to two measures of increased be-

liefs and similarly to two measures of increased disbelief, but also to mixed belief situ-

ations where a measure of increased belief (positive CF) and a measure of increased

disbelief (negative CF) are previously calculated for the same hypothesis or subgoal.

This situation leads to a positive CF, if belief is of higher degree, to a negative CF, if

disbelief is of higher degree, and to zero if measures of belief and disbelief are equal.

The two versions of MYCIN formulas for parallel propagation do not apply to combine

certain belief (+1) and certain disbelief (-1)—the case of absolute inconsistency.

This paper recognizes a deficiency in the latter kind of calculations from a modeling

point of view when reasoning with experts’ opinions and rules which could lead to

(degrees of) contradictions due to (partially) inconsistent argumentations and deriva-

tions for goals and subgoals. We introduce complex certainty factors to manage these

contradicting opinions leading to combined measures of increased belief and disbelief.

Calculations of complex certainty factors enable to recognize conflicting subresults and

propagate degrees of inconsistency until final goals and conclusions. In our opinion,

the idea and visualization of the proposed complex certainty factors will throw light on

the problem of gradual inconsistency within uncertainty reasoning.

The author is aware that starting with works of Heckermann and Horovitz [6] and

Pierce [10], in which several anomalies in “extensional approaches” like the CF model

for uncertainty reasoning are discussed and in which belief networks as an “intentional

approach” based on Bayesian probabilistic inference are declared to constitute a supe-

rior model for reasoning with uncertainty, a considerable part of the AI community

followed this opinion including the developers of MYCIN themselves (Heckerman and

Shortliffe [7]). Extensional approaches, viewed as suffering from modularity together

with locality and detachment, “respond only to the magnitudes of weights and not to

their origins” [10] and therefore lack a proper handling of distant correlated evidences.

However, the problem of partial/gradual inconsistency addressed in this paper de-

scribes another type of anomaly of reasoning with uncertainty and we are not aware of

a resolution of this anomaly in non- or quasi-probabilistic (extensional) or probabilistic

(intentional) systems including belief networks. In Sect. 2, we emphasize the relevance

of the inconsistency anomaly by considering some business applications where ex-

pert’s knowledge could lead to inconsistencies. In Sect. 3, we review the MYCIN cer-

tainty factor model and discuss some general interpretation issues, such as properties

of degrees of confirmation and disconfirmation. We define the notion of local belief

82

consistency and distinguish absolute and uncertain belief/disbelief as well as absolute

and partial inconsistency. The anomaly of gradual inconsistency is illustrated by a fic-

tive example of experts’ ratings of derivatives related to the financial crisis.

In order to model gradual inconsistency, we introduce complex certainty factors in

Sect. 4 and present their serial and parallel propagation within a rule-based expert sys-

tem in Sect. 5. In order to propagate belief and disbelief separately, more complex cer-

tainty factors for rules are necessary, still under requirements of local consistency of

knowledge, they could be simplified (cp. 5.3). A simple graphical visualization for ex-

pert’s knowledge acquisition follows. Detecting inconsistencies in expert’s argumenta-

tions is illustrated by applying our model to the financial crisis example in subsect. 6.1.

Though our ideas to handle the anomaly of gradual inconsistency are designed using

the CF model, they are applicable to other formalisms as well. Reasoning with complex

certainty factors do not only sum up evaluation of a decision by a figure like certainty

factor, probability or likelihood ratio, but can also evaluate distrust and skepticism (cp.

6.2) whenever different argumentations lead to partially conflicting conclusions. In 6.3,

we retrospectively interpret the phenomenon of gradual inconsistency, distinguish in-

herent and apparent inconsistency in the course of uncertainty reasoning and show tech-

niques to resolve recognized types of inconsistencies leading to future works (Sect. 7).

2 Expert knowledge and inconsistency in business applications

Many decision problems in business, economics, society, and politics are based on pre-

dictive knowledge and expert evaluations that are prone to hidden conflicts and incon-

sistencies. They represent partial information on cause-effect relationships with a lack

of exhaustive frequency or (a-priori and conditional) probability data being a prerequi-

site for building belief networks. Inference systems should be able to handle experts’

opinions as partial and modular knowledge about cause-effect, influence, and relevance

relationships as well as selective association rules extracted by data mining techniques.

One application domain lacking complete probability data is risk evaluation of new

technologies; only (uncertain) expert opinions about causal relationships are known

concerning future consequences. Examples are relationships between greenhouse effect

and global warming, between environmental contamination, damage and catastrophes,

as well as effects of extensive use of mobiles and social media on children’s mental

growth. TV shows with debates of experts of different schools of thought often exhibit

that controversial and opposite opinions may lead to inconsistencies in argumentations.

Also, knowledge and rules of the same expert may sometimes induce indiscernible in-

consistency within a subject. In politics, it is not rare to find “experts” who preach de-

mocracy principles and human rights but support dictatorships because of hidden eco-

nomic interests. Such kind of inconsistency cannot be detected easily by TV spectators

confronted with experts’ opinions on complex problems such as globalization, currency

devaluation, political instability, middle-east conflict and Arab spring.

Furthermore, there are some areas such as law and jurisprudence where knowledge

to be applied is normative. Besides informative knowledge considered as descriptive,

helping with conceptual understanding, normative knowledge is seen as prescriptive

83

showing how to comply (with law). Normative orders and systems are not only relevant

in jurisprudence, but also characterize scientific branches like normative economics and

normative ethics. Normative knowledge includes requirements usually expressed using

the verbal form “shall” for a necessary conclusion as a (generally formulated) judgment

if a given list of conditions is fulfilled. The application of this modular knowledge in

court proceedings is subject to uncertainties in the given evidences or facts of the case.

In a criminal case, punishments may heavily differ in extent from monetary penalty to

several years of prison, depending on the final refined judgment that may be a standard

burglary, robbery or armed robbery. Evidences and facts of a case like “has the robber

a knife, a pocket knife, etc.”, “is it considered as dangerous tool” are subject to uncer-

tainties. In a course of an analysis scheme based on these evidences, the judge should

infer belief about intention (negligent, grossly negligent, etc.). From the other hand, he

examines exculpations (distress/emergency states) which can lead to disbelief. Thus,

given both positive belief and disbelief in some aspects of the judgment, one is con-

fronted with partial inconsistency in the concluding judgment or within an intermediate

conclusion. Our method is able to propagate these partial inconsistencies until the con-

cluding judgment. Only at the concluding judgment, the lawyer has to weigh pros and

cons (belief and disbelief) as well as argumentations for and against, in order to finally

judge the criminal case. In our opinion, normative knowledge is inherently modular and

cannot deliver the necessary conditional probability tables required for belief networks.

So using our complex certainty factors for modular knowledge is one method of choice.

3 Certainty factors and the inconsistency anomaly

In introducing certainty factors of facts and rules for modelling uncertain knowledge

and discussing their serial and parallel propagation, we stress on several general inter-

pretation issues: properties of belief and disbelief, difference to probability, local con-

sistency, absolute and gradual belief and inconsistency. A motivating example concern-

ing experts’ rating of derivatives and financial crisis illustrates the anomaly of gradual

inconsistency that is shown to be improperly handled by the certainty factor model.

3.1 Certainty factors and their relationship to probabilities

A common application of uncertainty reasoning is classification and diagnosis. Some

observations (symptoms, evidences) can be linked by rules to solutions (hypotheses,

diagnoses, diseases). Rules are associated expert’s estimates of confirmation/disconfir-

mation or belief/disbelief by an (un-)certainty measure, as in a MYCIN example [11]:

IF: E1) The stain of the organism is gram positive

 AND E2) The morphology of the organism is coccus

 AND E3) The growth confirmation of the organism is chains

THEN: there is suggestive evidence (CF = 0.7)

H) that the identity of the organism is streptococcus

Generally, a certainty factor CF(H,E), denoted here CF(H|E) for convenience, is a

real number in [-1…1] representing a measure of increased belief in the hypothesis H

84

given an acquired evidence E, if it is positive, and a measure of increased disbelief in

(belief against) the hypothesis H given the evidence E, if it is negative. While a certainty

factor of 1 corresponds to “definitely certain” and -1 to “definitely not” or “certainly

against” a hypothesis, certainty factors for linguistic utterances “weakly suggestive”,

“suggestive”, and “strongly suggestive” evidence may range from 0.2 to 0.95, and for

“almost certainly not”, “probably not” and “may be not” may range from -0.95 to -0.2.

A first formula for certainty factors CF(H|E) of the rule “if E then H” adopted by

MYCIN in terms of a measure of (increased) belief MB(H|E) and a measure of in-

creased disbelief MD(H|E), given an acquired evidence E, is simply the difference:

CF(H|E) = MB(H|E) − MD(H|E) (1)

Shortliffe & Buchanan [11] note that the above rule example reflects their collaborating

expert’s belief that gram-positive cocci growing in chains are apt to be streptococci,

where a 70% of belief in the conclusion is uttered. They noted that translated to the

notation of probability, the rule with CF=0.7 seems to say P(H|E1,E2,E3) = 0.7. The

expert, they say, may well agree with this, but he definitely not agree with the conclu-

sion that P(¬H|E1,E2,E3) = 1 - P(H|E1,E2,E3) = 1 - 0.7 = 0.3. The expert claims, that

“the three observations are evidence (to degree 0.7) in favor of the conclusion that the

organism is a Streptococcus and should not be construed as evidence (to degree 0.3)

against Streptococcus”. Thus, CF(¬H|E) is not equal 1 - CF(H|E). Accounting for this

difference, Shortliffe and Buchanan [11] fix CH(H|E) = 0 for the case the hypothesis H

is probabilistically independent from the evidence E, that is, for P(H|E) = P(H). In this

case both MB(H|E) and MD(H|E) are equal to zero:

 𝑀𝐵(𝐻|𝐸) = 0 𝑎𝑛𝑑 𝑀𝐷(𝐻|𝐸) = 0 𝑓𝑜𝑟 𝑃(𝐻|𝐸) = 𝑃(𝐻) (2)

For the case the evidence E supports belief in H, P(H|E) > P(H), they define:

 𝑀𝐵(𝐻|𝐸) =
𝑃(𝐻|𝐸) − 𝑃(𝐻)

(1) − 𝑃(𝐻)
 𝑎𝑛𝑑 𝑀𝐷(𝐻|𝐸) = 0 𝑓𝑜𝑟 𝑃(𝐻|𝐸) > 𝑃(𝐻) (3)

By this definition, the measure of increased belief MB(H|E) can be interpreted as the

ratio of increase of probability of P(H) to P(H|E) after acquiring the new evidence E

relative to the possible increase distance from P(H) to 1, full certainty for H. For the

case the evidence E supports disbelief in H (belief against H), P(H|E) < P(H), we get:

 𝑀𝐷(𝐻|𝐸) =
𝑃(𝐻) − 𝑃(𝐻|𝐸)

𝑃(𝐻) − (0)
 𝑎𝑛𝑑 𝑀𝐵(𝐻|𝐸) = 0 𝑓𝑜𝑟 𝑃(𝐻|𝐸) < 𝑃(𝐻) (4)

Likewise MD(H|E) can be interpreted as the ratio of decrease of probability of P(H) to

P(H|E) after acquiring E relative to the distance from 0, full disbelief in H, to P(H).

Heckermann [5,7] multiplies denominators of (3) and (4) by the extra terms P(H|E)-0

for MB and 1-p(H|E) for MD, making the definitions symmetric in P(H) and P(H|E)

and justifying parallel propagation (15). Further, when P(H) approaches 0 with P(H|E)

fixed, MB(H|E) converges to P(H|E) in the original and to 1 in Heckermann’s defini-

tion. He maps the likelihood ratio λ =
𝑃(𝐸|𝐻)

𝑃(𝐸|¬𝐻)
∈]0,∞[to 𝐶𝐹 ∈] − 1,1[by 𝐶𝐹 =

λ−1

λ

for λ ≥ 1 and 𝐶𝐹 = λ − 1 for λ < 1 and applies Bayesian inversion formulas 𝑃(𝐸|𝐻) =

[𝑃(𝐻|𝐸) ∗ 𝑃(𝐸)]/𝑃(𝐻) and 𝑃(𝐸|¬𝐻) = [𝑃(¬𝐻|𝐸) ∗ 𝑃(𝐸)]/𝑃(¬𝐻). We will not dwell on

probabilistic justifications of the CF model which were already subject of many papers.

Of concern are here only some desired properties that remain true with these defini-

tions of MB and MD operationalizing degrees of confirmation and disconfirmation:

85

 The measure of increased disbelief in H after acquiring evidence E is equal to the

measure of belief in ¬H after acquiring evidence E and vice versa:

o MD(H|E) = MB(¬H|E) (5)

o MB(H|E) = MD(¬H|E) (6)

 For each rule, not both measures of increased belief and of increased disbelief

can be positive (local belief consistency):

o MB(H|E) > 0 MD(H|E) = 0 (7)

o MD(H|E) > 0 MB(H|E) = 0 (8)

From (5) and (6) it follows according to CF definition (1) that:

CF(¬H|E) = ̶ CF(H|E) (9)

Properties (7) and (8) prescribing what we call local belief consistency are crucial,

since the same piece of evidence cannot both favor and disfavor the same hypothesis.

Thus formula (1) is stated for convenience, instead of stating CF(H|E) = MB(H|E), if

MB(H|E) > 0 and CF(H|E) = ̶ MD(H|E), if MD(H|E) > 0. As Heckermann [5] states,

we assume that probability and belief measures are to be understood as subjective ac-

cording to the same expert with prior knowledge k about the domain. So P(H|E) can be

seen as P(H|E,k), P(H) as P(H|k), MB(H|E) as MB(H|E,k), MD(H|E) as MD(H|E,k),

and CF(H|E) as CF(H|E,k). For a fact E, CF(E) can be seen as a rule’s CF: CF(E|k).

Precisely, Heckermann denotes CF(H|E,k) as CF(HE, k) to account for the matter of

fact that the expert knowledge somehow conditions the whole expert’s opinion about

CF of the rule and that a diagnostic rule if E then H actually models the reciprocal

causality that the hypothesis/disease H causes the appearance of the evidence E.

3.2 Certainty factors of compound evidence and their serial propagation

Given an if-then-rule (R) with certainty factor CFR

(R) if condition/evidence E then conclusion/hypothesis H (CFR)

firstly compute the CF(E) out of CF of the members constituting the expression E and

then compute CFR(H) of the conclusion by serial propagation of CFs:

1. Calculate CF(E) for E an expression using conjunction, disjunction and negation:

o CF (e1 e2) = and(CF(e1), CF(e2)) := min(CF(e1), CF(e2)) (10)

o CF (e1 e2) = or(CF(e1), CF(e2)) := max(CF(e1), CF(e2)) (11)

o CF (e) = ̶̵ CF(e) (12)

2. Calculate CFR(H):

o If CF(E) > 0 then CFR(H) = CF(E) * CFR (13)

o If CF(E) ≤ 0 then the rule (R) is not applicable (14)

Whereas the min-function for conjunction of evidence in (10), as a possible t-norm,

is adequate for e1 and e2 being completely or strongly overlapping, another t-norm

CF(e1 e2) = CF(e1)*CF(e2), less than min(CF(e1), CF(e2)), is more adequate, if e1

and e2 are independent. We propose to attach to each rule individual variants of

t-norm/t-conorm for computing CF of conjunction/disjunction of evidences according

to the evidences’ grade of overlapping/dependency/disjointedness (see below).

It is important to note that serial propagation do only apply to the case CF(E) > 0, or

practically using a threshold, e.g. CF(E) 0.2 as for MYCIN. Take the rule (R1) “if it

86

rains then the grass gets wet” with certainty factor 0.9. If it rains, we can infer grass is

wet with certainty factor CF1 = 0.9. It is clear that if it doesn’t rain CF(Rain) = -1, we

cannot infer CF(WetGrass) = -1*0.9 = -0.9, since grass may be wet, for instance, be-

cause of the sprinkler being on. The asymmetry in (13) and (14) accounts for the intui-

tion of experts working with rule-based systems, who commonly tell that the presence

of evidence E increases belief in a hypothesis H, but the absence of E may have no or

negligible significance on H. So for the case CF(Rain) = -1, we have CF(Rain) = 1

and this negated evidence is only invoked with a rule with negated evidence like “If it

doesn’t rain, then grass is not wet” that may be associated a significantly lower CF, as

0.3, depending on the expert’s knowledge over other relevant causes in the domain

making grass wet. This CF is nearly 0, if a sensor automatically turns the sprinkler on.

Further, knowledge engineering with certainty factors should be either causal or di-

agnostic in order to avoid strange feedback loops, as for the causal rule (R1) together

with the diagnostic rule (R2’) “if grass is wet, then sprinkler is on” with CF2’ = 0.4.

Then one can infer from CF(Rain) = 1, that CF(SprinklerOn) = (1*0.9)*0.4 = 0.36.

Clearly, the fact that it rains would “explain away” that the sprinkler is on, thus

CF(SprinklerOn) should be near to zero. While inter-causal reasoning can be better

handled by belief networks, the situation is better modelled by two causal rules or by

one compound causal rule using disjunction: (R12) If Rain SprinklerOn then Wet-

Grass. For the rule (R12), we propose to attach another t-conorm, such as CF(R S) =

CF(R) + CF(S) ̵̶ CF(R)*CF(S), greater than max(CF(R), CF(S)) of (11), for R=Rain

being independent of S=SprinklerOn or even CF(R S) = min(1, CF(R) + CF(S)) as-

suming that R and S are (almost) mutually exclusive events.

3.3 Parallel CF propagation and belief substantiation of co-concluding rules

The case of parallel propagation of certainty factors applies when two rules have the

same conclusion or hypothesis H (two co-concluding rules):

(R1) if E1 then H (CFR1)

(R2) if E2 then H (CFR2)

Let the certainty factors for H be: x = CFR1(H) and y = CFR2(H) as calculated by serial

propagation of (R1) and (R2), then the resulting certainty factor for H is calculated by:

 𝐶𝐹(𝐻) =

{

𝑥 + 𝑦 − 𝑥 ∗ 𝑦 𝑓𝑜𝑟 𝑥 ≥ 0, 𝑦 ≥ 0 (𝑎)

𝑥 + 𝑦 + 𝑥 ∗ 𝑦 𝑓𝑜𝑟 𝑥 ≤ 0, 𝑦 ≤ 0 (𝑏)
𝑥+𝑦

1−min(|𝑥|,|𝑦|)
 𝑓𝑜𝑟 − 1 < 𝑥 ∗ 𝑦 < 0 (𝑐)

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑓𝑜𝑟 (𝑥, 𝑦) ∈ {(−1,1), (1,−1)} (𝑑)

 (15)

Actually, the formulas of (15) apply to the case of more than two co-concluding rules:

Simply take x as the result of applying (15) so far and y as the CF result by serial prop-

agation of an additional rule, then combine x and y by applying (15) again. It can be

shown that the application of (15) is commutative and associative. We first discuss (a)

and (b), which are given in the original work of Shortliffe and Buchanan [11], then (c)

and (d) in next sections. Motivated by the diagnostics domain, (15a) means that several

evidences supporting the same hypothesis H substantiate suspicion for H. (15b) is

equally motivated in case both evidences are against the same hypothesis H.

87

 x = 0.5, y=0.9 CF(H) = 0.5 + 0.9 0.5*0.9 = 1.4 0.45 = 0.95

 x = -0.5, y= -0.9 CF(H) = -0.5 0.9+(- 0.5)*(- 0.9) = -1.4+ 0.45 = -0.95

Formula (15b) is analogous to (15a): 𝑥 + 𝑦 + 𝑥 ∗ 𝑦 = −(|𝑥| + |𝑦| − |𝑥| ∗ |𝑦|) for

x and y being both negative (|𝑥| and |𝑦| correspond to measures of increased disbelief).

In both cases, substantiation of belief (or disbelief) uses the probabilistic sum formula

𝑎 + 𝑏 − 𝑎 ∗ 𝑏, an adequate t-conorm of disjunctions for independent propositions. This

is justified if distinct independent argumentation chains are available from different

indications. Two ways relating parallel propagation to disjunction can be depicted. A

compound rule using disjunction “if E1 E2 then H” replaces (R1) and (R2), but needs

a new expert’s CF estimation. A second way involving disjunction is to introduce new

intermediary propositions H1 and H2 as two ways leading to H and apply rule (R1’) “if

E1 then H1” and (R2’) “if E2 then H2”, separately. Interpreting CF(H1) = CFR1(H) = x

and CF(H2) = CFR2(H) = y as the beliefs in H regarding, in diagnostic terms, the subsets

P1 and P2 of the subpopulation of patients possessing disease H who show symptoms

E1 and E2, respectively, so CF(H) can be seen as the belief outcome for H related to

the patient set P1P2. We may roughly write H = H0H1H2, where CF(H0)=0, since

no belief is known for the subpopulation P0 (corresponding to H0) possessing H but

not showing symptoms E1 and E2. Presuming independence of P1 and P2, the use of

the probabilistic sum is justifiable. This reasoning applies to (15b) by considering ¬H

instead of H and |𝑥| and |𝑦| instead of x and y as beliefs in ¬H. The independence as-

sumptions of P1 and P2 are related to, and seem to be weaker (or equivalent) conditions

for the justification of (15a) and (15b) than, the conditions of independency of E1 and

E2 and their conditional independency, given H and H, stated by Adams [1].

As a later appraisal for the CF model (in the new millennium) in comparison with

Bayesian belief networks, Lucas ([8], Sect. 3.2-3.3, Fig. 1-2) shows that the efficiency

of belief networks for large knowledge bases is due to the usage of extra structures like

Noisy-OR that are shown to be equivalently handled by formula (15a) of the CF model

for co-concluding rules. In fact similar so-called (decomposable) causal independence

conditions are assumed in large practically relevant belief networks as pointed out by

Lucas [8]. In order to avoid inefficiency in knowledge acquisition and processing for

effect-nodes with lots of causes’ parent nodes, the (very big) conditional probability

tables are gathered in an implicit way out of the individual cause-effect relations (like

if-then rules) and processed by formulas like (15a) of CF parallel propagation.

In case independency conditions are violated, we propose to attach other t-conorm

variants to the evaluation of H, i.e. using max(x,y) for P1 and P2 being highly overlap-

ping/correlated and min(1,x+y) for P1 and P2 being mutually exclusive (disjoint).

In this context, consider the knowledge gained from different experts: If two experts

with prior knowledge k1 and k2 (evidences about the domain) assert their beliefs for

the same rule, then we get something similar to CF(H|E, k1) and CF(H|E, k2). These

can be seen as certainty factors for two different rules with the same conclusion H and

can be handled by parallel propagation. In this case, it is convenient to assume that H1

and H2 are highly overlapping and thus CF(H) = max(CF(H|E, k1)*CF(E), CF(H|E,

k2)*CF(E)). If we deal with uncertainty at a meta-level, i.e., the assertions of the experts

may be themselves uncertain, then one can take the arithmetic average of the experts’

beliefs concerning the same rule and assign it to one rule’s CF(H|E,k1,k2).

88

3.4 Absolute confirmation, disconfirmation, and absolute inconsistency

Formula (15d) excludes the occurrence of “absolute inconsistency”. For further discus-

sions, let us consider the defining criteria for MB and MD postulated by Shortliffe and

Buchanan [11]. Let e+ (e–) represents all confirming (all disconfirming) evidence for

hypothesis H acquired to date. MB(H|e+) and MD(H|e–) increase toward 1 as confirm-

ing respectively disconfirming evidence is found and equals 1 if and only if a piece of

evidence logically implies H respectively H with certainty. This is achieved by (15a)

and (15b), as 𝑥 + 𝑦 − 𝑥 ∗ 𝑦 = 𝑥 + 𝑦(1 − 𝑥) can only be 1 if 𝑥 = 1 or 𝑦 = 1. For the

case of absolute confirmation MB(H|e+)=1, Shortliffe and Buchanan postulate that

MD(H|e–) should be set to 0 regardless of the disconfirming evidence in e–. Similarly,

the case of absolute disconfirmation MD(H|e–)=1 makes all confirming evidence in

e+ without value for H. They remarked that the case where (MB(H|e+)= MD(H|e–) =1

is absolutely inconsistent (contradictory) and hence the CF is undefined (15d).

The original version of (15c) was formula (1) according to previously computed

MB(H|e+) and MD(H|e–) by setting CF(H|e+& e–) = MB(H|e+) – MD(H|e–). Yet, for-

mula (15c) computes 1 when x or y is 1 and -1 when x or y is -1, as desired:

 x = 1.0, y=-0.9 CF(H) = (1.0 - 0.9)/(1-min(|1.0|,|-0.9|) = 0.1/0.1 = 1

 x = -0.9, y=1.0 CF(H) = (-0.9+1.0)/(1-min(|-0.9|,|1.0|) = 0.1/0.1 = 1

 x = -1.0, y=0.9 CF(H) = (-1.0 + 0.9)/(1-min(|-1.0|,|0.9|) = -0.1/0.1 = -1

With this interpretation, we note the discontinuum between {1} for absolute and the

interval [0, 1) for uncertain confirmations and disconfirmations. Certain knowledge is

considered as knowledge of higher magnitude which defeats and nullifies all other

uncertain knowledge. Suppose we reason under uncertainty about the mortality likeli-

hood of patients with some complex diseases, and for a patient we gathered evidences

showing a disbelief in mortality with CF = -0.5 for the next five years. Upon knowing

his death, we get a CF=1 (certainly true) that nullify our disbelief from other evidences.

Another example from default reasoning: We know that all birds fly with CF=0.95 and

we know that a penguin is a bird, then we can imply that a penguin may fly with high

positive certainty factor. Acquiring new specific certain knowledge that a penguin can-

not fly with certainty because of heavy weight and small wings, then the resulting CF

is -1 regardless of our previous uncertain belief that it is a likely flying bird.

3.5 Inconsistency in case of parallel CF propagation of mixed belief & disbelief

Considering the idea and semantics of formula (15c), we show its undesired properties

as mathematical mapping and its weakness in modeling gradual inconsistency.

If evidences exist one for and one against a hypothesis, a common certainty factor

CF is calculated (CF > 0, if MBfor > MDagainst and CF < 0 if MBfor < MDagainst):

 x = -0.5, y=0.9 CF(H) = (-0.5 + 0.9) / (1-min(|-0.5|,|0.9|)

 = 0.4 / (1-0.5) = 0.4 / 0.5 = 0.80

 x = 0.5, y= -0.9 CF(H) = (0.5 + (-0.9)) / (1-min(|0.5|,|-0.9|)

 = -0.4 / (1-0.5) = -0.4 / 0.5 = -0.80

Shortliffe and Buchanan [11] firstly apply formula (1) delivering CF = MBfor - MDagainst

= 0.9–0.5=0.4 for the first and analogously -0.4 for the second example. They enhance

89

(1) into formula (15c) together with van Melle [12] in the course of development of a

domain-independent EMYCIN system, in order to consider that very strong belief for

a hypothesis should only be slightly affected by lower ranked disbeliefs. Note that two

certainty factors CF1 = 0.9 and CF2 = 0.9 with a combined CF12 = 0.99 would be de-

stroyed by CF3 = -0.8 to a resulting CF(v1) = 0.19 by formula (1), whereas the formula

(15c) computes CF(v2) = (0.99-0.8)/(1-0.8) = 0.19/0.2 = 0.95. So CF(v2) = CF(v1)/0.2. The

new version (15c) is a normalization of the difference of belief and disbelief of (1).

The formulas in (15) for CF(H) describes a function in x and y [-1,1]. Buchanan

and Duda [3] point out the following as “desired properties” of this function:

 “When contradictory conclusions are combined (so that 𝑥 = −𝑦), the resulting

 certainty is 0. Except at the singular points (1,-1) and (-1,1), CF(H) is continuous

 and increases monotonically in each variable x and y.”

The first property concerns all (x,y) in a straight line between, and excluding, the

singular points (1,-1) and (-1,1). Whereas cases (1,-1) and (-1,1) are considered contra-

dictory [11] and their CF(H) remains undefined (15d), all other situations with partially

contradictory conclusions are equally evaluated to 0. That means, whereas for x = 1

and y = -1, an absolute contradiction is recognized, the values x=0.999 and y= – 0.999

are evaluated to CF(H) = 0. Even worse, we may get in the proximity of (1,-1) all

possible values for CF(H). Consider x = 0.999 and y = -0,9, CF(H)=(0.999+(-0,9))/(1-

min(|0.999|, |-0.9|)) = 0.099/0.1 = 0.99. This highly contradictory situation (0.999, -0.9)

—one “strongly suggestive” opinion and one opinion “almost certainly not”—is con-

sidered equivalent to the clear situation x = y = 0.9 having two strongly suggestive

opinions. The same problem occurs in the proximity of (-1,1). Thus, the property in the

second reported sentence is to be relativized since the monotone increase in one varia-

ble is very perturbed by small changes in the other variable. Further, in the proximity

of the straight line between (1,-1) and (-1,1) small changes may result in a very high

increase between two extreme CF values, for instance, going from (0.999, -0.9999) to

the near point (0.999, -0.99), x is fixed and y only increases by 0.0099, but the value of

CF(H) increases drastically from -0.9 to +0.9 going through 0 at point (0.999, -0.999).

The inability of the CF model to distinguish between lack of evidence 𝑥 = 𝑦 = 0 and

contradictory conclusions 𝑥 = −𝑦 of different grades still remains in CF models con-

sidered to better match probability theory. For instance, the formula of parallel propa-

gation (𝑥 + 𝑦)/(1 + 𝑥 ∗ 𝑦) suggested by Heckermann [5] doesn’t change the situation.

3.6 Inconsistency in argumentations – Example Financial crisis

From the above discussion, our main objection is that inconsistency may appear in con-

clusions and one cannot always handle the situation by a kind of summarization or

calculation based on a certainty factor or other single probability figure to mirror the

partial contradiction. The situation is even worse, when contradictions appear within

argumentations and are not apparent in the conclusion. In order to explain the phenom-

enon, we introduce the fictive example for the financial crisis depicted in Figure 1:

Decisions of purchasing financial products such as derivatives are based on experts’

rating. Rating of a derivative D is based on ratings of A and C, the former being rated

90

AA+ and the latter being a mixture of a bank value papers. The situation in Figure 1 (a)

shows only positive opinions about all derivatives, including C and the certainty for the

composition rule for D. Based on positive certainty factors for evidences, we get a

CF=0.98 for derivative C by substantiation of belief of Experts E1 and E2 by formula

(15a): 0.8+0.9-0.8*0.9=0.98. Thus, a certainty factor of 0.98 results also for D, as well.

The decision case (b) shows akin situation with a wise man giving a negative rating

for derivative C, because of its high degree of composition and its connection to bank

value papers of insufficiently clear origins. The wise man can be Muhammad Yunus,

an economist professor awarded the nobel peace prize. He further doubts on the deriv-

ative ratings (the newspaper “Handelszeitung” titled on 09.12.2008 “AAA nicht mehr

das A und O”, i.e., “AAA no more the alpha and omega”). He gives a high measure of

disbelief for derivative C. By using (15c) for the conclusion C merging CF12=+0.98 of

Experts E1 and E2 with CF3 = -0.9 of the wise man, we get CF(C) = (0.98 + (-0.9)) /

(1- min(|0.98|, |-0.9|)) = 0.08/0.1 = 0.8. This CF(C) propagates to deliver CF(D) = 0.8.

The compound certainty factor CF(C) obscures the reasoning situation at stage C

within the argumentation where a contradiction at a high grade exits. Even worse that

this contradiction is not apparent any more at the end of the argumentation, i.e. at the

conclusion D, only positive arguments are apparent without any skepticism.

4 Complex certainty factors for reasoning with inconsistencies

The drawbacks discussed in 3.5 and 3.6 of the CF model that mixes belief and disbelief

in subresults and conclusions cannot be remedied by choosing another model of uncer-

tainty reasoning, like subjective Bayesian methods (Duda el al. (1976)) or the widely

used Bayesian belief networks (Pierce (1988)). We are convinced that the evaluation

by one real number, be it a certainty factor, an odd, a likelihood ratio, or a probability,

does not suffice to make inconsistency visible within an argumentation. Therefore, our

91

idea to remedy the drawbacks is to represent and propagate confirmations and dis-

confirmations separately within argumentations making possible to a disagreement,

contradiction or inconsistency upon its discovery in a subresult to persist until the con-

clusion. To operationalize this idea, we introduce complex certainty factors (CCF) and

by a suitable visualization stress its two-dimensionality separating belief and disbelief

and making gradual inconsistency visible. The calculations for CCF are then presented

for the combination of evidences/propositions by logical operators. The propagation of

CCF is postponed to the next section where more complex CCF for rules are needed.

4.1 Complex certainty factors

Our requirement is that: Distrust within an argumentation chain

 should abide incessantly till conclusion. (Req. 1)

For instance, in the financial crisis example in 3.6, although the conclusion is summa-

rized by a positive certainty factor, disbelief in rating derivative C should be apparent

in the evaluation of the conclusion (derivative D) as distrust. Also, if a conclusion

would be summarized by a disbelief (negative certainty factor), distrust in form of a

belief value within an argumentation should be apparent in the conclusion as well.

Our approach is based on introducing complex certainty factors (CCF) for proposi-

tions and then for rules in order to propagate belief and disbelief separately, making

them apparent within argumentations till the conclusion. A CCF of a proposition (fact,

subresult or conclusion) consists of two separate parts for confirmation and disconfir-

mation and can be written, for convenience, like a complex number:

 CCF = MB + i MD (16)

A CCF is composed of MB as real and MD as imaginary part of the complex number.

The real part is called the belief/confirmation part and the imaginary part the disbelief/

disconfirmation part of the CCF. Let us consider some examples of CCF:

 true (absolute confirmation): 1 + i 0 = 1

 false (absolute disconfirmation): 0 + i 1 = i

 consistent belief: 0.6 + i 0 = 0.6

 consistent disbelief: 0 + i 0.7 = i 0.7

 partially inconsistent knowledge: 0.8 + i 0.7 (belief & disbelief!!)

 absolutely inconsistent: 1 + i (contradiction)

In the first four examples, we have either belief or disbelief and only one part (real or

imaginary) is sufficient. In the last two cases, both confirmation and disconfirmation

parts are positive and the resulting inconsistency is represented explicitly.

4.2 Visualization of complex certainty factors

The idea of a CCF of a proposition CCF = MB + i MD can be visualized in two dimen-

sions [0,1]x[0,1] where the x-axis represents MB and y-axis MD (see Figure 2). The

distinguished points are (1,0) on the MB-axis for absolute belief/confirmation (true),

(0,1) for absolute disbelief (false), (0,0) for the case no information on confirmation or

disconfirmation could be calculated, and (1,1) for the case of absolute contradiction.

92

 Figure 2: Visualization of complex certainty factors

The projection of the points in [0,1]x[0,1] on the MB-axis and MD-axis along the

thin lines and arcs represent the certainty factor values CF, where projections points on

the MB-axis are positive CFs and projection points on the MD-axis correspond to neg-

ative CFs with the same amplitude. These projection trajectories form lines like rays

starting in the proximity of (1,1). Each of these projection trajectory line containing an

infinity of CCF points corresponding to the same CF is called an iso-CF line. Whereas

the certainty factor CF is the same on each iso-CF line, the grade of disagreement, in-

consistency or contradiction is getting larger when going back towards the proximity

of the absolute contradiction point (1,1) corresponding to CCF = 1 + i. For the CF model

(cf. 3.4), all points (1, MD) with MD < 1 have CF=1 (certain belief nullifies partial

disbelief) and all points (MB, 1) with MB < 1 have CF = -1 (certain disbelief nullifies

partial belief), whereas point (1,1) of absolute contradiction has no defined CF.

The distinguished points (1,0), (0,1), (0,0) and (1,1) are the corners of the unit quad-

rant [0,1]x[0,1] representing the two-dimensional CCF values’ range. The semantics of

these four distinguished CCF corresponds to Belnap’s (useful) four-valued logic (for a

computer how it should think) [2]: a proposition A has truth value (1,0) iff (the computer

is) just told “A is true”, (0,1), iff just told “A is false”, (0,0), iff neither told “A is true”

nor “A is false” and (1,1), iff told both “A is true” and “A is false”. Our CCF model

extends Belnap’s four-valued logic in case of reasoning under uncertainty, yet captur-

ing and reasoning with both partial and absolute inconsistencies.

4.3 Calculations with complex certainty factors for compound expressions

The requirement for calculations with CCF following from (Req. 1) is as follows:

 Belief and disbelief should not be admixed within CCF calculations. (Req. 2)

Beginning with operators and, or and not for evaluating condition parts of rules, let

CFF(e1) = x1+ i y1 CFF (e2) = x2+ i y2 ,

The CCF of compound propositions e1 e2, e1 e2, and e1 are calculated as follows:

 CCF(e1 e2) = and(x1+ i y1, x2+ i y2) = and(x1, x2) + i or(y1, y2) (17)

 CCF(e1 e2) = or(x1+ i y1, x2+ i y2) = or(x1, x2) + i and(y1, y2) (18)

 CCF(e1) = not(x1 + i y1) = y1 + i x1 (19)

93

We firstly discuss (19). For negation NOT, we do neither use the formula 1-x for

probability of the complement, nor –x for disbelief being “negative belief” for the CF

model. Rather we interchange the belief and the disbelief part in (19), since MB(e1)

= MD(e1) and MD(e1) = MB(e1) following the fundamental equations (5) and (6) in

3.1. The belief and disbelief parts do not need to sum up to 1 in the CCF model.

As (17) and (18) are dual, we focus our discussion on (17). CCF(e1 e2) written as

and(CCF(e1), CCF(e2)) is defined through the operators on classical CF for and(x1, x2)

and or(y1, y2), where general or evidence dependent t-norms and t-conorms can be used,

respectively (cf. 3.2). Formula (17) incorporates de Morgan rule for “and” by using

“or” for the disbelief part: As MD(e) = MB(e), we get MD(e1e2) = MB((e1 e2))

= MB(e1 e2) = or(MB(e1), MB(e2)) = or(MD(e1), MD(e2)). Here, de Morgan

rule, stating (e1 e2) is logically equivalent to e1 e2, is used.

The classical CF model uses “min” as a t-norm for “and”, where the range of appli-

cation is not [0,1], as for fuzzy operators, but [-1,1]. The min-function behaves as in

[0,1] when combining two measures of belief. It is (incidentally) coherent for two dis-

belief measures, because MD is negative within the CF in this case and min(CF1, CF2)

= min(-MD1, -MD2) = -max(MD1, MD2). This fact is usually not mentioned explicitly

in presentations of the CF model. When combining a positive and a negative CF, that

is, a measure of belief CF1=MB1 and a measure disbelief CF2 = -MD2, the minimum

will always take -MD2 as result regardless of the intensity of belief. For instance, for

MB1 = 0.9 and MD2 = 0.1, we get -0.1; likewise in the opposite case where MB1 is of

lower intensity MB1 = 0.2 and MD2 = 0.4, we get -0.4. The CCF calculation for this

case gives: and(MB1, 0+ i MD2) = and(MB1,0) + i or(0, MD2) = 0 + i MD2. Also in

this case, the CCF result shows, that the MB1 disappears because of the conjunction

with MB2 = 0. For these three cases having in common that they represent what we call

one-dimensional belief, the CF result coincides with the CCF result despite of their

different representation (disbelief negative or as a second dimension).

The situation changes in case of bi-dimensional belief. Recall that e2 as a subresult

may have a measure of belief MB2 besides MD2 and we get and(MB1, MB2+ i MD2)

= and(MB1, MB2) + i MD2. That means beliefs of e1 and of e2 are combined into the

belief part of e1 e2 and likewise the disbelief in e2 propagates as well. Note that for

the CCF conjunction, we use max-function for the evaluation of disbelief part (“or” in

disbelief part in equation (17)). Thus, max(0, MD2) = MD2. For this special case, also

other t-conorms deliver the same result min(1,x+y) = min(1, 0+MD2) = MD2 and x +

y - x*y = 0+MD2+0*MD2 = MD2. We know that the result of CF model depends on

the sign of CF2 corresponding to CCF2 = MB2 + i MD2. Following (15c), regarding x

= MB2 and y = -MD2, the combined certainty factor CF2 = (x+y)/(1-min(|x|,|y|)=(MB2-

MD2)/(1-min(MB2, MD2)), being positive, if MB2>MD2, negative if MB2<MD2, and

0 if MB2=MD2. For these three cases, the CCF result and(MB1, MB2) + i MD2

differs in spirit from the CF result and(MB1, CF2) using mixed belief and disbelief

of CF2 and simply taking the minimum. In contrast the CCF model combines beliefs

into min(MB1, MB2) and propagates MD2 over the disconfirmation part.

The discussion is analogous for equation (18) for calculating a CCF for disjunctions

where de Morgan rule, stating (e1 e2) as logically equivalent to e1 e2, is

integrated by taking conjunction in the disbelief part of the resulting CCF.

94

5 Propagation of complex certainty factors

This section discusses serial and parallel propagation of CCF. We begin with discus-

sions of some practical drawbacks of the CF models in propagating disbelief in rules

and declare requirements for the CCF model in order to overcome these drawbacks. We

come up with a four-dimensional CCF for rules. By exploiting local consistency of

knowledge, these more complex certainty factors are shown to be reducible into two

types with only two dimensions, respectively. A visualization of these two types pro-

vides an easy-to-use graphical tool for expert’s knowledge acquisition.

5.1 Disbelief propagation in CF model and requirements for CCF model

Let us consider the practical difficulties in systematically propagating disbelief in the

classical certainty factor model by considering some illustrating examples with given

CF for rules and evidences:

(R1) If E then H (CF –0.8)

 E (CF +0.5) CF(H) = +0.5*(-0.8) = – 0.4

 (R2) If E then H (CF 0.8) Rule is not applicable

 E (CF –0.5) -/- -/- CF(H) = – 0.5*0.8 = – 0.4 (false!!)

Rule (R2) cannot be invoked, because of negative CF of evidence. In order to propa-

gate disbelief in E in the second example, another rule is necessary:

 (R3) If E then H (CF 0.6) CF(E) = – (– 0.5) = 0.5

 E (CF –0.5) CF(H) = 0.5*0.6 = 0.3

Thus, disbelief can only be propagated in the CF model, if an additional rule with E

in the premise is declared. Disbelief in H from disbelief in E can be propagated by:

 (R4) If E then H (CF –0.6) CF(E) = – (– 0.5) = 0.5

 E (CF –0.5) CF(H) = 0.5*(– 0.6) = –0.3

Because this kind of Rules (R3) or (R4) are not well-kept in expert systems besides

(R1) or (R2), the MD (also if it predominates MB) is not further propagated in a „pos-

itive“ argumentation chain. Let us consider the case that the expert always defines both

rules; (R) with positive evidence and (dR) with negative evidence condition:

 (R) If E then H CF = MB – MD

 with MB = MB(H|E) and MD = MD(H|E)

 (dR) If E then H dCF = dMB – dMD

 with dMB = MB(H|E) and dMD = MD(H|E)

Here, dMB and dMD are the measures of (increased) belief and disbelief in H under

disbelief in E. While rule (R) propagates belief in evidence E, (dR) propagates disbelief

in the evidence E. Although the rules of the first kind can generate disbelief as in the

example (R1), this disbelief can be further propagated only by a rule of type (dR). Con-

sidering H as an intermediate result, CF(H) = -0.4 after applying (R1) can be further

propagated only by a rule of the form (dR1) if H then K. If the CF of (dR1) is

positive an increased belief in K is propagated and if it is negative, disbelief in K results.

95

Requirement for the CCF of a rule (Req. 3): Since the complex certainty factor of

evidence CCF(E) = b + i d contains both MB and MD, the CCF of a rule must contain

belief and disbelief of the certainty factors of both rules (R) and (dR), in order that MB

and MD of propositions could be further propagated simultaneously.

5.2 Complex certainty factors for rules and their serial propagation

To fulfill requirement (Req. 3), we define the complex certainty factor CCF(R) for a

rule (R) If E then H

as CCF(R) := tt MB + tf MD + ft dMB + ff dMD (20)

The four dimensions of the CCF(R) mean:

 tt MB belief in truth of evidence E results in belief of truth of hypothesis H

 + tf MD belief in truth of the evidence results in belief in falsehood of H

 + ft dMB belief in falsehood of the evidence results in belief in truth of H

 + ff dMD belief in falsehood of evidence results in belief in falsehood of H

Given this more complex certainty factors for rules, two interesting questions arise:

 How to calculate therewith? (serial/parallel propagation of CFF)

 How can CCF‘s of rules be simplified in order to be more accessible to experts?

Let us begin with serial propagation. Let be given

(R) If E then H with CCF(R) := tt MB + tf MD + ft dMB + ff dMD

and CCF(E) = b + i d

Then the CCF(H) is calculated as follows:

 CCF(H) = CCF(E) * CCF(R) (special CCF multiplication)

 := or(b*MB, d*dMB) + i or(b*MD, d*dMD) (21)

Here or(b*MB, d*dMB) represents the belief part in the hypothesis H resulting from

parallel propagation of b (belief in E) multiplied by MB (tt part of rule’s CCF) and of

d, (disbelief in E) multiplied by dMB (ft part). Here both tt part and ft part yield belief

in truth of H. Similarly, or(b*MD, d*dMD) represents the disbelief part in H resulting

from the parallel propagation of b (belief in E) multiplied by MD (tf part of rule’s CCF)

and of d (disbelief in E) multiplied by dMD (ff part). Here both tf part and ff part yield

belief in falsehood of H. As will be clear in 5.3, only one element of each or-expression

can be positive (or(x,0) = or(0,x) = x). Let us consider some examples:

 CCF(R) = tt 0.9 + ff 0.4 and CCF(E) = 0.7 + i 0.3

 CCF(H) = or(0.7*0.9, 0) + i or(0, 0.3*0.4) = 0.63 + i 0.12

 CCF(R) = tf 0.9 + ft 0.4 and CCF(E) = 0.7 + i 0.3

 CCF(H) = or(0, 0.3*0.4) + i or(0.7*0.9, 0) = 0.12 + i 0.63

5.3 Simplification of rules’ CCF and graphical interpretation

Why have we only put two components within a rule’s CCF in the above two examples?

The answer is that else we would have local inconsistency of knowledge (see below).

And the good news is that only two types of CCF exist for locally consistent rules:

 Type 1: MB > 0 and dMD > 0 CCF(R) = tt MB + ff dMD as the first example

 Type 2: MD > 0 and dMB > 0, CCF(R) = tf MD + ft dMB as second example

96

Requirement of local consistency of knowledge (Req. 4): Expert belief according to

an if-then-rule should be (at least locally for this rule) consistent:

1. From definition of local consistency of belief in (7) and (8), we have:

 MB > 0 MD = 0 and MD > 0 MB = 0 and

analogously: dMB > 0 dMD = 0 and dMD > 0 dMB = 0 (22)

2. We show, that additionally:

 MB > 0 dMD > 0 as P(H|E)>P(H) P(H)>P(H|E) (23)

 and MD > 0 dMB > 0 as P(H|E)<P(H) P(H)<P(H|E)

From (22) it follows that only two positive components (> 0) occurs in a CCF for each

consistent rule. And from (23), it follows that only the above two types 1 and 2 of the

four combinations of two components are possible. Let us give a short proof for (23):

Applying Bayes rule: P(E|H) = [P(H|E)*P(E)]/P(H) = [P(H|E)/P(H)]*P(E) > P(E)

for the case P(H|E) > P(H), i.e. P(H|E)/P(H) > 1. Using total probability principle

P(E|H) + P(E|H) = 1, we deduce 1- P(E|H) > P(E) and thus P(E|H) < 1-P(E),

i.e., P(E|H) < P(E) or P(E|H)/P(E) < 1. Applying Bayes rule again P(H|E)

= [P(E|H)*P(H)]/P(E) = [P(E|H)/P(E)]* P(H), we deduce P(H|E) < P(H).

Is it possible to have only one positive component as in the pure logical implication

under certainty? Under uncertainty, experts sometimes think that a consequence rule

(R) if E then H with MB > 0 does only apply, if positive belief in E is present, and that

disbelief in E doesn’t mean anything for H. The proven equivalences (23) tell us that

dMD must also be positive, that is, disbelief in H should in this case be positive. How-

ever, dMD doesn’t have to be of same intensity as the measure of belief MB (cf. exam-

ple in 3.2: (R1) if Rain then Wet (MB=0.9) but (dR1) if Rain then Wet (dMD =0.3)).

5.4 Visualization of rules’ CCF for Expert knowledge acquisition

Having reduced rule’s CCF to only two types each with a special structure with only

two positive components, we are able to visualize CCF for rules as in Figure 3.

(a) Type 1: CCF(R) = tt MB + ff dMD (b) Type 2: CCF(R) = tf MD + ft dMB

Figure 3: Visualization of complex certainty factors for rules

The visualization shows that the two positive components of a rule’s CCF are always

in diagonal quadrants, either Q(E,H) and Q(E,H) or Q(E,H) and Q(E,H). A

positive measure of belief MB = MB(H|E) for type 1 CCF in quadrant Q(E,H) must be

accompanied by a positive dMD = MD(H|E) = MB(H|E) in quadrant Q(E,H).

Likewise a positive measure of disbelief MD = MD(H|E) = MB(H|E) for type 2 CCF

in quadrant Q(E,H) must be accompanied by a positive dMB = MB(H|E) in quadrant

97

Q(E,H). The expert has only to adjust the intensity of belief and disbelief on diagonal

quadrants graphically by moving the respective points (Figure 3, small double arrows).

The two intensities are generally not equal, further one of them may be certain and the

other uncertain, e.g., the rule if Pregnant then Women has MB = 1 and dMD < 1 because

a non-pregnant human being can be a man (Women) or a non-pregnant women.

5.5 Parallel propagation of complex certainty factors

As for the CF model, parallel CCF propagation apply when two rules have the same

conclusion or hypothesis H (two co-concluding rules):

(R1) if E1 then H (CCFR1)

(R2) if E2 then H (CCFR2)

Let the certainty factors for H be: x1 + i y1 = CCFR1(H) and x2 + i y2 = CFR2(H)

as calculated by serial propagation (21) applied to (R1) and (R2), respectively, then the

resulting complex certainty factor for H is calculated by the following formulas:

CCF(H) = (x1 + x2 – x1*x2) + i (y1 + y2 – y1*y2) (24)

Not only the belief part (x1 + x2 – x1*x2) of CCF(H) substantiates both belief values of

CCFR1(H) and CCFR2(H) as in (15a), but also the disbelief part (y1 + y2 – y1*y2) sub-

stantiates both disbelief values of CCFR1(H) and CCFR2(H), too. Endorsed beliefs and

endorsed disbeliefs remain separated from each other and not combined unlike the CF

model using (15c). Having CFR1(H)= -0.5 and CFR2(H)=0.9 results into CF(H) = 0.4/0.5

= 0.80 using (15c). This corresponds to CCFR1(H) = i 0.5 and CCFR2(H) = 0.9 resulting

into CCF(H) = 0.9 + i 0.5 by (24). Disbelief in H from applying (R1) remains apparent

in CCF(H), unlike in the pure positive CF(H). Further, the case (15d) having an unde-

fined certainty factor corresponds to CCFR1(H) = 1 and CCFR2(H) = i with the defined

result CCF(H) = 1 + i signalizing an absolute inconsistency derived for H.

As discussed in 3.3, co-concluding rules can be seen as disjunctive parts for H in

case of two beliefs (15a) and for H in case of two disbeliefs in H, i.e. beliefs in H

(15b). In case of co-concluding rules, the CCF model calculate CF simultaneously for

these two disjunctions and let them separated in the confirmation and disconfirmation

part of the CCF result. Note the difference to evaluating one disjunction in expressions

of evidences with both belief and disbelief parts in (18) where conjunction is used in

the disbelief part, implicitly applying de Morgan rule. This explains the divergence of

(18) and (24) in the disconfirmation/disbelief part. As discussed in 3.3 we may vary the

t-conorm used for co-concluding rules according to their grade of dependency in direc-

tion to the case of overlapping (max(x1,x2)) or disjointedness (min(1, x1+x2)).

6 Application and interpretation of gradual inconsistency

The CCF model is applied to the financial crisis example of 3.6 and shown to correctly

propagate disbelief and distrust in argumentations and to detect gradual inconsistency.

We introduce a skepticism factor which together with the standard CF can better reflect

uncertainty in derived conclusions. Finally, we interpret and classify gradual incon-

sistency into 2 types, namely inherent inconsistency and apparent inconsistency.

98

6.1 Financial crisis revisited – applying the CCF model

Let us consider the financial crisis example of section 3.6 (Figure 1) again and apply

the propagation of complex certainty factors in the following Figure 4:

Figure 4: Applying CCF model to the financial crisis example

The disbelief of the wise man in rating of derivative C is now modeled by CCFR2(C) =

i 0.9 resulting from serial propagation (cf. (20) and (21) in 5.2) using a rule of type 2:

CCF(R2) = tf 0.9 + ft 0.15 and CF(E) = 1. Having CCFR1(C) = 0.98 from the ratings of

experts E1 and E2, we get by applying parallel propagation (cf. (24) in 5.5) the two-

dimensional complex certainty factor CCF(C) = 0.98 + i 0.9 for derivative C. The CCF

of derivative D being defined as conjunctive composition of A and C is then calculated

by CCF(D) = and(CCF(C), CCF(A)) = and(0.98 + i 0.9, 0.999) = and(0.98, 0.999) + i

or(0.9, 0) = 0.98 + i 0.9 (using (17) incorporating de Morgan in 4.3). The rating of

derivative D was 0.98 without advice of the wise man and 0.80 with his advice using

the CF model. But the situation changes when applying the CCF model, since disbelief

of the wise man is now apparent in the disconfirmation part (i 0.9) of CCF(D) being

MD = 0.9. This MD in CCF(D) = 0.98 + i 0.9 stands opposed to the propagated opinion

of the two experts of MB = 0.98 represented by the belief part of the same CCF(D).

The situation can be described as very skeptical and the grade of inconsistency is very

high, as it is near to the point of absolute contradiction 1 + i (cf. Figure 2 in 4.2).

6.2 Skepticism factor

A CCF(H)=MB + i MD for a conclusion in causal reasoning or a hypothesis in diag-

nostic reasoning can easily be translated to a common certainty factor as in (15) by:

𝐶𝐹(𝐻) =
𝑀𝐵 −𝑀𝐷

1 −min(𝑀𝐵,𝑀𝐷)
 𝑓𝑜𝑟 (𝑀𝐵,𝑀𝐷) ≠ (1,1) (25)

As this CF obscures the partial inconsistency, we associate another factor reflecting the

skepticism in CF(H). This skepticism factor SF(H) can be defined as follows:

𝑆𝐹(𝐻) =
min (𝑀𝐵,𝑀𝐷)

max (𝑀𝐵,𝑀𝐷)
 𝑓𝑜𝑟 (𝑀𝐵,𝑀𝐷) ≠ (0,0) (26)

As max(MB,MD) signalizes the amplitude of belief/disbelief in direction or sign of CF,

the skepticism is then the ratio of the amplitude of the disbelief/belief against the CF,

99

i.e. min(MB,MD) with respect to the former amplitude max(MB,MD). Applying (25)

and (26) to our previous result CCF(D) = 0.98 + i 0.9, we get CF(D) = (0.98 – 0 .9) /(1

– min(0.98,0.9)) = 0.08/(1 – 0,9) = 0.08/0.1 = 0.8, i.e. 80% certainty in belief, but with

SF(D) = min(0.98,0.9)/max(0.98,0.9) = 0.9/0.98 = 0.92, i.e. 92% of skepticism.

For points near to the diagonal (MB almost equal MD), formula (26) calculates a SF

of almost 1 where CF being near to 0 (all point on the diagonal iso-CF line have CF=0,

cf. figure 2). To account for the amplitude of CCF, i.e. distinguishing cases 0.2 + i 0.2

and 0.9 + i 0.9, we may integrate avg(MB,MD)=(MB+MD)/2 in (26). Also, the product

MB*MD, being a t-norm for independent propositions is 1 only for absolute incon-

sistency, but is very small for small MB and MD values (0.04 for 0.2+i 0.2). If setting

SF= MB*MD, so for a fixed SF0, the formula corresponds to an iso-SF hyperbole MD

= SF0/MB crossing iso-CF lines of Figure 2. As SF is meant to be an indicator of skep-

ticism, it can be designed as a weighted sum mixture (for (𝑀𝐵,𝑀𝐷) ≠ (0,0),∝𝑖≥ 0):

 𝑆𝐹(𝐻) = ∝1
min (𝑀𝐵,𝑀𝐷)

max (𝑀𝐵,𝑀𝐷)
 +∝2

𝑀𝐵 +𝑀𝐷

2
+ ∝3 𝑀𝐵 ∗𝑀𝐷 𝑤𝑖𝑡ℎ ∝1+ ∝2+ ∝3 = 1 (27)

6.3 Interpretations of gradual inconsistency

After presenting the CCF model aiming at detecting absolute and partial inconsisten-

cies, we now ask retrospectively what are the possible interpretations of a two-dimen-

sional complex certainty factor CCF = MB + i MD with both strictly positive confirma-

tion MB and disconfirmation MD parts? We principally discovered two types:

 Type 1: Inherent inconsistency: This type can either be a case of

─ absolute inconsistency of a knowledge base, or else a case of

─ inherent partial inconsistency due to opposite opinions of several experts or

(partially) self-contradictory knowledge of the same expert

 Type 2: Apparent inconsistency: Partial inconsistencies of this type can be

resolved in belief or disbelief by acquiring more specific information (!)

Let us discuss possible situations for the first type of inherent inconsistency. As shown

by the financial crisis example, a typical interpretation of gradual inconsistency is that

of opposite opinions of different experts. As discussed in Sect. 2 another kind of inher-

ent inconsistency emerges when rules of the same expert lead to contradictory conclu-

sions (self-contradictory knowledge). These types may accentuate to a case of globally

inconsistent knowledge in a logical sense: For instance, the absolute certain facts A and

B together with the locally consistent rules (R1) if A then C with MB1 = 1 and (R2) if

B then C with MD2 = 1 lead to a (global) logical contradiction: CCF(C) = 1+i. Self-

inconsistent knowledge of “experts” can also arise, e.g. in politics, when consciously

using vague or fuzzy notions like “fight on terrorism” without clear definition and hid-

ing some knowledge such as “suspicious economic interest”. Thus, using unspecified /

vague / fuzzy notions and uncovering expert’s hidden knowledge as a special case of

detecting implicit knowledge could interpret partial/absolute inherent inconsistency.

Now, we discuss the second type of resolvable apparent inconsistency. Partial in-

consistency can emerge in case of missing specific information, e.g., due to predictive

knowledge about future events. Knowing no more specific information about an animal

100

than being a bird leads to a high MB for “Flying”, e.g., CF = CCF = 0.95. Upon knowing

that the bird is a penguin with heavy weight and small wings MD(Flying) = 1, the CCF

becomes by parallel propagation CCF = 0.95 + i. At a first glance, this example from

default reasoning represents a situation of high degree of inconsistency. Following the

interpretation of [11] (cf. 3.4), distrust is nullified upon knowing absolutely certain be-

lief or disbelief (+ i). For this, the knowledge should be consistent (not only locally).

Generally, a two-dimensional CCF with high skepticism should trigger further anal-

ysis of the situation, in order to interpret this skepticism into a type of opposite opinions

or any type of contradictions, or else a case of ambiguity, incertitude or ignorance be-

cause of lack of specific or complete information. Let us only know that an animal is a

bird with heavy weight. Against a high measure of belief applying the rule that “almost

all birds fly” MB(Flying) = 0.95, we may deduce from another rule, that “animals with

heavy weights are very likely flightless”, a high measure of disbelief in “Flying”, e.g,

MD(Flying) = 0.99. Thus, the resulting CCF = 0.95 + i 0.99 indicates that the animal

at hand is a flightless bird, but with high skepticism. The interpretation of this incon-

sistency of high degree can only be resolved, upon knowing more specific information

about the examined animals (in general, objects or object subclasses), e.g., whether the

bird has small or large wings. In the first case, like the example of a penguin, it is

definitely flightless and in the second case, it may fly like the example of a pelican in

spite of its heavy weight which may attain 15kg (length of more than 1.80m, cf. English

Wikipedia entry “list of largest birds”). Therefore, the skepticism gives rise to goal-

driven acquisition of more specific knowledge about the object instance and object sub-

classes as well as about probabilistic and causal relationships between them.

Acquiring more specific knowledge helps in resolving partial inconsistency in a pro-

cess of disambiguation or mitigation of uncertainties. These aspects are related to the

phenomenon of missing explanatory attributes, variables, or propositions, known in

decision theory. Acquiring more specific knowledge may be performed by observations

of the examined objects (e.g., birds, patients) or learning more about other attributes of

examined objects (wings, symptoms). Data mining techniques may help finding rela-

tionships to (missing) attributes or properties of examined objects and object classes.

If no specific knowledge is available, a disambiguation can be represented by means

of a case analysis on some not sufficiently specified attributes (this is a crucial point

further discussed in the concluding remarks). For the latter example, the answer could

be “if the heavy weight bird has large wings, then it is likely to fly else it is flightless”.

This case analysis recognizes cases with stronger / certain beliefs or disbeliefs.

The remaining question is now: How to distinguish between inherent inconsistency

and apparent inconsistency (Type 1 and Type 2 of gradual inconsistency)? The former

type leads to genuine contradictions and the latter is resolvable upon knowing sufficient

specific information. For the distinction, one may reason under what is known in deci-

sion theory as perfect information (that is usually absent in uncertainty reasoning). If

the inconsistency persists, then it is of type 1, i.e. an inherent inconsistency. If the in-

consistency could be resolved under perfect information, it is likely of type 2. If all

cases of possible perfect information are sketched (all possible worlds), then we have

exactly a resolvable apparent inconsistency of type 2 and the knowledge base is likely

to be consistent, at least in the subset of knowledge concerning the derivations.

101

7 Conclusion and future work

In this paper, we disclosed the phenomenon of gradual inconsistencies encountered in

knowledge processing with uncertainty. We provided new formalism and inference

tools based on complex certainty factors for rule-based systems capable of detecting

inconsistencies in argumentations and of propagating them until final derivations. Our

two-dimensional CCF for facts help visualizing grades of inconsistency and our four-

dimensional CCF for rules, reduced into two types each with only two dimensions,

suggest that derivation of goals should simultaneously consider belief and disbelief.

Our interpretation and classification of gradual inconsistencies in inherent and ap-

parent inconsistencies stress the issue of reasoning under incomplete knowledge and the

usefulness of case analysis for the resolution of inconsistencies. We are now extending

the CCF rule-based approach to a non-Horn environment of reasoning where case anal-

ysis inference is embedded in consequence chains. This type of inference, presented in

our earlier work [9] for disjunctive logic programming and for two-, three- and four-

valued logic, is capable of nested case analysis inference for goals and subgoals and of

message-passing of assumptions in argumentation chains for cases (enabling condition-

ing and summation as in belief networks). Integrating the CCF methodology, we then

could offer a competitive inference system under uncertainty—without anomalies.

References

1. Adams, J.B.: A probability model of medical reasoning and the MYCIN model. Mathemat-

ical Biosciences, 32, pp. 177-186 (1976)

2. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M. and Epstein, G. (eds.) Modern use

of multiple-valued logic, pp. 8-37. Reidel Dordrecht, Holland (1977)

3. Buchanan, B.G. and Duda, R.O.: Principles of Rule-Based Expert Systems. Technical report

STAN-CS-82-926, Dept. computer science, Stanford University (1982)

4. Duda, R. O., Hart, P. E., and Nilsson, N. J.: Subjective Bayesian Methods for Rule-Based

Inference Systems. AI Center, Tech. Note 134, Stanford Res. Institute. California (1976)

5. Heckermann, D.E.: Probabilistic interpretations for MYCIN’s certainty factors. In: Kanal,

L. and Lemmer, J. (eds.) Uncertainty in AI, pp. 67-196. North-Holland, New York (1986)

6. Heckermann, D.E. and Horovitz: The myth of modularity in rule-based systems. In Kanal,

L. and Lemmer, J. (eds.) Uncertainty in AI 2, pp. 23-34. North-Holland, New York (1988)

7. Heckermann, D.E. and Shortliffe, E. H.: From Certainty Factors to Belief Networks, Artifi-

cial Intelligence in Medicine, Volume 4, Issue 1, pp. 35-52 (1986)

8. Lucas, P.J.F.: Certainty-factor-like structures in Bayesian networks. Knowledge-Based Sys-

tems 14, pp. 327-335 (2001)

9. Mellouli, T.: TMPR: A Tree-Structured Modified Problem Reduction Proof Procedure and

Its Extension to Three-Valued Logic. Journal of Automated Reasoning 12, pp. 47-87 (1994)

10. Pierce, J.: Probabilistic Reasoning in Intelligent systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers, Inc., San Francisco, California (1988)

11. Shortliffe, E.H., and Buchanan, B.G.: A Model of Inexact Reasoning in Medicine. Mathe-

matical Biosciences 23, pp. 351-379 (1975)

12. van Melle, W.: A domain independent system that aids in constructing knowledge base con-

sultation programs”. PhD thesis. Stanford university, STAN-CS-80-820 (1980)

102

Part II

23rd International
Workshop on Functional
and (Constraint) Logic

Programming

Declarative Multi-paradigm Programming

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. This tutorial provides an overview and introduction to
declarative programming exploiting multiple paradigms, in particular,
functional, logic, and constraint programming. To demonstrate the pos-
sibility to support these paradigms within a single programming model,
we survey the features of the declarative multi-paradigm language Curry.

1 Overview

Compared to traditional imperative languages, declarative programming lan-
guages provide a higher and more abstract level of programming that leads to
reliable and maintainable programs. However, there is no distinct “declarative
programming” paradigm. Instead, there are various programming paradigms and
related languages based on different methods to structure declarative knowledge.
Functional programming is based on the lambda calculus and provide functions
as computational entities. Logic programming is based on first-order predicate
logic and uses predicates as basic programming entities. Constraint program-
ming offers constraint solvers to reason about models described with the help
of various constraint structures. Although the motivation to exploit high-level
programming is similar in all paradigms, the concrete languages associated to
them are quite different. Thus, it is a natural idea to combine these worlds of
programming into a single paradigm, and attempts for doing so have a long
history. However, the interactions between functional and logic programming
features are complex in detail so that the concrete design of such declarative
multi-paradigm languages is a non-trivial task. This is demonstrated by a lot of
research work on the semantics, operational principles, and implementation of
functional logic languages since more than two decades. Fortunately, recent ad-
vances in the foundation and implementation of functional logic languages have
shown reasonable principles that lead to the design of practically applicable
programming languages.

This tutorial provides an overview on the principles of integrated functional
logic languages. As a concrete programming language, we survey the declarative
multi-paradigm language Curry1 [13, 20]. It is developed by an international
initiative of researchers in this area and intended to provide a common platform
for research, teaching, and application of integrated functional logic languages.

1 http://www.curry-language.org

105

Details about functional logic programming and Curry can be found in recent
surveys [5, 18] and in the language report [20].

The integration of functional and logic programming has various advantages.
Beyond the fact that one can use the best features of declarative languages
in a single language, like strong typing, higher-order functions, optimal (lazy)
evaluation from functional programming, or non-determinism, computing with
partial information, and constraint solving from logic programming, there are
also clear advantages compared to the individual paradigms. For instance, the
combination of lazy evaluation and non-determinism leads to a demand-driven
exploration of the search space which is sometimes more efficient and optimal
for particular classes of programs [2]. Moreover, non-declarative features, which
are regularly used in practical logic programs, can be avoided in functional logic
languages, e.g., by functional notation or declarative I/O [22].

The combined features offered by functional logic languages led to new design
patterns [3, 6], better abstractions for application programming (e.g., program-
ming with databases [7, 11], GUI programming [14], web programming [15, 16,
19], string parsing [10]), and new techniques to implement programming tools,
like partial evaluators [1] or test case generators [12, 21]. In particular, functional
patterns, as proposed in [4], exploit non-determinism from logic programming
and demand-driven pattern matching from functional programming in order
to achieve a powerful executable specification method. For instance, functional
patterns have been used for XML processing [17] where it has been shown that
specialized logic programming approaches [8, 9] can be implemented with a few
lines of code in Curry. Some of these techniques are reviewed in this tutorial.

References

1. M. Alpuente, M. Falaschi, and G. Vidal. Partial evaluation of functional logic
programs. ACM Transactions on Programming Languages and Systems, 20(4):768–
844, 1998.

2. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

3. S. Antoy and M. Hanus. Functional logic design patterns. In Proc. of the 6th
International Symposium on Functional and Logic Programming (FLOPS 2002),
pages 67–87. Springer LNCS 2441, 2002.

4. S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

5. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, 2010.

6. S. Antoy and M. Hanus. New functional logic design patterns. In Proc. of the
20th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2011), pages 19–34. Springer LNCS 6816, 2011.

7. B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry.
In Proc. of the Tenth International Symposium on Practical Aspects of Declarative
Languages (PADL’08), pages 316–332. Springer LNCS 4902, 2008.

106

8. F. Bry and S. Schaffert. A gentle introduction to Xcerpt, a rule-based query and
transformation language for XML. In Proceedings of the International Workshop
on Rule Markup Languages for Business Rules on the Semantic Web (RuleML’02),
2002.

9. F. Bry and S. Schaffert. Towards a declarative query and transformation language
for XML and semistructured data: Simulation unification. In Proceedings of the In-
ternational Conference on Logic Programming (ICLP’02), pages 255–270. Springer
LNCS 2401, 2002.

10. R. Caballero and F.J. López-Fraguas. A functional-logic perspective of parsing.
In Proc. 4th Fuji International Symposium on Functional and Logic Programming
(FLOPS’99), pages 85–99. Springer LNCS 1722, 1999.

11. S. Fischer. A functional logic database library. In Proc. of the ACM SIGPLAN 2005
Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages 54–
59. ACM Press, 2005.

12. S. Fischer and H. Kuchen. Systematic generation of glass-box test cases for func-
tional logic programs. In Proceedings of the 9th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP’07),
pages 63–74. ACM Press, 2007.

13. M. Hanus. A unified computation model for functional and logic programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pages 80–93, 1997.

14. M. Hanus. A functional logic programming approach to graphical user interfaces. In
International Workshop on Practical Aspects of Declarative Languages (PADL’00),
pages 47–62. Springer LNCS 1753, 2000.

15. M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pages 76–92. Springer LNCS 1990, 2001.

16. M. Hanus. Type-oriented construction of web user interfaces. In Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pages 27–38. ACM Press, 2006.

17. M. Hanus. Declarative processing of semistructured web data. In Technical
Communications of the 27th International Conference on Logic Programming, vol-
ume 11, pages 198–208. Leibniz International Proceedings in Informatics (LIPIcs),
2011.

18. M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS
7797, 2013.

19. M. Hanus and S. Koschnicke. An ER-based framework for declarative web pro-
gramming. Theory and Practice of Logic Programming, 14(3):269–291, 2014.

20. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.3). Avail-
able at http://www.curry-language.org, 2012.

21. C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy smallcheck: au-
tomatic exhaustive testing for small values. In Proc. of the 1st ACM SIGPLAN
Symposium on Haskell, pages 37–48. ACM Press, 2008.

22. P. Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263,
1997.

107

Interpreting XPath by Iterative Pattern
Matching with Paisley

Baltasar Trancón y Widemann12 and Markus Lepper2

1 Ilmenau University of Technology
2 <semantics/> GmbH

Abstract. The Paisley architecture is a light-weight EDSL for non-deter-
ministic pattern matching. It automates the querying of arbitrary object-
oriented data models in a general-purpose programming language, using
API, libraries and simple programming patterns in a portable and non-
invasive way. The core of Paisley has been applied to real-world appli-
cations. Here we discuss the extension of Paisley by pattern iteration,
which adds a Kleene algebra of pattern function composition to the un-
restricted use of the imperative host language, thus forming a hybrid
object-oriented–functional–logic framework. We subject it to a classical
practical problem and established benchmarks: the node-set fragment of
the XPath language for querying W3C XML document object models.

1 Introduction

The Paisley embedded domain-specific language (EDSL) and library adds the
more declarative style of pattern matching to the object-oriented context of
Java programming [9,10]. Paisley offers a combination of features that is, by
our knowledge, not offered by any other existing pattern matching solution for a
main-stream language: it is strictly typed, fully compositional, non-invasive and
supports non-determinism, full reification and persistence.

The non-deterministic aspects of Paisley have been demonstrated to provide
a fairly powerful basis for embedded logic programming in the object-oriented
host environment. In [11] we have discussed how to solve cryptarithmetic puzzles
with the backtracking facilities of Paisley, and how to obtain non-trivial efficient
search plans by object-oriented meta-programming with Paisley pattern objects.

Here we describe and evaluate recent extensions to Paisley that greatly in-
crease its capabilities as an embedded functional-logic programming system,
supporting more complex control and data flow than the combinatorial gen-
erate&test tactics of [11]. In particular, the novel contributions are:

1. in the core layer, a calculus of functions on patterns and its Kleene algebra,
thus providing regular expressions of nested patterns;

2. in the application layer, a library extension that demonstrates their use by
matching W3C XML Document Object Models with XPath [3] expressions;

3. a practical case study that evaluates the approach in comparison with stan-
dard on-board facilities of the host language Java.

108

Variants: 1 .//a[@href] 2 .//p//a[@href] 3 .//p[.//a[@href]]

void collect (int variant, Node node, Collection〈Element〉 results,
boolean sideways) {

if (node instanceof Element) {
Element elem = (Element)node;
if (elem.getTagName().equals(variant == 1 ? ”a” : ”p”)) {

if (variant > 1) {
Collection〈Element〉 sub = variant == 2 ? results : new ArrayList〈 〉();
collect(1, elem, sub, false);
}
if (variant == 1 && !elem.getAttribute(”href”).equals(””) ||

variant == 3 && !sub.isEmpty())
results.add(elem); // solution

}
}
if (node.getFirstChild() != null)

collect(variant, node.getFirstChild(), results, true); // depth
if (sideways && node.getNextSibling() != null)

collect(variant, node.getNextSibling(), results, true); // breadth
}

Fig. 1. Three related XML queries. Top: XPath expressions; bottom: Java code.

2 Motivation

The basic motivation for a pattern matching EDSL is that patterns as language
constructs make data-gathering code more declarative, and thus more readable,
more writable and more maintainable. If done properly, this additional expres-
sive power can be used to factor code compositionally in ways that are not
straightforwardly possible in a conventional object-oriented approach, where the
logic and data flow of a complex query often appear as cross-cutting concerns.

As an example that highlights the issues of logical compositionality, consider
a family of three related XPath expressions, depicted in Fig. 1, that select nodes
from XHTML documents. The first selects, from the context node and its descen-
dants, all <a> elements (hyperlink anchors) that have a href (target) attribute
specified. The second selects only those <a> elements with href attributes that
are nested within <p> elements (paragraphs). The third selects all <p> elements
that have some <a> element with href attribute nested within.

The task is to implement the specified search procedures, as object-oriented
queries of the standard W3C X(HT)ML Document Object Model. Evidently,
one wishes to implement most of the operational code generically, with reuse
and minimal adaptation for each of the three variants. Additionally, the second
and third variant should be able to use the first recursively. To emphasize the
role of reuse in this example, Fig. 1 gives a unified implementation, where the
identifier variant is grayed out to emphasize that all its occurrences serve only the
static choice between the variants. The common algorithm is to traverse nodes

109

by depth-first search, and add all valid matches, possibly repeatedly, to a results
collection supplied by the caller. Two further improvements of the solution are
suggested as exercises to the reader:

1. Of course, code that works for these three, but no other XPath expressions
is hardly generic. Abstract to a large, preferrably unbounded, set of useful
XPath expressions. Refactor the code to separate commonalities and indi-
vidual degrees of freedom, as cleanly as possible.

2. The use of a Collection for matches implies eager evaluation. This is not
efficient for the recursive calls from variant 3 to variant 1, where searching
can be aborted after the first successful match (which falsifies sub.isEmpty()).
Refactor the code to allow for lazy evaluation, as transparently as possible.3

See section 5 and Fig. 4 below for our proposed solution. We do not claim that
these refactoring steps are infeasible in any particular previous framework. But
we shall demonstrate that the Paisley approach naturally gives both pragmatic
design guidelines, and a concrete notation for the adequate, abstract, modular
and efficient expression of the underlying algorithm and its instantiations.

3 Basic Matching with Paisley

The design principles, semantics and APIs of Paisley patterns have been discussed
in detail in [9,10,11]. The EDSL is extremely lightweight: It requires no language
or compiler extension; API calls and programming idioms are sufficient for its
full expressive power. The core API is summarized in Fig. 2.

The root of the pattern hierarchy is the abstract base class Pattern〈A〉 of
patterns that can process objects of some arbitrary type A. A pattern Pattern〈A〉 p
is applied to some target data x of type A by calling p.match(x), returning a
boolean value indicating whether the match was successful.

Complex patterns are composed from application-layer building blocks that
implement classifications and projections, the reification of instance tests and
getter methods, respectively. These can be defined independently for arbitrary
(public interfaces of) data models, requiring no intrusion into legacy code. Paisley
comes with predefined bindings for common Java data models, such as the
Collection framework; more can be added by the user. Each projection x from
type A to B induces by contravariant lifting a construction of type Pattern〈A〉 from
Pattern〈B〉, conveniently implemented as a method Pattern〈A〉 getX(Pattern〈B〉 p).

Information is extracted from a successfully matched pattern via embedded
pattern variables. A pattern Variable〈A〉 v matches any value A x, and stores a
reference to x that can be retrieved by invoking v.getValue(). Variables behave like
imperative rather than logical variables; subsequent matches merely overwrite
the stored value, no unification is implied.4

3 This task is inherently much more difficult in conventional programming languages
than in logic and lazy functional approaches; cf. [5].

4 This design choice enables the use of Paisley for general, object-oriented data models,
where stable notions of equality, let alone an induction principle, cannot be taken
for granted. See section 4 for the handy implications of the imperative perspective.

110

abstract class Pattern〈A〉 {
public abstract boolean match(A target);
public boolean matchAgain();

public static 〈A〉 Pattern〈A〉
both(Pattern〈? super A〉 first, Pattern〈? super A〉 second);

public static 〈A〉 Pattern〈A〉
either(Pattern〈? super A〉 first, Pattern〈? super A〉 second);

public Pattern〈A〉 someMatch();
}

class Variable〈A〉 extends Pattern〈A〉 {
public A getValue();

public 〈B〉 List〈A〉 eagerBindings(Pattern〈? super B〉 root, B target);
public 〈B〉 Iterable〈A〉 lazyBindings(Pattern〈? super B〉 root, B target);

public 〈B〉 Pattern〈B〉 bind(Pattern〈? super B〉 root, Pattern〈? super A〉 sub);
public Pattern〈A〉 star(Pattern〈? super A〉 root);
public Pattern〈A〉 plus(Pattern〈? super A〉 root);
}

Fig. 2. Interface synopsis (core).

Patterns can be composed conjunctively and disjunctively by the binary com-
binators both and either, or their n-ary variants all and some (not shown), respec-
tively. As in traditional logic programming, disjunction is realized as backtrack-
ing: After each successful match for a pattern p, p.matchAgain() can be invoked
to backtrack and find another solution. Solutions can be exhausted, in an im-
perative style of encapsulated search, by the following programming idiom:

if (p.match(x)) do
doSomething();

while (p.matchAgain());

When not using an exhaustive loop, the computation of alternative solutions can
be deferred indefinitely; the required state for choice points is stored residually
in the instances of the logical combinators themselves.

The search construct can be abbreviated further to a functional style if the
desired result of each match is the value stored in a single pattern variable v.
Invoking v.eagerBindings(p, x) or v.lazyBindings(p, x) returns objects that give the
value of v for all successive matches, collected beforehands in an implicit loop,
or computed on iterator-driven demand, respectively. The latter can also deal
with infinite sequences of solutions.

For cases where only the satisfiability of a pattern p, but not the actual
sequence of solutions, is of concern, one can invoke p.someMatch(), yielding a
wrapper that cuts all alternatives after the first solution. Thus, laziness is ex-
ploited for efficiency and, when used in conjunction with other patterns with
multiple relevant solutions, spurious multiplication of solution sets is avoided.

111

4 Advanced Pattern Calculus

4.1 Pattern Substitution and Iteration

As discussed in [10], Paisley patterns and their variables obey an algebraic cal-
culus where most of the expected mathematical laws hold, despite the low-level
imperative nature of their implementation.

A variable v known to occur5 in a pattern p can be substituted by a subpat-
tern q, by invoking v.bind(p, q), mnemonically read as (λv. p)q. The implementa-
tion delegates to p and q sequentially, and hence does not require access to the
internals of either operand.

Substitution can also be given a recursive twist; a pattern p with a “hole”
v can be nested. The patterns v.star(p) and v.plus(p) correspond to the ∗ and
+-closures, respectively, of the search path relation between p and v, in the sense
that the usual recursive relations hold,

v.star(p) ≡ either(v, v.plus(p))

v.plus(p) ≡ v.bind(p, v.star(p))

which is already almost the complete, effective implementation, up to lazy du-
plication of v.plus(p) for each iteration level that is actually reached. Note that
iteration depth is conceptually unbounded, and solutions are explored in depth-
first pre-order, due to the way either is used. Thus patterns form a Kleene algebra
up to equivalence of solution sets but not sequences.

Using these iteration operators, complex nondeterministic pattern construc-
tors can be defined concisely. For instance, the contravariant lifting of the multi-
valued, transitive descendant projection in XML document trees, applied to a
pattern p, becomes simply

v.bind(v.plus(child(v)), p)

where Variable〈Node〉 v is fresh, and the multi-valued projection Pattern〈Node〉
child(Pattern〈Node〉) is implemented in terms of the org.w3c.dom.Node getter meth-
ods getFirstChild() and getNextSibling(). Note how the two sources of nondetermin-
ism, regarding horizontal (child) and vertical (plus) position in the document
tree, respectively (cf. the distinct recursive calls in Fig. 1), combine completely
transparently.

4.2 Pattern Function Abstraction

Functions taking patterns to patterns have so far featured in two important
roles. In operational form, implemented as lifting methods, they are the basis
for contravariant representation of projection patterns. In algebraic form, as
bind-based abstractions from a variable, they enable pattern composition and
iteration. Being so ubiquitous in the Paisley approach, they deserve their own

5 The actual condition is definite assignment rather than occurrence, for technical
reasons.

112

abstract class Motif〈A, B〉 {
public abstract Pattern〈B〉 apply(Pattern〈? super A〉);

public static 〈A〉 Motif〈A, A〉 id();
public 〈C〉 Motif〈C, B〉 on(Motif〈C, ? super A〉 other);

public static 〈A〉 Motif〈A, A〉 star(Motif〈A, ? super A〉 f);
public static 〈A〉 Motif〈A, A〉 plus(Motif〈A, ? super A〉 f);

public Iterable〈A〉 lazyBindings (B target);
public List〈A〉 eagerBindings(B target);
}

class Variable〈A〉 extends Pattern〈A〉 {
// . . .
public 〈B〉 Motif〈A, B〉 lambda(Pattern〈B〉 root);
}

Fig. 3. First-class pattern function (motif) interface.

reification. Fig. 3 shows the relevant API. An instance of class Motif〈A, B〉 is
the reified form of a function taking patterns over A to patterns over B, or by
contravariance, the pattern representation of an access operation that takes data
of type B to data of type A, by its apply method.

The Motif class provides the algebra of the category of patterns, namely the
identical motif id() and the type-safe composition of motifs by the on(Motif) in-
stance method. The variable-related operations star/plus and lazy-/eagerBindings
each have a point-free counterpart in Motif, which create anonymous variables to
hold intermediate results on the fly. For instance, the XML descendant pattern
defined above can be expressed less redundantly in point-free form as

plus(child).apply(p)

given a child access reification Motif〈Node,Node〉 child.
Conversely, motif abstraction is defined for pattern variables, which obeys

the beta reduction rule:

v.lambda(p).apply(q) ≡ v.bind(p, q)

There is often a trade-off in convenience between functions in operational
and reified form, that is as either pattern lifting methods or motifs. Since there
is no automatic conversion between methods and function objects in Java prior
to version 8, our strategy in the Paisley library is to provide both redundantly.

5 Motivation Revisited

Figure 4 repeats the XPath examples expressions, now contrasting the domain-
specific XPath code with the general-purpose Java/Paisley code. The latter has
been underlined for easy reference. The solution makes full use of the shared

113

Variants: 1 .//a[@href] 2 .//p//a[@href] 3 .//p[.//a[@href]]

Pattern〈Node〉 dslash(String name, Pattern〈Element〉. . . constraints) {
return descendantOrSelf(element(both(tagName(name), all (constraints))));
}

Variable〈Element〉 outerVar = new Variable〈〉 ();
Pattern〈Node〉 outerForm = dslash(”p”, outerVar);

Variable〈Element〉 innerVar = new Variable〈〉 ();
Pattern〈Node〉 innerForm = dslash(”a”, innerVar, attr(”href”, neq(””)));

Iterable〈Element〉 collect1(Document root) {
return innerVar.lazyBindings(innerForm, root);
}
Iterable〈Element〉 collect2(Document root) {

return innerVar.lazyBindings(outerVar.bind(outerForm, innerForm), root);
}
Iterable〈Element〉 collect3(Document root) {

return outerVar.lazyBindings(outerVar.bind(outerForm, innerForm.someMatch()), root);
}

Fig. 4. Three related XML queries revisited (from Figure 1). Top: XPath expressions;
middle: Java code template; bottom: template instantiations.

common structure of the three variants, and achieves complete separation of
concerns:

– The search procedure implied by the operator // is not spread out as recur-
sive control flow, but reified and encapsulated as the descendantOrSelf pattern
lifting, predefined in the XPathPatterns static factory class of Paisley, discussed
in detail in the following section.

– XPath subexpressions are denoted concisely and orthogonally.
• The generic form .//tag. . . that reoccurs in all variants is abstracted as

the extensible pattern construction dslash.
• The particular inner and outer forms, .//a[@href] and .//p, respec-

tively, are defined once and for all, independently of each other.
– The semantics of XPath queries are effected concisely and orthogonally.
• The general principle of encapsulated search is expressed naturally by a

call to lazyBindings. The third variant concisely prunes the recursively
encapsulated search after the first solution, via the pattern modifier
someMatch().

• The particular configuration of subexpressions for all variants boils down
to a simple choice of the bound variable and pattern-algebraic compo-
sition. Note that both are reified and hence first-class citizens of Java.
Thus, each variant boils down to a one-line expression, where the points
of variability are ordinary subexpressions that can be chosen statically
(as shown) or dynamically, with arbitrarily complex meta-programming.

114

enum Axis {
public Motif〈? extends Node, Node〉 getMotif ();
}

abstract class Test {
public abstract Motif〈? extends Node, Node〉 getMotif ();
}

abstract class Predicate {
public abstract boolean accepts(NodeSet context, int position, Node candidate);

public Motif〈? extends Node, Node〉 apply(Motif〈? extends Node, Node〉 base);
}

class NodeSet {
private Collection〈? extends Node〉 elems;
public NodeSet(Iterable〈? extends Node〉 elems);

public int size();
public Iterable〈Node〉 filter(Predicate pred);
}

class Path {
Path(Motif〈? extends Node, Node〉 motif);

public Motif〈? extends Node, Node〉 getMotif ();

public Path step(Axis axis, Test test, Predicate. . . predicates);
}

Fig. 5. XPath base classes in Paisley.

6 The Paisley XPath Interpreter

As a case study of real-world data models and queries, we have implemented
the navigational (proper path) fragment of the XPath 1.0 language as a Paisley
pattern combinator library. The complete implementation consists of the factory
classes XMLPatterns for generic DOM access and XPathPatterns for XPath specifics,
with currently 433 and 282 lines of code, respectively. Given an XPath parser,
it can be extended to a full-fledged interpreter, and hence a non-embedded DSL,
by a straightforward mapping of abstract syntax nodes to pattern operations.

6.1 Language Fragment

The XPath 1.0 language comes with many datatypes and functions that do not
contribute directly to its main goal, namely the addressing of nodes in an XML
document. For simplicity, we restrict our treatment of the language to a fragment
streamlined for that purpose. Typical uses of XPath within XSLT or XQuery [2]
conform to this fragment. We conjecture that the missing features can be added
without worsening essential operational complexity and runtime performance.

115

We omit external variables and functions, and all operations on the datatypes
of strings, numbers and booleans, as well as intangible document nodes such as
comments and processing instructions. The supported sublanguage is reflected
one-to-one by API operations based in the class hierarchy depicted in Fig. 5.
(Operation signatures are given in Fig. 11 in the appendix.) Its focus is on so-
called path expressions of the general syntactic form

path ::= abs path | rel path abs path ::= /rel path?

step ::= axis :: test ([predicate])∗ rel path ::= (rel path /)?step

Here axis is one of the twelve XPath document axes, omitting the deprecated
namespace declaration axis. The nonterminal test is the tautological test node(),
the text node test text() or an explicit node name test. For predicate, used to
filter selected nodes, we accept not the full XPath expression language, but only

predicate ::= path | integer | not predicate | (predicate (and | or) predicate)

where a path predicate holds if and only if it selects at least one node (existen-
tial quantification). Positive and nonpositive integer predicates [±i] select the
i-th node from the candidate sequence, and the (n − i)-th node, respectively,
from the sequence of n candidates in total. The former is a valid abbreviation
for [position()==i] in standard XPath; we add the latter as an analogous ab-
breviation for [position()==last()-i]. Logical connectives on predicates are
defined as usual.

Various abbreviation rules apply; for instance, the shorthand .//a[@href]

expands to the verbose form self::node()/descendantOrSelf::node()/child

::a[attribute::href]. This translates to the following semantic object:

relative().step(Axis.self, node())
.step(Axis.descendantOrSelf, node())
.step(Axis.child, name(”a”),

exists(relative().step(Axis.attribute, ”href”)))

The relation between XPath predicates and candidate sequences, mislead-
ingly called “node-sets” in the standard, is rather idiosyncratic (they can not be
modeled adequately as plain sets) and the major challenge in this case study.
A node-set is implicitly endowed with either of two predefined orders, namely
forward or reverse document order. These orders are loosely specified by a pre-
order traversal of nodes, up to attribute permutation. A predicate filters the
nodes in a node-set not purely by point-wise application, but may depend on
some context, namely the position of the node in the node-set, starting from one,
and the total number of members. This information is available in XPath via the
“functions” position() and last(), respectively. It is realized in the API by
the parameter position of method Predicate.accepts and the method size() of class
NodeSet, respectively, to be supplied from the method filter of class NodeSet.

6.2 Pattern-Based Interpreter Design

The node-extracting semantics of the XPath language can be rendered naturally
in the Paisley framework by contravariant lifting. An XPath expression can be

116

ancestor ≡ plus(parent) descendant ≡ plus(child)

ancestorOrSelf ≡ star(parent) descendantOrSelf ≡ star(child)

followingSibling ≡ plus(nextSibling) precedingSibling ≡ plus(previousSibling)

following ≡ ancestorOrSelf.on(followingSibling).on(descendantOrSelf)

preceding ≡ ancestorOrSelf.on(precedingSibling).on(descendantOrSelf)

self ≡ id

Fig. 6. Non-primitive XPath axes.

class Path {
// . . .
public Path step(Axis axis, Test test, Predicate. . . predicates) {

Motif〈? extends Node, Node〉 r = axis.getMotif ().on(test.getMotif ());
for (Predicate p : predicates)

r = p.apply(r);
return new Path(getMotif ().on(r));
}
}

Fig. 7. Implementation of composite path expressions.

applied to any node of an XML document, here implemented as DOM, and
extracts some other nodes, possibly of a more special type, such as elements or
attributes. This gives rise to a semantic type Motif〈? extends Node, Node〉.

Except for the context-sensitivity of predicates, all language constructs could
simply been given motif semantics and lumped together by composition.

XPath axes are all defined concisely in terms of motifs. Primitive DOM access
operations from factory class XMLPatterns directly define the attribute, child and
parent axes. Given the additional primitives next-/ previousSibling, which are only
implicit in the XPath standard, all other axes are definable in terms of elementary
motif algebra; see Figure 6. Node tests are straightforward applications of test
pattern lifting.

Atomic path expressions are realized by the document root access motif and
the identity motif, for absolute and relative paths, respectively. Composite path
expressions conceptually compose their constituents left to right. The exception
are predicates, which are implemented as motif transforms in order to deal with
context sensitivity. These are applied in order to the step basis, that is the
composition of axis and test, for local filtering, and the result is then composed
with the front of the path expression; see Fig. 7.

The real challenge is the implementation of node-set predicates: On the one
hand, context information about relative element position and total node-set
size must be provided, which transcends the context-free realm of pattern and
motif composition. On the other hand, elements should be enumerated lazily, in

117

class Predicate {
// . . .

public Motif〈Node, Node〉 apply(final Motif〈? extends Node, Node〉 base) {
return new Motif〈? extends Node, Node〉 () {

public Pattern〈Node〉 apply(Pattern〈? super Node〉 p) {
return new MultiTransform〈Node, Node〉 (p) {

protected Iterable〈Node〉 apply(Node n) {
return new NodeSet(base.lazyBindings(n)).filter(Predicate.this); // [∗]

}}; }}; }
}
class NodeSet {

// . . .

public NodeSet(Iterable〈? extends Node〉 elems) {
this.elems = cache(elems) ;
}
public Iterable〈Node〉 filter(final Predicate pred) {

return new Iterable〈Node〉 () {
public Iterator〈Node〉 iterator() {

return new FilterIterator〈Node〉 (elems.iterator()) {
int i = 0; // [∗]
protected boolean accepts(Node candidate) {

return pred.accepts(NodeSet.this, ++i, candidate); // [∗]
}}; }}; }
}
public static Predicate exists(final Path cond) {

return new Predicate() {
public boolean accepts(NodeSet context, int position, Node node) {

return cond.getMotif ().apply(any()).match(node); // [∗]
}
};
}
public static Predicate index(final int i) {

return new Predicate() {
public boolean accepts(NodeSet context, int position, Node node) {

return position == (i > 0 ? i : context.size() − i); // [∗]
}
};
}

Fig. 8. Implementation of context-sensitive predicate filtering. See text for underlining
and [∗].

118

order to make tests for non-emptiness efficient and avoid scanning for unneeded
solutions. Obviously, evaluation must switch transparently from lazy to eager
strategy if the size of the node-set is observed. And lastly, for elegance reasons,
we strive for an implementation that is as declarative as possible, with very
limited amounts of specific imperative coding.

The solution is depicted in Figure 8. Generic Paisley API method calls are
underlined for easy reference. The action of a predicate on a base motif requires
control over the solution node-set. Hence it needs to intercept both the pattern
parameter at the motif level and the target node parameter at the pattern level,
by means of two nested anonymous classes. Then a lazy disjunction is spliced in,
which enumerates the solutions of the base motif, wraps them in a local node-set
and filters them context-sensitively.

The counterpart on the node-set side of the implementation works as follows:
It wraps the lazy enumeration of candidate nodes is a collection, via the auxiliary
method cache (definition not shown). This collection caches enumerated items
for repeated access, and forces eager evaluation if its size() method is called.

The actual filtering operation yields a lazy enumeration that intercepts it-
erator creation, again by means of two nested anonymous classes. The iterator
of the cached candidate collection is overwritten by an instance of the auxiliary
abstract class FilterIterator〈A〉 (definition not shown) that in-/excludes elements
ad-hoc, determined by the result of its method boolean accepts(A). This accep-
tance test is then routed back to the context-sensitive acceptance test of the
given predicate, by addition of a single minuscule piece of explicit imperative
(stateful) programming, namely a counter i for the relative position. Note that,
Java formal noise apart, the actual problem-specific code consists of five single-
line statements, marked with [∗].

Existential predicates forget their results, hence the invocation of the catch-
all pattern any(). They prune the search after the first hit, as witnessed by the
absence of a call to matchAgain() on the freshly created pattern. Eager evaluation
is only ever triggered by index predicates via a call to context.size(). Logical
predicate connectives are defined point-wise (not shown).

7 Experimental Evaluation

We have tested the performance and scalability of our implementation using
material from XMark [8], a benchmark suite for XML-based large databases.
The homepage of XMark [7] offers a downloadable tool to generate pseudo-
random well-typed XML files according to a published DTD, with a linear size
parameter. We have used the tools to produce test data files for size parameter
values from 0.04 to 0.40 in increments of 0.04, where 0.01 corresponds roughly to
1 MiB of canonical XML. From the 20 published XQuery benchmark queries we
have chosen as test cases the four where the entire logic is expressed in XPath
rather than XQuery operations; see Fig. 9 (and Table 1 in the appendix).

For each pair of data file and query expression, we processed the document
with lazyBindings of the XPath motif, and computed running times for extracting

119

Query XPath Expression

Q01 /site/open auctions/open auction/bidder[1]/increase/text()

Q06 //site/regions//item

Q15 /site/closed auctions/closed auction/annotation/description/

parlist/listitem/parlist/listitem/text/emph/keyword/text()

Q16 /site/closed auctions/closed auction[annotation/description/

parlist/listitem/parlist/listitem/text/emph/keyword/text()]

Fig. 9. XPath expression test cases from the XMark benchmark.

the first solution and all solutions (in a loop), as well as the effective time (total
time divided by number of solutions).

Timing values were obtained as real time with System.nanoTime(), median
value of ten repetitions, with interspersed calls to System.gc(). In order to com-
pensate deferred computation costs in the DOM implementation, we reused the
same document instances for all successive queries. All experiments were per-
formed on an Intel Core i5-3317U quad-core running at 1.70 GHz, with 8 GiB of
physical memory, under Ubuntu 14.04 LTS (64bit), and Oracle Java SE 1.8.0 05-
b13 with HotSpot 64bit Server VM 25.5-b02 and 800 MiB heap limit.

Our first quantitative goal, beyond highlighting the elegance and effective-
ness of Paisley-style pattern specification, is to demonstrate the efficiency payoff
of lazy pattern execution. Our second quantitative goal comes back to method-
ological arguments from the motivation section of this paper. Pattern matching
has been hailed as a declarative tool that brings expressiveness for data query-
ing extremely close to the hosting programming language environment. Tools
for non-embedded domain-specific languages may be more powerful in many re-
spects, but the burden of proof is on them that this power is worth the trouble
incurred by the impedance mismatch with ordinary host code. Nevertheless, we
should verify that the benefits of tight embedding produced by our methodolog-
ical approach are not squandered by the implementation.

To that end, we repeated our experiments with the next-closest tool at hand,
namely the Java on-board XPath implementation accessible as javax.xml.xpath.∗.6
We compared both preparation and running times of Paisley XPath patterns
with XPathExpression objects obtained via XPath.compile(String). The first solution
and all solutions were obtained by calling XPathExpression.evaluate with the type
parameter values NODE and NODESET, respectively.

The Paisley approach fares well, even as a non-embedded DSL. The Paisley
preparation process (a simple recursive descent parser for full XPath generated
with ANTLR7, followed by direct translation of abstract syntax nodes to pattern
operations) is consistently faster than on-board compilation to XPathExpression
objects, although the task may have been sped up marginally by considering

6 In our Java environment, com.sun.org.apache.xpath.internal.jaxp.XPathImpl.
7 http://www.antlr.org/

120

Q01 Q06 Q15 Q16 Q01 Q06 Q15 Q16

lo
g 1

0(t
µs

)

0
1

2
3

4
5

6

Fig. 10. Running times for Paisley and Java on-board XPath implementations. Left –
size parameter 0.04; right – size parameter 0.40. Colors: dark to light – Paisley eff/-
first/all; on-board eff/first/all. Logarithmic scale; lower end of scale arbitrary.

only a subset of the language after parsing. (See Table 2 in the appendix for
details.) When patterns are constructed in embedded DSL style, using the API
rather than textual input, static safety is improved, and even the small overhead
eliminated, at the same time.

The differences in running times are so drastic that they can only be visual-
ized meaningfully in logarithmic scale. Proportions range from on-board facilities
being 13 % faster for all solutions of Q06 at size 0.04, to being over 26 000 times
slower for the first solution of Q06 at size 0.40. With the exception of the ex-
haustion of “brute-force” case Q06, Paisley is 1–2 (all solutions) or 2–4 (first
solution) orders of magnitude faster, respectively; see Fig. 10. Accessing only the
first solution with the on-board tools is particularly disappointing, being only
marginally faster than exhausting all solutions. It appears that our motivation is
confirmed, and conventionally developed tools are ill-suited to scalable lazy eval-
uation, where external demand governs internal control. (More detailed results
are given in Fig. 12 the appendix.)

8 Conclusion

The experimental figures for the on-board tools have been obtained without any
tweaking of features; hence there is large uncertainty in the amount of possible
improvements. Therefore the comparison should not be taken too literally. But
we feel that it is fair in a certain sense nevertheless: Our Paisley implementation
has been obtained in the straightest possible manner, also without any tweaking.
Its advantage lies thus chiefly in the fact that we have chosen the application
domain, namely the specified XPath fragment, and tailored the tool design to
avoid any complexity inessential to the task at hand. It is this light-weight flex-
ibility by effective manual programming we wish to leverage with the Paisley

121

approach – the capabilities of existing, more heavy-weight tools with respect to
automated, adaptive specialization are generally no match.

8.1 Related Work

Related work with regard to language design and implementation, and to object-
oriented-logic programming, has been discussed in [9,10] and [11], respectively.

Purely declarative accounts of XPath, although theoretically interesting, have
little technical impact on our main concern, the concrete embedding in a main-
stream programming language. A few random examples: In [6], XPathLog is
presented, adding variable binding capabilities and sound Herbrandt semantics
to XPath, for a full-fledged logic programming language. In [4], an algorithmic
analysis of XPath in terms of modal logic is given. The language fragment and
experimental approach used there is a model predecessor for our own work, in-
cluding the particular benchmark. In the recent paper [1], the implementation
of XPath in the Haskell-like functional-logic programming language TOY is dis-
cussed. A combinatorial approach to XPath constructs very similar to Paisley is
taken, which appears to corroborate our claims of a natural design.

References

1. Almendros-Jiménez, J., Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: XPath
query processing in a functional-logic language. ENTCS 282, 19–34 (2012)

2. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML Query Language (Second Edition). W3C, http://www.w3.
org/TR/2010/REC-xquery-20101214/ (2010)

3. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. W3C, http:

//www.w3.org/TR/1999/REC-xpath-19991116/ (1999)
4. Franceschet, M., Zimuel, E.: Modal logic and navigational XPath: an experimental

comparison. In: Proc. Workshop Methods for Modalities. pp. 156–172 (2005)
5. Hughes, J.: Why Functional Programming Matters. Computer Journal 32(2), 98–

107 (1989)
6. May, W.: XPath-Logic and XPathLog: A logic-based approach for declarative

XML data manipulation. Tech. Rep. 149, Institut für Informatik, Albert-Ludwigs-
Universität Freiburg (2001)

7. Schmidt, A.: XMark – an XML benchmark project (2009), http://www.

xml-benchmark.org/
8. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:

XMark: A benchmark for XML data management. In: Proc. 28th VLDB. pp. 974–
985. Morgan Kaufmann (2002)

9. Trancón y Widemann, B., Lepper, M.: Paisley: pattern matching à la carte. In:
Proc. 5th ICMT. LNCS, vol. 7307, pp. 240–247. Springer (2012)

10. Trancón y Widemann, B., Lepper, M.: Paisley: A pattern matching library for ar-
bitrary object models. In: Proc. 6th ATPS. LNI, vol. 215, pp. 171–186. Gesellschaft
für Informatik (2013)

11. Trancón y Widemann, B., Lepper, M.: Some experiments on light-weight object-
functional-logic programming in Java with Paisley. In: Declarative Programming
and Knowledge Management. LNCS, vol. 8439. Springer (2014), in press

122

A Appendix: Supplementary Material

Table 1. Size of input files and solution spaces for XPath expression test cases from
the XMark benchmark.

Size # Solutions

Parameter File (kiB) # Nodes Q01 Q06 Q15 Q16

0.04 4 648 191 083 439 870 6 5

0.08 9 212 379 719 884 1 740 17 15

0.12 13 696 569 434 1 301 2 604 29 28

0.16 18 100 748 766 1 732 3 480 32 29

0.20 22 964 946 554 2 142 4 350 37 34

0.24 27 396 1 129 553 2 610 5 214 44 40

0.28 31 976 1 315 902 3 045 6 090 62 58

0.32 36 616 1 502 611 3 453 6 960 60 53

0.36 41 076 1 690 597 3 857 7 824 61 54

0.40 45 600 1 877 979 4 310 8 700 68 59

Table 2. Preparation times for Paisley and Java on-board XPath implementations.

Q01 Q06 Q15 Q16

Paisley
(µs)

56.40 101.73 89.26 154.32

On-Board 233.44 204.73 162.61 215.92

Ratio 4.14 2.01 1.82 1.40

123

enum Axis {
ancestor, ancestorOrSelf, attribute, child, descendant, descendantOrSelf,
following, followingSibling, parent, preceding, precedingSibling, self

// . . .
}
public static Test node ();
public static Test text ();
public static Test name (String tagName);

public static Predicate exists (Path cond);
public static Predicate index (int i);

public static Predicate not (Predicate p);
public static Predicate and (Predicate p, Predicate q);
public static Predicate or (Predicate p, Predicate q);

public static Path absolute ();
public static Path relative ();

Fig. 11. XPath operations as combinators in the Paisley application-layer library.

0
1

2
3

4
5

6

Q01

lo
g 1

0(
t

µs
)

0.04 0.16 0.28 0.40

●
● ● ● ● ● ● ● ● ●

0
1

2
3

4
5

6
Q06

0.04 0.16 0.28 0.40

● ● ● ● ● ● ● ● ● ●

0
1

2
3

4
5

6

Q15

size

lo
g 1

0(
t

µs
)

0.04 0.16 0.28 0.40

●
● ● ● ● ● ● ● ● ●

0
1

2
3

4
5

6

Q16

size

0.04 0.16 0.28 0.40

●
● ●

● ● ● ● ● ● ●

● paisley eff
paisley first
paisley all

on−board eff
on−board first
on−board all

Fig. 12. Running times for Paisley and Java on-board XPath implementations. Loga-
rithmic scale; lower end of scale arbitrary.

124

Exploring Non-Determinism in Graph
Algorithms

Nikita Danilenko

Institut für Informatik, Christian-Albrechts-Universität Kiel
Olshausenstraße 40, D-24098 Kiel
nda@informatik.uni-kiel.de

Abstract. Graph algorithms that are based on the computation of one
or more paths are often written in an implicitly non-deterministic way,
which suggests that the result of the algorithm does not depend on a par-
ticular path, but any path that satisfies a given property. Such algorithms
provide an additional challenge in typical implementations, because one
needs to replace the non-determinism with an actual implementation.
In this paper we explore the effects of using non-determinism explic-
itly in the functional logic programming language Curry. To that end
we consider three algorithms and implement them in a prototypically
non-deterministic fashion.

1 Introduction

Consider a graph G = (V,E), two vertices s, t ∈ V and the question, whether
there is a cycle in G that contains both vertices (i.e. both are contained in the
same strong connected component). It is easy to come up with a solution for this
task – simply check whether there are paths from s to t and from t to s in G, if
so, the answer is “yes”, otherwise it is “no”. Now all one needs to do is to come
up with how to specify the existence of paths, which is just as straight-forward.
Next, one could ask for an actual cycle in case such a cycle exists. For every
path p from s to t and every path q from t to s, the composition of p and q is
such a cycle, i.e. the existence of a cycle does not depend on a particular choice
of a path and there may be several different cycles.

When the above problems are considered in light of logic programming, one
can use non-determinism to express the independence of choice and to compute
one or more results from the specification alone. Aside from the usual benefit of
the declarative approach of what to compute and not how, one can also observe
that the different intermediate results (cycles or paths) yield the same overall
answer (yes or no). While this is somewhat trivial in the above example, there
are more sophisticated graph algorithms that rely on the computation of some
value with a special property and it may not be obvious at all that different
choices of such values yield the same results in the end. This invariance can be
considered as a certain kind of confluence and the possibility to observe this
invariance is a useful tool, particularly in teaching.

125

In this paper we consider graph algorithms that are based on the computation
of paths. We begin with a simple observation relating the path search strategy
to the solution search strategies and proceed to provide solutions to two non-
trivial graph problems, namely the maximum matching problem and the maximal
flow problem and provide examples of matchings and flows. Our main focus is
on experimentation and applications in teaching, where theoretical results are
likely to be followed by examples. Observing implicit non-determinism explicitly
is of great assistance in this context since one can witness the invariance of the
solution with respect to different choices that lead to it.

All code in this paper is written in Curry [12] and compiled with KiCS2
[5], which can be obtained at http://www-ps.informatik.uni-kiel.de/kics2/.
Throughout the paper we refer to several functions and modules, all of which
can be found using the search engine Curr(y)gle https://www-ps.informatik.

uni-kiel.de/kics2/currygle/. A polished version of the presented code is avail-
able at GitHub under https://github.com/nikitaDanilenko/ndga.

2 Preliminaries

A graph is a pair G = (V,E), where V is a non-empty finite set and E ⊆ V ×V .
This is to say that we consider all graphs to be directed and realise graphs in
which the direction does not matter as symmetric directed graphs. For any v ∈ V
we set N→(v) := {w ∈ V | (v, w) ∈ E } and N←(v) := {w ∈ V | (w, v) ∈ E };
elements of N→(v) are called successors and those of N←(v) predecessors of v.
A path in a graph is an injective sequence of vertices, i.e. a sequence that does
not contain multiple occurrences of the same vertex. Since V is finite, every path
traverses at most |V | vertices. We represent vertices by integers, edges by pairs of
vertices and paths by lists of distinct vertices, where the distinctness is required
implicitly. We discuss this design decision in Section 3.

type Vertex = Int

type Edge = (Vertex ,Vertex)
type Path = [Vertex]

Graphs are represented by an adjacency list model, where the adjacency lists
are sorted in ascending natural order of the integers. These adjacency lists are
stored in a finite map, one implementation of which is provided in the standard
KiCS2 library FiniteMap as the data structure FM key value.

data Graph = Graph (FM Vertex [Vertex])

Additionally, we use sets of vertices explicitly for the maintenance of visited
vertices. We use finite maps provided by KiCS2 for a representation of sets
of vertices, where the functions emptyFM , addToFM , elemFM , delFromFM are
provided, too. The function emptyFM is parametrised over an irreflexive order
predicate which in our case is (<) :: Int → Int → Bool .

type VertexSet = FM Vertex ()

126

empty :: VertexSet

empty = emptyFM (<)

insert :: Vertex → VertexSet → VertexSet

insert i m = addToFM m i ()

inSet :: Vertex → VertexSet → Bool

inSet = elemFM

remove :: Vertex → VertexSet → VertexSet

remove = flip delFromFM

vertexListToSet :: [Vertex]→ VertexSet

vertexListToSet = foldr insert empty

For the purpose of demonstration we use the two example graphs from the
Figures 1, 2 in the following two sections and assume that they are implemented
in the values graph1 and graph2 respectively.

0 1 2

3 4 5

Fig. 1. Example graph G1

0 1 2

3 4 5

6 7 8

Fig. 2. Example graph G2

3 Reachability and Paths

One standard example of logic programming in graph theory is the check whether
a vertex set ts is reachable from a given vertex s. This is the case iff s ∈ ts or if
there is a successor i ∈ V of s, such that ts is reachable from i. Since successors
can lead back to already visited vertices, one additionally has to check, if the
successor has been visited or not1. The implementation of the above may be as
follows.

reachable :: Graph → Vertex → VertexSet → Success

reachable g from ts = find empty from where

find vis s | s ‘inSet ‘ ts = success

| isEdge g s i ∧ ¬ (i ‘inSet ‘ vis) = find (insert s vis) i where i free

This implementation contains a high level of abstraction and is very close to the
original specification. Also, instead of defining how to access the successors of

1 Avoiding this check can easily result in non-termination: consider the graph
({ 0, 1, 2 } , { (0, 1), (1, 0), (0, 2) }) with DFS. Then checking whether 2 is reachable
from 0 diverges, because the loop (0, 1, 0) is entered before checking the other suc-
cessors of 0. A similar example shows the non-termination in case of using BFS.

127

s, this implementation relies only on a test whether a certain edge is contained
in the graph and the use of a free variable to find a fitting edge. The technique
of translating existential quantifications into free variables is common in logic
programming.

Instead of just checking for the existence of a path, one can ask for an actual
path between two vertices. It is easy to implement such a search by modifying
the above function.

path :: Graph → Vertex → VertexSet → Path

path g from ts = find empty from where

find vis s | s ‘inSet ‘ ts = [s]

| isEdge g s i ∧ ¬ (i ‘inSet ‘ vis) = s : find (insert s vis) i where i free

pathToSingle :: Graph → Vertex → Vertex → Path

pathToSingle g from t = path g from (vertexListToSet [t])

Again, the function is non-deterministic in its choice of the successor. There
are two interesting consequences of this implementation. First of all, using the
interactive mode of KiCS2 one can find all paths between two given vertices
without any additional work. Alternatively, when all paths are required in a
program, one can use set functions [2] to encapsulate the search and collect all
results. Set functions are provided in the KiCS2 library SetFunctions, which
provides functions setK (for K ∈ { 0, . . . , 7 })

setK :: (a0 → . .→ aK−1 → b)→ a0 → . .→ aK−1 → Values b

which turn a function of a given arity into a set function, where Values b is
the list of all results. Assuming that the graph from Figure 2 is implemented as
graph2 we can test the following results.

kics2> set3 path graph2 0 (vertexListToSet [5, 8])

(Values [[0, 1, 2, 5], [0, 3, 6, 7, 4, 5], [0, 3, 6, 7, 8]])

kics2> set3 pathToSingle graph2 0 8

(Values [[0, 1, 2, 5, 4, 7, 8], [0, 1, 2, 5, 8], [0, 3, 6, 7, 4, 5, 8], [0, 3, 6, 7, 8]])

The second consequence is that the path search is based upon the order in
which the free variable i is instantiated, which in turn depends on the search
strategy. The search strategy can be chosen in KiCS2 either interactively (by
using :set STRATEGY) or directly in the code. The latter can be accomplished
by explicitly representing the search space as a SearchTree from the homonymous
Curry module and using strategy dependent operations on the tree to obtain
actual results. For example, we get:

kics2> someValueWith bfsStrategy (pathToSingle graph1 2 5)

[2, 1, 4, 5]

kics2> someValueWith dfsStrategy (pathToSingle graph1 2 5)

[2, 1, 0, 3, 4, 5]

Note that these two results correspond precisely to what the respective graph-
theoretic strategies yield. In fact, in the above implementation one can decide

128

between choosing a successor and descending the recursive call (DFS) or checking
other successors first and descending afterwards (BFS). However, both strategies
will find all paths eventually, so that the above observation holds for the first
result, but not necessarily for subsequent results (this can be observed using set
functions, but not with someValueWith, because the latter is deterministic).

kics2> set3With bfsStrategy pathToSingle graph1 2 5
(Values [[2, 1, 4, 5], [2, 1, 0, 3, 4, 5]])

kics2> set3With dfsStrategy pathToSingle graph1 2 5
(Values [[2, 1, 0, 3, 4, 5], [2, 1, 4, 5]])

Since we check whether a vertex has been visited before by hand, the condition
that the vertices of every resulting Path are distinct is maintained. Using an
implementation based upon the constrained constructor pattern one can disal-
low the creation of invalid paths. However, the search itself requires access to
previously visited vertices to avoid (infinite) repetition and thus its implementa-
tion would remain essentially the same as above. We omit the smart constructor
approach for the sake of simplicity.

4 Maximum Matchings

A more sophisticated application of non-deterministic path search is the algo-
rithm for finding maximum matchings. A matching in a symmetric graph is a set
M ⊆ E that is symmetric and functional2. In other words a matching consists of
edges that do not share common vertices. A matching is called maximum match-
ing iff there is no matching with a strictly greater cardinality. Clearly, maximum
matchings are not necessarily unique, since they are maximal elements with re-
spect to cardinality. Figure 3 shows some examples of matchings in the example
graph from Figure 2, where the bold lines show matching edges and the dashed
lines are non-matching edges.

0 1 2

3 4 5

6 7 8
A matching.

0 1 2

3 4 5

6 7 8
A max. matching.

0 1 2

3 4 5

6 7 8
Another max. matching.

Fig. 3. Examples of matchings.

2 I.e. ∀x, y, z ∈ V : (x, y) ∈M ∧ (x, z) ∈M ⇒ y = z.

129

There are several natural applications for maximum matchings, like assign-
ing jobs to people, processes to machines or, more classically, spouses to one
another. In all cases one may wish to make as many one-to-one assignments as
possible, which translates directly into the search for a maximum matching. All
of these examples can be modelled with so-called bipartite graphs, which are
graphs that allow a partition of vertices into two sets, such that all edges of the
graph connect only vertices from two different sets. For bipartite graphs there
is a simple imperative algorithm that computes maximum matchings, while the
algorithms for the non-bipartite case is significantly more sophisticated [9].

The Berge theorem [3] characterises maximum matchings and provides an
algorithm for finding such matchings. We state it exactly as in [6].

Theorem 1 (Characterisation of maximum matchings, Berge).
Let M ⊆ E be a matching. Let ⊕ denote the symmetric difference. For a path p
we denote the set of the edges along p by E(p). A path is called M -augmenting
iff it starts and ends in a vertex that is not contained in some edge of M and
alternates between edges of E \M and those of M . Then we have

1. If there are no M -augmenting paths in G, then M is a maximum matching.
2. If there is an M -augmenting path p in G, then M⊕E(p) is a larger matching.

This theorem can be used for an actual computation of a maximum matching.
Starting with the empty matching one searches for an augmenting path and if
such a path exists the current matching is expanded. If on the other hand no
such path exists, the current matching is already a maximum matching.

For the remainder of this section we assume all graphs to be symmetric, in
particular this concerns all graph arguments in functions. This condition can
(and should!) be checked in a proper application, but to avoid additional code
that is not necessary for the presentation, we assume this check to have been
performed beforehand implicitly.

Let us first deal with the matching augmentation. Given a matching M and
an augmenting path p Berge’s theorem states that M ⊕E(p) is a larger match-
ing. Once we have computed this matching, we will check whether there is an
augmenting path, using M⊕E(p) instead of M , which requires the computation
of E \ (M ⊕ E(p)). As we have stated in [6] it is simple to see that

E \ (M ⊕ E(p)) = (E \M)⊕ E(p) ,

so that both M and E \M are updated in the same fashion. Suppose that

xorBiEdges :: Graph → [Edge]→ Graph

traverses a list of edges and for every edge it adds its undirected version (i.e.
both directions) to the graph if the edge is not already present in the graph
and removes both directions otherwise. Then the augmentation update can be
implemented as follows, where we assume that m is the current matching and
notM is its complement in E (i.e. notM = E \m).

130

augmentBy :: Path → Graph → Graph → (Graph,Graph)

augmentBy path m notM = (m ‘xorBiEdges‘ es,notM ‘xorBiEdges‘ es) where

es = zip path (tail path)

Without logic means checking the existence of an augmenting path and find-
ing such a path in the positive case is quite technical3. Using logic means how-
ever, we can specify an augmenting path by first dealing with alternating paths
and then adding the conditions for the first and last vertex. Suppose we have
a target set of vertices ts :: VertexSet , a starting vertex s and a list of graphs
(g :gs) :: [Graph] that we want to traverse in sequence. Then an alternating path
from s to ts through g : gs exists iff s ∈ ts holds or there is a successor i of s in g
and there exists an alternating path from i to ts through gs ++[g]. The intention
is that we will use the list [notM ,m] in our application, where m is the current
matching and notM is its complement in E. Except for the traversal of multiple
graphs in a cyclic order4, the above specification is very similar to the one that
specified the existence of a path. Similarly, the corresponding function is easy to
modify to return an alternating path as well.

alternatingPath :: [Graph]→ Vertex → VertexSet → Path

alternatingPath grs from ts = find empty from grs where

find vis s (g : gs)

| s ‘inSet ‘ ts = [s]
| isEdge g s i ∧ ¬ (i ‘inSet ‘ vis) = s : find (insert s vis) i (gs ++ [g]) where i free

With this function we can find augmenting paths, too. Let us assume that
we have a function at hand that computes those vertices of a symmetric graph
which do not have any neighbours (i.e. successors, due to symmetry).

noSuccessors :: Graph → VertexSet

By definition an augmenting path starts and ends in a vertex that is not covered
by the matching and since it is a path the start vertex should also be different
from the end vertex, which is not guaranteed by the alternatingPath function
from above. Fortunately, this is easily corrected by simply excluding the start
vertex from the target vertex set. Again, we assume that m is a matching and
notM is its complement in E.

augmentingPath :: Graph → Graph → Path

augmentingPath m notM | s ‘inSet ‘ unc = alternatingPath [notM ,m] s (s ‘remove‘ unc)

where unc = noSuccessors m
s free

This function is prototypical by design – guessing a possible start vertex and
trying to find a path is obviously not the most efficient way of finding an aug-
menting path. Instead, one could either modify the search function in a fashion

3 The usual procedure is to implement a modified breadth-first search, which explicitly
alternates between two graphs.

4 We have implemented the cyclic list traversal inefficiently by adding the first element
to the end of the list for demonstration purposes only. It is simple to replace this
implementation by either functional lists or queues, both of which allow adding an
element to the end in constant time.

131

that searches from a set of vertices instead of a single one or to use an ex-
plicitly parallel search strategy. These improvements lead to a less declarative
look-and-feel, which is why we use the above version.

If there is no augmenting path in the graph then this function does not return
any value. We use negation as failure with set functions to obtain a function that
repeats the search for an augmenting path until there is no such path left.

maximumMatching :: Graph → Graph
maximumMatching g = go (emptyGraph (graphSize g), g) where

go (m,notM) | isEmpty ps = m
| otherwise = go (augmentBy (chooseValue ps) m notM)

where ps = set2 augmentingPath m notM

The function graphSize returns the number of vertices in the graph, emptyGraph
creates an empty graph of a given size, isEmpty :: Values a → Bool checks
whether the list of values is empty or not and chooseValue :: Values a → a non-
deterministically chooses a value from the list of all values. Additionally, we can
parametrise the maximumMatching function by a search strategy that is passed
to set2With which is a version of set2 that is parametrised by a search strategy.

We test the above function in the interactive mode of KiCS2 on the example
graph G2 from Figure 2. The function graphEdges :: Graph → [Edge] computes
the edges of a graph and we use it for an uncluttered output.

kics2> graphEdges (maximumMatching graph2)

[(0, 1), (1, 0), (2, 5), (3, 6), (4, 7), (5, 2), (6, 3), (7, 4)]

More values? [Y(es)/n(o)/a(ll)] Y
<< four more times the same result >>

More values? [Y(es)/n(o)/a(ll)] Y

[(0, 1), (1, 0), (2, 5), (3, 6), (5, 2), (6, 3), (7, 8), (8, 7)]
More values? [Y(es)/n(o)/a(ll)] n

Observe that the first results are the first maximum matching from Figure 3.
As we have mentioned before, one typically distinguishes the cases of bipartite

and non-bipartite graphs, because the search for an augmenting path is simpler
in the former case. The above implementation does not rely on the graph being
bipartite and will in fact work for non-bipartite graphs too, even those where
usual algorithms will fail. The essence of this failure is known to be that every
search is guided by some vertex ordering and in the non-bipartite case one can
always create examples where a vertex is marked as visited prematurely, thus
excluding this vertex from possible further searches. This problem cannot occur
in the bipartite case – if there is an augmenting path, it can be found with every
vertex ordering. The above implementation however, uses all possible vertex
orderings and thus always finds a path if it exists. Clearly, this comes at the
price of not being efficient (polynomial), but it is still interesting to observe that
the function itself still yields the correct results, but only its complexity changes.

Another interesting observation is that such an implementation is very well
suited for presentation, particularly in teaching. We have stated before that
maximum matchings are not necessarily unique and the above function can be

132

used interactively in KiCS2 to find different maximum matchings. Similarly, for
any given matching there might be several augmenting paths and one can again
check that the choice of a particular path does not matter for the maximality
of the result. In graphs with unique maximum matchings the confluence of the
algorithm is observable by considering all solutions and removing duplicates. In
the graph from Figure 1 there is exactly one maximum matching, but it can be
found with the above function in 184 ways5. This demonstration of confluence in
again interesting in teaching to indicate that even a possibly non-deterministic
algorithm can yield a deterministic result.

Finally, we point out that there are more efficient algorithms that compute
maximum matchings, namely the Hopcroft-Karp algorithm [13] and the Mucha-
Sankowski [15] algorithm. The latter is based upon Gaussian elimination and not
directly related to a search for paths. The former algorithm, however, computes
in every augmentation step not just a single augmenting path, but a set of short-
est, pairwise disjoint augmenting paths that is maximal with respect to inclusion.
A function that computes such a set can be implemented as a combination of two
searches (first a breadth-first search, followed by a modified depth-first search,
cf. [7]). Interestingly, the algorithm still contains a very similar non-deterministic
component as above, since there can be several sets that are all maximal and
again, the correctness of the output (and sometimes even the output itself) does
not depend on a particular choice of such a set. The actual implementation is not
particularly difficult, but it explicitly relies on the fact that the BFS returns a
graph that is the union of all shortest paths from the source set to the target set,
rather than the property that some path has been found using BFS implicitly.

5 Maximal Flows in Networks

A problem that is conceptually related to maximum matchings is that of a
maximal flow through a network. A network is a quadruple N = ((V,E), s, t, c)
that consists of an asymmetric graph6 (V,E), two designated vertices s, t ∈ V
(where s is called source and t is called sink) such that s 6= t and a capacity
function7 c : E → N. To avoid unnecessary brackets whenever X is a set and
h : E → X, we write h(x, y) instead of h((x, y)). For any function g : E → N let

∂g : V → Z, v 7→

 ∑

w∈N→(v)

g(v, w)

−

 ∑

w∈N←(v)

g(w, v)

 .

The function ∂g measures for every vertex the difference between the amount of
all outgoing values and the incoming values. A flow is a function f : E → N that

5 Using liftIO length ◦ values2list ◦ set1 maximumMatching instead of just the
maximumMatching function yields the number of successfully found matchings.

6 That is that for all v, w ∈ V such that (v, w) ∈ E, we have (w, v) /∈ E.
7 Typically, one chooses c : E → Q≥0, but since only finite graphs are considered, it

is possible to multiply c by the least common multiple of its image values and, if
necessary, to divide them later.

133

satisfies f ≤ c (pointwise) and for all v ∈ V \ { s, t } we have ∂f(v) = 0. This is
known as the Kirchhoff’s law “what goes is, must come out”. The value of a flow
f is defined as |f | := ∂f(s) and a maximal flow is a flow that has a maximal flow
value. In typical applications there are no edges leading into the source, which
then allows the intuition that the flow value is the amount of goods that is sent
through the network from the source.

0 2

1

3

4

5

6

7

c = 7

c = 8

c = 9

c = 3

c = 4

c = 6

c = 2

c = 5

c = 8
c = 10

c = 4

c = 7 c = 10

A network.

0 2

1

3

4

5

6

7

f = 0

f = 6

f = 0

f = 0

f = 0

f = 6

f = 0

f = 0

f = 0

f = 4
f = 4

f = 2 f = 2

A flow.

0 2

1

3

4

5

6

7

f = 7

f = 5

f = 5

f = 3

f = 4

f = 5

f = 0

f = 5

f = 0

f = 7
f = 4

f = 5 f = 10

A maximal flow.

Fig. 4. Examples of a network and flows.

Flow problems are related (among many others) to routing problems, where
one wishes to send a certain amount of goods through different distribution lines
that have a limited capacity only (e.g. traffic or electrical current). The Kirchhoff
law then simply states that there is no loss of goods along the way. There has
been extensive research on finding maximal flows (cf. [11, 10, 7] for overviews and
results) and efficient algorithms are known. We consider the original algorithm
and variations thereof. The original algorithm for finding maximal flows is due
to a theorem by Ford and Fulkerson, which is based upon [14].

Theorem 2 (Characterisation of maximal flows, Ford & Fulkerson).
Let N = ((V,E), s, t, c) be a network and f : E → N a flow. Let

cf : E ∪ E−1 → N, (v, w) 7→
{
c(v, w)− f(v, w) : (v, w) ∈ E
f(w, v) : otherwise

and Ef := { e ∈ E ∪ E−1 | cf (e) > 0 }. We call cf the residual capacity w.r.t. f .
Then the following hold:

(1) If there is no path from s to t in (V,Ef), then f is a maximal flow.

(2) If p is a path from s to t in (V,Ef), let ε := min { cf (e) | e ∈ E(p) } and

fp : E → N, (v, w) 7→

f(v, w) + ε : (v, w) ∈ E(p) ∩ E
f(v, w)− ε : (w, v) ∈ E(p) ∩ E
f(v, w) : otherwise.

Then fp is a flow and |fp| = |f |+ ε (p is called a flow-augmenting path).

134

This theorem is very similar to the Berge theorem from the previous section. In
fact, it is known that the problem of finding maximum matchings in bipartite
graphs can be solved using a particular instance of the flow problem. However,
this technique works only for bipartite graphs in which an explicit bipartition is
known, while the presented strategy does not require an explicit bipartition.

The theorem of Ford and Fulkerson provides an algorithm for finding maxi-
mum flows, which checks for the existence of a path and improves the flow in the
positive case. When searching for any path, the algorithm is known as the Ford-
Fulkerson algorithm, which is not necessarily polynomial in the graph size. When
searching for shortest paths, this algorithm is known as the Edmonds-Karp al-
gorithm [8] and has a complexity that is polynomial in graph size. Assuming a
deterministic choice of the first element of a list of non-deterministically found
augmenting paths, this fact can be reflected in Curry by specifying an explicit
strategy for the path search8. An additional variation of the algorithm is find-
ing a set of paths from s to t that are disjoint up to s and t, such that the
set is maximal with respect to inclusion and use all paths from this set for an
improvement. This is a version of the Dinitz [7] algorithm and is more efficient
than the Edmonds-Karp algorithm, since it is possible to implement the search
for such a set in a fashion that is just as complex as finding a single path.

For an implementation we consider capacities and flows to be functions from
V × V to N, which yield zeroes on (V × V) \ E. For any g, h : V × V → Z set

swap(g) : V × V → Z, (x, y) 7→ g(y, x)

g u h : V × V → Z, e 7→
{
h(e) : g(e) 6= 0

0 : otherwise.

Then “swap” is an uncurried version of the function flip and u is the left-forgetful
intersection of functions. Let ⊕, 	 be the pointwise addition and subtraction of
functions respectively and • the multiplication of a function with a constant.

From now on we assume that c is a capacity and f is a flow. The residual
capacity cf as in the Ford-Fulkerson theorem can be computed as

cf := c	 f ⊕ swap(f) .

Indeed, for every v, w ∈ V we find that due to the asymmetry at most one of
the two values f(v, w) and f(w, v) can be non-zero, which yields

(c	 f ⊕ swap(f)) (v, w) = c(v, w)− f(v, w) + f(w, v)

=

c(v, w)− f(v, w) : (v, w) ∈ E
f(w, v) : (v, w) ∈ E−1
0 : otherwise

= cf (v, w) ,

8 However, we use a non-deterministic choice of an augmenting path to be able to
observe the different choices.

135

where the last step is only true up to the extension of cf to V × V . Now let p
be a path from s to t in (V,Ef) and let ε := min { cf (e) | e ∈ E(p) }. Then set

σp : V × V → Z, e 7→
{

1 : e ∈ E(p)

0 : otherwise,

i.e. σp is the characteristic function of E(p) in V × V , and

up := ε • (c u (σp 	 swap(σp)) .

The value up is a “point-free” version of the flow update indicated by the Ford-
Fulkerson theorem: the term σp 	 swap(σp) produces a function that yields 1
along the edges on p and −1 along all the reversed edges along p. The intersection
produces a function that is 1 along the edges along p which are contained in E
and −1 on those that are contained in E−1. One easily verifies that fp = f ⊕up.
With this we can compute as follows, where all of the arithmetic rules below
follow immediately from their pointwise counterparts.

cfp = c	 fp ⊕ swap(fp) = c	 (f ⊕ up)⊕ swap(f ⊕ up)

= c	 f 	 up ⊕ swap(f)⊕ swap(up) = (c	 f ⊕ swap(f))	 up ⊕ swap(up)

= cf 	 up ⊕ swap(up) .

Thus we can update the flow and the residual capacity using only the changes
provided by the path, which reduces the number of necessary computations. To
implement paths with values along traversed edges, we use the data type

data Path a = Final Vertex | From Vertex a (Path a)

and assume a function toEdges :: Path a → [(Edge, a)] to be at hand that
collects all edges along the path with their corresponding values. We then model
capacities and flows using finite maps FM with (Vertex ,Vertex) keys and Int
values9.

type EdgeMap = FM (Vertex ,Vertex) Int

The functions (⊕), (), (u) :: EdgeMap → EdgeMap → EdgeMap, (•) :: Int →
EdgeMap → EdgeMap and swap :: EdgeMap → EdgeMap are rather simple to
define using standard operations on FiniteMaps (e.g. (⊕) = plusFM C (+)). We
can then implement the flow augmentation as follows, where the first argument
is an augmenting path, the second one denotes the original capacity, the third
one is the current residual capacity and the fourth one is the current flow.

augmentBy :: Path Int → EdgeMap → EdgeMap → EdgeMap → (EdgeMap,EdgeMap)
augmentBy p c cf f = ((cf 	 up)⊕ swap up , f ⊕ up) where

9 We could define a data type for natural numbers as well, but then manual con-
version between naturals and integers requires some additional overhead; since this
implementation is for demonstration, only, we assume the correct usage.

136

up = eps • (c u (σp 	 swap σp)) -- the update

eps = minlist (map snd edges) -- the minimum along the path

σp = fromList (map (λ(e,)→ (e, 1)) edges) -- the characteristic function
edges = toEdges p

Note that the actual result is an exact copy of the computations from above.
The maximisation function can then be realised in a fashion very similar to the
one we used for matchings, but explicitly parametrised over a search strategy.
This implementation adds an additional non-deterministic component, namely
the choice of the actual augmenting path. The strategy for this choice is given
by the top-level search strategy.

data Network = Network Graph Vertex Vertex EdgeMap

maximalFlowWith :: Strategy (Path Int)→ Network → EdgeMap

maximalFlowWith str (Network s t c) = go (c, empty) where

go (cf , f) | isEmpty ps = f

| otherwise = go (augmentBy (chooseValue ps) c cf f)

where ps = set1With str findAugmenting cf

findAugmenting = augmenting s t

All that remains is the augmenting function. In essence, it is another path search,
but this time we use the capacity map to check for existing edges, because edges
in the residual graph exist iff their capacity is positive.

augmenting :: Vertex → Vertex → EdgeMap → Path Int

augmenting s t capacity = go (emptyFM (<)) s where

go vis from | from ≡ t = Final from

| cfi > 0 ∧ ¬ (from ‘inSet ‘ vis) = From from cfi (go (insert from vis) i)

where i free
cfi = capacity ! (from, i)

(!) :: FiniteMap a Int → a → Int
m ! key = lookupFMWithDefault m 0 key

The non-determinism is again enclosed in the path search. Just as was the case
with matchings, maximal flows are usually not unique and the presented imple-
mentation can be used to find all possibilities. Still, every maximal flow has the
same flow value and this fact can be observed by defining the ∂ function.

Again, we test our implementation with the example network from Figure
4 and wrap the call in the function showEdgeMap :: EdgeMap → String that
pretty-prints key-value pairs as key → value.

kics2> showEdgeMap (maximalFlowWith bfsStrategy) network1

(2, 5)→ 5, (0, 2)→ 5, (0, 1)→ 7, (1, 4)→ 3, (0, 3)→ 5, (1, 5)→ 4, (5, 6)→ 5,

(4, 7)→ 7, (3, 6)→ 5, (5, 4)→ 4, (6, 7)→ 10
More values? [Y(es)/n(o)/a(ll)] y

(2, 5)→ 3, (0, 2)→ 3, (0, 1)→ 7, (1, 4)→ 3, (0, 3)→ 7, (1, 5)→ 4, (5, 6)→ 5,

(4, 7)→ 7, (3, 6)→ 5, (3, 5)→ 2, (5, 4)→ 4, (6, 7)→ 10
More values? [Y(es)/n(o)/a(ll)] n

The first flow is exactly the maximal flow from Figure 4 and the second one
demonstrates that maximal flows can variate in their edges as well as the flow
values along the edges. Clearly, both flows have a flow value of 17.

137

6 Discussion

We have demonstrated how to apply non-deterministic path computations to
compute the solution to some selected graph problems. The presented func-
tions are not the most efficient ones by design, but intended as prototypes for
demonstration. This prototypical approach has the additional advantage of be-
ing simple and declarative. Clearly, several parts of our implementations can be
improved or described in a more declarative or more efficient fashion, but our
focus is on the non-deterministic path computations, which are the essence of
all the described algorithms.

The overall strategy of all computations in this paper can be considered as the
computation of the preimages of a given function which needs to be maximised.
For instance in case of flows this function is |·| : F → N, f 7→ |f |, where F
is the set of all flows in a given network. Similarly, every improvement step is
a preimage computation for the function improve : P → F, p 7→ fp where
P is the set of all flow-augmenting paths with respect to a given flow f . It is
interesting to note that every preimage choice is a branching point in the overall
computation and that every new choice can allow different branches that will still
lead to the same final result. In the case of maximum matchings two different
maximum matchings are distinct only in one or more edges, for flows we can
observe significantly more variation, since not only the edges that have non-zero
flow can be different, but even different non-zero flow values for the same edge
are possible.

Being able to observe such differences is interesting in its own right, but
can be of particular interest in teaching. In case of the maximum matching
function there is no difference between the search strategies. The maximal flow
function on the other hand behaves differently, as we have stated above, and
the choice of a depth-first strategy combined with an “unlucky” vertex ordering
yields a non-polynomial complexity, while the very same concrete program with
a breadth-first search strategy is in a completely different complexity class.

In our applications, results may be computed repeatedly through different
branches. Since set functions are implemented using lists, removing duplicates
is possible but costly, since a straight-forward graph comparison takes O(|E|)
operations. For matchings this is slightly better, since every matching has only
O(|V |) edges, which makes the näıve duplicate removal less inefficient. Still, with
focus on experimentation and teaching, an inefficient duplicate removal is still
rather simple, because the Curry function nub :: [α] → [α] removes duplicates
from a given list (of ground terms).

The presented implementation and the ideas behind it are not exclusive to
Curry, but passing search strategies to a set function is already a built-in feature
of Curry and particularly KiCS2. However, KiCS2 translates Curry programs to
Haskell and using non-deteminism monads (see [4]) and replacing logic variables
by overlapping rules (as in [1]) one can obtain a purely functional implementa-
tion. Such an implementation should be portable to every other language that
supports higher-order functions. It should not be too difficult to translate the
above functions into a relational setting, e.g. in Prolog, after removing the en-

138

capsulated non-determinism. Additionally, negations need to be handled with
care in general, but in our case we used negations only to check for “being not
contained in the visited vertices”, which can be inlined and implemented by
hand without explicit negation. However, Prolog uses a built-in DFS, which dis-
allows the parametrisation over the search strategy. It is difficult to estimate how
declarative and structurally complex the resulting program will be in another
language. While we omitted some auxiliary functions, we still consider our code
to be rather simple and straight-forward.
Acknowledgements: I thank Rudolf Berghammer for encouraging this work,
Frank Huch for sparking its idea and the highly appreciated feedback of the
reviewers.

References

1. S. Antoy and M. Hanus. Overlapping Rules and Logic Variables in Functional
Logic Programs. In ICLP, pages 87–101, 2006.

2. S. Antoy and M. Hanus. Set Functions for Functional Logic Programming. In Proc.
of the 11th International ACM SIGPLAN Conference on Principle and Practice
of Declarative Programming (PPDP’09), pages 73–82. ACM Press, 2009.

3. Claude Berge. Two Theorems in Graph Theory. In PNAS, volume 43 (9), pages
842–844. National Academy of Sciences, 1957.

4. B. Braßel, S. Fischer, M. Hanus, and F. Reck. Transforming Functional Logic
Programs into Monadic Functional Programs. In Julio Mariño, editor, WFLP,
volume 6559 of LNCS, pages 30–47. Springer, 2010.

5. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A New Compiler from
Curry to Haskell. In Proc. of the 20th Int. Workshop on Functional and (Con-
straint) Logic Prog. (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.

6. Nikita Danilenko. Using Relations to Develop a Haskell Program for Computing
Maximum Bipartite Matchings. In Wolfram Kahl and Timothy G. Griffin, editors,
RAMICS, volume 7560 of LNCS, pages 130–145. Springer, 2012.

7. Yefim Dinitz. Dinitz’ Algorithm: The Original Version and Even’s Version. In Oded
Goldreich, Arnold L. Rosenberg, and Alan L. Selman, editors, Essays in Memory
of Shimon Even, volume 3895 of LNCS, pages 218–240. Springer, 2006.

8. J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency
for Network Flow Problems. J. ACM, 19(2):248–264, 1972.

9. Jack Edmonds. Paths, trees and flowers. Canadian J. Math., 17:449–467, 1965.
10. A. V. Goldberg and S. Rao. Beyond the Flow Decomposition Barrier. J. ACM,

45(5):783–797, 1998.
11. A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum-Flow Prob-

lem. J. ACM, 35(4):921–940, 1988.
12. Michael Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers.

0.8.3). Available at http://www.curry-language.org, 2012.
13. J. E. Hopcroft and R. M. Karp. An n5/2 Algorithm for Maximum Matchings in

Bipartite Graphs. SIAM J. Comput., 2(4):225–231, 1973.
14. L. R. Ford Jr. and D. R. Fulkerson. Maximal Flow through a Network. Canadian

J. Math., 8:399–404, 1956.
15. M. Mucha and P. Sankowski. Maximum Matchings via Gaussian Elimination. In

FOCS, pages 248–255. IEEE Computer Society, 2004.

139

Curry without Success

Sergio Antoy1 Michael Hanus2

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. Curry is a successful, general-purpose, functional logic programming
language that predefines a singleton type Success explicitly to support its logic
component. We take the likely-controversial position that without Success Curry
would be as much logic or more. We draw a short history and motivation for the
existence of this type and justify why its elimination could be advantageous. Fur-
thermore, we propose a new interpretation of rule application which is convenient
for programming and increases the similarity between the functional component
of Curry and functional programming as in Haskell. We outline some related
theoretical (semantics) and practical (implementation) consequences of our pro-
posal.

1 Motivation

Recently, we coded a small Curry [16] module to encode and pretty-print JSON format-
ted documents [14]. The JSON format encodes floating point numbers with a syntax
that makes the decimal point optional. Our Curry System prints floating numbers with a
decimal point. Thus, integers, which were converted to floats for encoding, were printed
as floats, e.g., the integer value 2 was printed as “2.0”. We found all those point-zeros
annoying and distracting and decided to get rid of them. To avoid messing with the in-
ternal representation of numbers, and risking losing information, our algorithm would
look for “.0” at the end of the string representation of a number in the JSON document
and remove it. In the List library, we found a function, isSuffixOf, that tells us whether to
drop the last two characters, but we did not find a function to drop the last 2 characters.
How could we do that?

In the library we found the usual drop and take functions that work at the beginning
of a string s. Hence, we could reverse s, drop 2 characters, and reverse again. We were
not thrilled. Or we could take from s the first n− 2 characters, where n is the length of
s. We were not thrilled either. In both cases, conceptually the string is traversed 3 times
(probably in practice too) and extraneous functions are invoked. Not a big deal, but
there must be a better way. Although the computation is totally functional, we started
to think logic.

Curry has this fantastic feature called functional patterns [4]. With it, we could code
the following:

fix int (x ++ ".0") = x (1)

140

Now we were thrilled! This is compact, simple and obviously correct. Of course, we
would need a rule for cases in which the string representation of a number does not end
in “.0”, i.e.:

fix int (x ++ ".0") = x
fix int x = x

(2)

Without the last rule fix int would fail on a string such as “2.1”. With the last rule the
program would be incorrect because both rules would be applied for a number that
ends in “.0”. The latter is a consequence of the design decision that established that the
order of the rules in a program is irrelevant—a major departure of Curry from popular
functional languages. One of the reasons of this design decision is Success.

2 History

Putting it crudely, a functional logic language is a functional language extended with
logic variables. The only complication of this extension is what to do when some func-
tion f is applied to some unbound logic variable u. There are two options, either to
residuate on u or to narrow u. Residuation suspends the application of f, and computes
elsewhere in the program in hopes that this computation will narrow u so that the sus-
pended application of f can continue. Narrowing instantiates u to values that sustain
the computation. For example, given the usual concatenation of lists:

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys) (3)

Narrowing u++ t, where u is unbound and t is any expression, instantiates u to []
and u′:us and continues these computations either one at the time or concurrently
depending on the control strategy.

In early functional logic languages [1, 17], in the tradition of logic programming,
only predicates (as opposed to any function) are allowed to instantiate a logic variable.
In the early days of Curry, we were not brave enough. Indiscriminate narrowing, such as
that required for (1), which is based on (3), was uncharted territory and we decided that
all functions would residuate except a small selected group called constraints. These
functions are characterized by returning a singleton type called Success.

Narrowing has the remarkable property of solving equations [23]. Indeed, the rule
in (1) works by solving an equation by narrowing. An application fix int(s), where s is a
string, attempts to solve s = x++".0". A solution, “the” if any exists, gives the desired
result x. Returning Success rather than Boolean, as the constrained equality does, had
the desirable consequence that we would not “solve” an equation by deriving it to False,
but had the drawback of introducing a new variant of equality, implemented in Curry
by the operation “=:=”, and the undesirable consequence that “some expressions were
more equal than others” [19].

As a consequence of our hesitation, narrowing was limited to the arguments of
constraints—a successful model well-established by Prolog. However, this model is at
odds with a language with a functional component with normal (lazy) order of eval-
uation. Without functional nesting, there is no easy way to tell whether or not some
argument of some constraint should be evaluated. Consider a program to solve the 8-
queens puzzle:

141

permute x y = . . . succeed if y is a permutation of x
safe y = . . . succeed if y is a safe placement of queens (4)

A solution of the puzzle is obtained by permute [1..8] y && safe y, where y is likely a
free variable. The constraint permute fully evaluates y upon returning even if safe may
only look at the first two elements and determine that y is not safe.

This prompted the invention of “non-deterministic functions”, i.e., a function-like
mechanism, that may return more than one value for the same combination of argu-
ments, but is used as an ordinary function. With this idea, Example (4) is coded as:

permute x = . . . return any permutation of x
safe y = . . . as before (5)

In this case, a solution of the puzzle is obtained by safe y where y = permute [1..8].
Since y is nested inside safe, permute [1..8] can be evaluated only to the extent needed
by its context. A plausible encoding of permute is:

permute [] = []
permute (x : xs) = nd insert x (permute xs)

nd insert x ys = x : ys
nd insert x (y : ys) = y : nd insert x ys

(6)

The evaluation of permute [1..8] produces any permutation of [1..8] only if both rules
defining nd insert are applied when the second argument is a non-empty list. Thus, the
well-established convention of functional languages that the first rule that matches an
expression is the only one being fired had to be changed in the design of Curry.

3 Proposed Adjustments

Our modest proposal is to strip the Success type of any special meaning. Since Suc-
cess is isomorphic to the Unit type, which is already defined in the Prelude, probably
it becomes redundant. Future versions of the language could keep it for backward com-
patibility, but deprecate it.

The first consequence of this change puts in question the usefulness of “=:=”, the
constrained equality. Equations can be solved using the Boolean equality “==” bring-
ing Curry more in line with functional languages. To solve an equation by narrowing,
we simply evaluate it using the standard rules defining Boolean equality. For example,
below we show these rules for a polymorphic type List:

[] == [] = True
(x:xs) == (y:ys) = x==y && xs==ys
[] == (-:-) = False
(-:-) == [] = False

(7)

However, we certainly want to avoid binding variables with instantiations that derive
an equation to False since these bindings are not solutions. Avoiding these bindings is
achieved with the following operation:

solve True = True (8)

and wrapping an equation with solve, i.e., to solve x = y, we code solve (x== y).
Nostalgic programmers could redefine “=:=” as:

142

x =:= y = solve (x == y) (9)

When an equation occurs in the condition of a rule, the intended behavior is implied,
i.e., the rule is fired only when the condition is (evaluates to) True.

In a short paragraph above, we find the symbols “=”, “==” and “=:=”. The first
one is the (mathematical) equality. The other two are (computational) approximations
of it with subtle differences. Our proposal simplifies this situation by having only “==”
as the implementation of “=”, as in functional languages, without sacrificing any of
Curry’s logic aspects.

The second consequence of our proposal is to review the rule selection strategy,
i.e., the order, or more precisely its lack thereof, in which rules are fired. We have
already hinted at this issue discussing example (2). Every rule that matches the argu-
ments and satisfies the condition of a call is non-deterministically fired. A motivation
for the independence of rule order was discussed in example (6). The ability of making
non-deterministic choices is essential to functional logic programming, and it must be
preserved, but it can be achieved in a different way.

The predefined operation “?” non-deterministically returns either of its arguments.
This operation allows us to express non-determinism in a way different from rules
with overlapping left-hand sides [3]. For instance, the non-determinism of the opera-
tion nd insert in (6) can be moved from the left-hand sides of its defining rules to the
right-hand sides as in the following definition:

nd insert x ys = (x : ys) ? nd insert2 x ys
nd insert2 x (y : ys) = y : nd insert x ys (10)

Indeed, some Curry compilers, like KiCS2 [8], implement this transformation.
The definition of Curry at the time of this writing [16] establishes that the order of

the rules defining an operation is irrelevant. The same holds true for the conditions of
a rule, except in the case in which the condition type is Boolean, and for flexible case
expressions. Our next proposal is to change this design decision of Curry. Although
this is somehow independent of our first proposal to remove the Success type, it is
reasonable to consider both proposals at once since both simplify the use of Curry.

We propose to change the current definition of rule application in Curry as follows.
To determine which rule(s) to fire for an application t = f(t1, . . . , tn), where f is an
operation and t1, . . . , tn are expressions, use the following strategy:

1. Scan the rules of f in textual order. An unconditional rule is considered as a condi-
tional rule with condition True.

2. Fire the first rule whose left-hand side matches the application t and whose condi-
tion is satisfied. Ignore any remaining rule.

3. If no rule can be applied, the computation fails.
4. If a combination of arguments is non-deterministic, the previous points are executed

independently for each non-deterministic choice of the combination of arguments.
In particular, if an argument is a free variable, it is non-deterministically instantiated
to all its possible values.

As usual in a non-strict language like Curry, arguments of an operation application
are evaluated as they are demanded by the operation’s pattern matching and condition.

143

However, any non-determinism or failure during argument evaluation is not passed in-
side the condition evaluation. A precise definition of “inside” is in [6, Def. 3]. This is
quite similar to the behavior of set functions to encapsulate internal non-determinism
[6]. Apropos, we discuss in Section 5 how to exploit set functions to implement this
concept.

Before discussing the advantages and implementation of this concept, we explain
and motivate the various design decisions taken in our proposal. First, it should be noted
that this concept distinguishes non-determinism outside and inside a rule application.
If the condition of a rule has several solutions, this rule is applied if it is the first one
with a true condition. Second, the computation proceeds non-deterministically with all
the solutions of the condition. For instance, consider an operation to look up values for
keys in an association list:

lookup key assoc
| assoc == (- ++ [(key,val)] ++ -)
= Just val
where val free

lookup - - = Nothing

(11)

If we evaluate lookup 2 [(2, 14), (3, 17), (2, 18)], the condition of the first rule is solv-
able. Thus, we ignore the remaining rules and apply only the first rule to evaluate this
expression. Since the condition has the two solutions {val 7→ 14} and {val 7→ 18}, we
yield the values Just 14 and Just 18 for this expression. Note that this is in contrast to
Prolog’s if-then-else construct which checks the condition only once and proceeds just
with the first solution of the condition. If we evaluate lookup 2 [(3, 17)], the condition
of the first rule is not solvable but the second rule is applicable so that we obtain the
result Nothing.

On the other hand, non-deterministic arguments might trigger different rules to be
applied. Consider the expression lookup (2?3) [(3, 17)]. Since the non-determinism in
the arguments leads to independent rule applications (see item 4), this expression leads
to independent evaluations of lookup 2 [(3, 17)] and lookup 3 [(3, 17)]. The first one
yields Nothing, whereas the second one yields Just 17.

Similarly, free variables as arguments might lead to independent results since free
variables are equivalent to non-deterministic values [5]. For instance, the expression
lookup 2 xs yields the value Just v with the binding {xs 7→ (2, v): }, but also the
value Nothing with the binding {xs 7→ []} (as well as many other solutions). Again,
this behavior is different from Prolog’s if-then-else construct which performs bindings
for free variables inside the condition independently of its source. In contrast to Prolog,
our design supports completeness in logic-oriented computations even in the presence
of if-then-else.

The latter desirable property has also implications for the handling of failures oc-
curring when arguments are evaluated. For instance, consider the expression “lookup 2
failed” (where failed is a predefined operation which always fails whenever it is evalu-
ated). Because the evaluation of the condition of the first rule fails, the entire expression
evaluation fails instead of returning the value Nothing. This is motivated by the fact that
we need the value of the association list in order to check the satisfiability of the condi-
tion, but this value is not available.

144

To see the consequences of an alternative design decision, consider the following
contrived definition of an operation that checks whether its argument is the unit value
() (which is the only value of the unit type):

isUnit x | x == () = True
isUnit - = False (12)

In our proposal, the evaluation of isUnit failed fails. In an alternative design (like Pro-
log’s if-then-else construct), one might skip any failure during condition checking and
proceed with the next rule. In this case, we would return the value False for the expres-
sion isUnit failed. This is quite disturbing since the (deterministic!) operation isUnit,
which has only one possible input value, could return two values: True for the call
isUnit() and False for the call isUnit failed. Moreover, if we call this operation with
a free variable, like isUnit x, we obtain the single binding {x 7→ ()} and value True
(since free variables are never bound to failures). Thus, either our semantics would
be incomplete for logic computations or we compute too many values. In order to get
a consistent behavior, we require that failures of arguments demanded for condition
checking lead to failures of evaluations.

Changing the meaning of rule selection from an order-independent semantics to a
sequential interpretation is an important change in the design of Curry. However, this
change is relevant only for a relatively small amount of existing programs. First, most of
the operations in a functional logic program are inductively sequential [2], i.e., they are
defined by rules where the left-hand sides do not overlap. Hence, the order of the rules
does not affect the definition of such operations. Second, rules defined with traditional
Boolean guards residuate if they are applied to unknown arguments, i.e., it is usually
not intended to apply alternative conditions to a given call. This fits to a sequential
interpretation of conditions. Moreover, our proposal supports the use of conditional
rules in a logic programming manner with unknown arguments, since this “outside”
non-determinism does not influence the sequential condition checking.

Nevertheless, there are also cases where a sequential interpretation of rules is not
intended, e.g., in a rule-oriented programming style, which is often used in knowledge-
based or constraint programming. Although we argued that one can always translate
overlapping patterns into rules with non-overlapping patterns by using the choice oper-
ator “?”, the resulting code might be less readable. Finally, we have to admit that in a
declarative language ignoring the order of the rules is more elegant though not always
as convenient. Hence, a good compromise would be a compiler pragma that allows to
choose between a sequential or an unordered interpretation of overlapping rules.

4 Advantages

In this section we justify through exemplary problems the advantages of the proposed
changes.

Example 1. With the proposed semantics, (2) is a simple and obviously correct
solution of the problem, discussed in the introduction, of “fixing” the representation of
integers in a JSON document.

Example 2. As in the previous example, our proposed semantics is compatible with
functional patterns. Hence, (11) can be more conveniently coded as:

145

lookup key (- ++ [(key,val)] ++ -) = Just val
lookup - - = Nothing (13)

Example 3. Consider a read-eval-print loop of a functional logic language such
as Curry. A top-level expression may contain free variables that are declared by a free
clause such as in the following example:

x ++ y == [1,2,3,4] where x, y free (14)

Of course, the free clause is absent if there are no free variables in the top-level ex-
pression. The free variables, when present, are easily extracted with a “deep” pattern as
follows:

breakFree (exp++" where "++wf++" free"))
= (exp,wf)

breakFree exp
= (exp,"")

(15)

For this code to work, the rules of breakFree must be tried in order and the second
one must be fired only if the first one fails.

Example 4. Suppose that World Cup soccer scores are represented in either of the
following forms:

GER -:- USA
GER 1:0 USA (16)

where the first line represents a game not yet played and the second one a game in which
the digits are the goals scored by the adjacent team (a single digit suffices in practice).
The following operation parses scores:

parse (team1++" -:- "++team2) = (team1,team2,Nothing)
parse (team1++[’ ’,x,’:’,y,’ ’]++team2)

| isDigit x && isDigit y
= (team1,team2, Just(toInt x,toInt y))

parse - = error "Wrong format!"

(17)

Example 5. The Dutch National Flag problem [13] has been proposed in a simple
form to discuss the termination of rewriting [12]. A formulation in Curry of this simple
form is equally simple:

dnf (x++[White,Red]++y) = dnf (x++[Red,White]++y)
dnf (x++[Blue,Red]++y) = dnf (x++[Red,Blue]++y)
dnf (x++[Blue,White]++y) = dnf (x++[White,Blue]++y)

(18)

However, (18) needs a termination condition to avoid failure. With our proposed se-
mantics, this condition is simply:

dnf x = x (19)

With the standard semantics, a much more complicated condition is needed.

5 Implementation

A good implementation of the proposed changes in the semantics of rule selection re-
quires new compilation schemes for Curry. However, an implementation can also be

146

obtained by a transformation over source programs when existing advanced features of
Curry are exploited. This approach provides a reference semantics that avoids explic-
itly specifying all the details of our proposal, in particular, the subtle interplay between
condition solving and non-determinism and failures in arguments. Hence, we define
in this section a program transformation that implements our proposed changes within
existing Curry systems.

Initially, we discuss the implementation of a single rule with a sequence of condi-
tions, i.e., a program rule of the form

l | c1 = e1
...
| ck = ek

(20)

According to our proposal, if the left-hand side l matches a call, the conditions
c1, . . . , ck are sequentially evaluated. If ci is the first condition that evaluates to True,
all other conditions are ignored so that (20) becomes equivalent to

l | ci = ei

Note that the subsequent conditions are ignored even if the condition ci also evalu-
ates to False. Thus, the standard translation of rules with multiple guards, as defined in
the current report of Curry [16], i.e., replacing multiple guards by nested if-then-else
constructs, would yield a non-intended semantics. Moreover, non-determinism and fail-
ures in the evaluation of actual arguments must be distinguished from similar outcomes
caused by the evaluation of the condition, as discussed in Section 3.

All these requirements call for the encapsulation of condition checking where “in-
side” and “outside” non-determinism are distinguished and handled differently. Fortu-
nately, recent developments for encapsulated search in functional logic programming
[6, 10] provide an appropriate solution of this problem. For instance, [10] proposes an
encapsulation primitive allValues so that the expression (allValues e) evaluates to the
set of values of e where only internal non-determinism inside e is considered. Thus, we
can use the following expression to check a condition c with our intended meaning:3

if notEmpty (allValues (solve c)) then e1 else e2 (21)

According to [10], the meaning of this expression is as follows:

1. Test whether there is some evaluation of c to True.
2. If the test is positive, evaluate e1.
3. If there is no evaluation of c to True, evaluate e2.

The semantics of allValues ensures that non-determinism and failures caused by ex-
pressions not defined inside c, in particular, parameters of the left-hand side l of the
operation, are not encapsulated. The Curry implementations PAKCS [15] and KiCS2
[8] provide set functions [6] instead of allValues which allows the implementation of
this conditional in a similar way.

3 [10] defines only an operation isEmpty. Hence we assume that notEmpty is defined by the rule
notEmpty x = not (isEmpty x).

147

Our expected semantics demands that a rule with a solvable condition be applied
for each true condition, in particular, with a possible different binding computed by
evaluating the condition. To implement this behavior, we assume an auxiliary operation
ifTrue that combines a condition and an expression. This operation is simply defined by

ifTrue True x = x (22)

Then we define the meaning of (20) by the following transformation:

l = if notEmpty (allValues (solve c1))
then (ifTrue c1 e1) else...

if notEmpty (allValues (solve ck))
then (ifTrue ck ek) else failed

(23)

There are obvious simplifications of this general scheme. For instance, if ck = True, as
frequently is the case, the last line of (23) becomes ek.

This transformation scheme is mainly intended as the semantics of sequential con-
dition checking rather than as the final implementation (similarly to the specification of
the meaning of guards in Haskell [20]). A sophisticated implementation could improve
the actual code. For instance, each condition ci is duplicated in our scheme. Moreover,
it seems that conditions are always evaluated twice. However, this is not the case if a
lazy implementation of encapsulated search via allValues or set functions is used, as in
the Curry implementation KiCS2 [10]. If ci is the first solvable condition, the emptiness
test for (allValues ci) can be decided after computing a first solution. In this case, this
solution is computed again (and now also all other solutions) in the then-part in order
to pass its computed bindings to ei. Of course, a more primitive implementation might
avoid this duplicated evaluation.

Next we consider the transformation of a sequence of rules

l1 r1
...
lk rk

(24)

where each left-hand side li is a pattern f pi1 . . . pini for the same function f and each
ri is a sequence of condition/expression pairs of the form “| c = e” as shown in (20).4

We assume that the pattern arguments pij contain only constructors and variables. In
particular, functional patterns have been eliminated by moving them into the condition
using the function pattern unification operator “=:<=” (as shown in [4]). For instance,
rule (1) is transformed into

fix int xs | (x ++ ".0") =:<= xs = x (25)

Finally, we assume that subsequent rules with the same pattern (up to variable renam-
ing) are joined into a single rule with multiple guards. For instance, the rules (2) can be
joined (after eliminating the functional pattern) into the single rule

4 In order to handle all rules in a unique manner, we consider an unconditional rule “li = ei” as
an abbreviation for the conditional rule “li | True = ei”.

148

fix int xs
| (x ++ ".0") =:<= xs = x
| True = xs

(26)

Now we distinguish the following cases:

– The patterns in the left-hand sides l1, . . . , lk are inductively sequential [2], i.e., the
patterns can be organized in a tree structure such that there is always a discrimi-
nating (inductive) argument: since there are no overlapping left-hand sides in this
case, the order of the rules is not important for the computed results. Therefore, no
further transformation is necessary in this case. Note that most functions in typical
functional logic programs are defined by inductively sequential rules.

– Otherwise, there might be overlapping left-hand sides so that it is necessary to
check all rules in a sequential manner. For this purpose, we put the pattern matching
into the condition so that the patterns and conditions are checked together. Thus, a
rule like

f p1 . . . pn | c = e

is transformed into

f x1 . . . xn | (\p1 . . . pn -> c) x1 . . . xn

= (\p1 . . . pn -> ifTrue c e) x1 . . . xn

where x1, . . . , xn are fresh variables (the extension to rules with multiple condi-
tions is straightforward). Using this transformation, we obtain a list of rules with
identical left-hand sides which can be joined into a single rule with multiple guards,
as described above.

For instance, the definition of fix int (26) is transformed into
fix int xs =

if notEmpty (allValues (solve (x++".0"=:<=xs)))
then (ifTrue (x++".0" =:<= xs) x)
else xs

(27)

For an example of transforming rules with overlapping patterns, consider an operation
that reverses a two-element list and leaves all other lists unchanged:

rev2 [x,y] = [y,x]
rev2 xs = xs (28)

According to our transformation, this definition is mapped into (after some straightfor-
ward simplifications):

rev2 xs =
if notEmpty (allValues (\[x,y] -> True) xs)
then (\[x,y] -> [y,x]) xs
else xs

(29)

Thanks to the logic features of Curry, one can also use this definition to generate ap-
propriate argument values for rev2. For instance, if we evaluate the expression rev2 xs

149

(where xs is a free variable), the Curry implementation KiCS2 [8] has a finite search
space and computes the following bindings and values:

{xs = []} []
{xs = [x1]} [x1]
{xs = [x1,x2]} [x2,x1]
{xs = (x1:x2:x3:x4)} (x1:x2:x3:x4)

As mentioned above, the transformation presented in this section is intended to serve
as a reference semantics for our proposed changes and to provide a prototypical imple-
mentation. There are various possibilities to improve this implementation. For instance,
if the right-hand side expressions following each condition are always evaluable to a
value, i.e., to a finite expression without defined operations, the duplication of the code
of the condition as well as the potential double evaluation of the first solvable condi-
tion can be easily avoided. As an example, consider the following operation that checks
whether a string contains a non-negative float number (without an exponent):

isNNFloat (f1 ++ "." ++ f2)
| all isDigit f1 && all isDigit f2 = True

isNNFloat -= False
(30)

If c denotes the condition
(f1 ++ "." ++ f2) =:<= s &&
all isDigit f1 && all isDigit f2 (31)

by functional pattern elimination [4], program (30) is equivalent to

isNNFloat s | c = True
isNNFloat - = False (32)

Applying our transformation, we obtain the following code with the duplicated condi-
tion c:

isNNFloat s =
if notEmpty (allValues (solve c))
then (ifTrue c True)
else False

(33)

Since the expressions on the right-hand side are always values (True or False), we can
put these expressions into the sets computed by allValues. Then the check for a solvable
condition becomes equivalent to check the non-emptiness of these value sets so that we
return non-deterministically some value of this set.5 This idea can be implemented by
the following scheme which does not duplicate the condition and evaluates it only once
(the actual code can be simplified but we want to show the general scheme):

isNNFloat s =
if notEmpty s1 then chooseValue s1 else False

where
s1 = allValues (ifTrue c True)

(34)

Note that this optimization is not applicable if it is not ensured that the right-hand side
expressions are always evaluable to values. For instance, consider definition (28) of

5 The predefined operation chooseValue non-deterministically returns some value of a set.

150

rev2 and the expression head (rev2 [nv, 0]), where nv is an expression without a value
(e.g., failure or non-termination). With our current transformation (29), we compute
the value 0 for this expression. However, the computation of the set of all values of
(rev2 [nv, 0]) w.r.t. the first rule defining rev2 does not yield any set since the right-
hand side [0, nv] has no value. This explains our transformation scheme (23) which
might look complicated at a first glance.

However, there is another transformation to implement overlapping rules like (28)
with our intended semantics. If the rules are unconditional, one can “complete” the
missing constructor patterns in order to obtain an inductively sequential definition. For
the operation rev2, we obtain the following definition:

rev2 [x,y] = [y,x]
rev2 [] = []
rev2 [x] = [x]
rev2 (x:y:z:xs) = x:y:z:xs

(35)

Since a case can be more efficiently executed than an encapsulated computation, this
alternative transformation might lead to larger but more efficient target code.

6 Related Work

Declarative programming languages support the construction of readable and reliable
programs by partitioning complex procedures into smaller units—mainly using case
distinction by pattern matching and conditional rules. Since we propose a new interpre-
tation of case distinctions for functional logic programs, we compare our proposal with
existing ones with similar objectives.

The functional programming language Haskell [20] provides, similarly to Curry,
also pattern matching and guarded rules for case distinctions. Our proposal for a new se-
quential interpretation of patterns increases the similarities between Curry and Haskell.
Although Curry provides more features due to the built-in support to deal with non-
deterministic and failing computations, our proposal is a conservative extension of
Haskell’s guarded rules, i.e., it has the same behavior as Haskell when non-determinism
and failures do not occur. To see this, consider a program rule with multiple conditions:

l | c1 = e1
...
| ck = ek

(36)

Since non-deterministic computations do not exist in Haskell and failures lead to ex-
ceptions in Haskell, we assume that, if this rule is applied in Haskell to an expres-
sion e, there is one condition ci which evaluates to True and all previous conditions
c1, . . . , ci−1 evaluate to False. If we consider the same rule translated with the transfor-
mation scheme (23), obviously each condition notEmpty (allValues (solve cj)) reduces
to False for j = 1, . . . , i − 1 and to True for j = i. Thus, the application of this rule
reduces e to (ifTrue ci ei) and, subsequently, to ei, as in Haskell.

The logic programming language Prolog [11] also supports pattern matching and,
for sequential conditions, an if-then-else construct of the form “c -> e1 ; e2”. Al-
though Prolog can deal, similarly to Curry, with non-deterministic and failing compu-

151

tations, the if-then-else construct usually restricts the completeness of the search space
due to cutting the choice points created by c before executing e1. Hence, only the first
solution of c is used to evaluate e1. Furthermore, inside and outside non-determinism
is not distinguished so that variables outside the condition c might be bound during its
evaluation. This has the effect that predicates where if-then-else is used are often re-
stricted to a particular mode. For instance, consider the re-definition of rev2 (28) as a
predicate in Prolog using if-then-else:

rev2(Xs,Ys) :- Xs=[X,Y] -> Ys=[Y,X] ; Ys=Xs. (37)

If we try to solve the goal rev2(Xs,Ys), Prolog yields the single answer Xs = [A,B],
Ys = [B,A]. Thus, in contrast to our approach, all other answers are lost.

Various encapsulation operators have been proposed for functional logic programs
[7] to encapsulate non-deterministic computations in some data structure. Set func-
tions [6] have been proposed as a strategy-independent notion of encapsulating non-
determinism to deal with the interactions of laziness and encapsulation (see [7] for
details). We can also use set functions to distinguish successful and non-successful
computations, similarly to negation-as-failure in logic programming, exploiting the pos-
sibility to check result sets for emptiness. When encapsulated computations are nested
and performed lazily, it turns out that one has to track the encapsulation level in order to
obtain intended results, as discussed in [10]. Thus, it is not surprising that set functions
and related operators fit quite well to our proposal.

Computations with failures for the implementation of an if-then-else construct and
default rules in functional logic programs have been also explored in [18, 22]. In these
works, an operator, fails, is introduced to check whether every reduction of an expres-
sion to a head-normal form is not successful. The authors show that this operator can be
used to define a single default rule, but not the more general sequential rule checking of
our approach. Moreover, nested computations with failures are not considered by these
works. As a consequence, the operator fails might yield unintended results if it is used
in nested expressions. For instance, if we use fails instead of allValues to implement the
operation isUnit defined in (12), the evaluation of isUnit failed yields the value False in
contrast to our intended semantics.

7 Conclusions

We proposed two changes to the current design of Curry. The first one concerns the
removal of the type Success and the related constraint equality “=:=”. This simplifies
the language since it relieves the programmer from choosing the appropriate equality
operator. The second one concerns a strict order in which rules and conditions are tried
to reduce an expression. This makes the language design more similar to functional
languages like Haskell so that functional programmers will be more comfortable with
Curry. Nevertheless, the logic programming features, like non-determinism and evalu-
ating functions with unknown arguments, are still applicable with our new semantics.
This distinguishes our approach from similar concepts in logic programming which
simply cuts alternatives.

However, our proposal comes also with some drawbacks. We already mentioned
that in knowledge-based or constraint programming applications, a sequential ordering

152

of rules is not intended. Hence, a compiler pragma could allow the programmer to
choose between a sequential or an unordered interpretation of overlapping rules.

A further drawback of our approach concerns the run-time efficiency. We argued
that solving “==” equations by narrowing with standard equational rules can replace
the constraint equality “=:=”. Although this is true from a semantic point of view,
the constraint equality operator “=:=” is more efficient from an operational point of
view. If x and y are free variables, the equational constraint “x=:=y” is deterministi-
cally solved by binding x to y (or vice versa), whereas the Boolean equality “x==y” is
solved by non-deterministically instantiating x and y to identical values. The efficiency
improvement of performing bindings is well known, e.g., it is benchmarked in [9] for
the Curry implementation KiCS2. On the other hand, the Boolean equality “x==y” is
more powerful since it can also solve negated conditions, i.e., evaluate “x==y” to False
by binding x and y to different values.

Hence, for future work it is interesting to find a compromise, e.g., performing vari-
able bindings when “x==y” should be reduced to True without any surrounding nega-
tions. A program analysis could be useful to detect such situations at compile time.

Finally, the concurrency features of Curry must be revised. Currently, concurrency is
introduced by the concurrent conjunction operator “&” on constraints. If the constraint
type Success is removed, other forms of concurrent evaluations might be introduced,
e.g., in operators with more than one demanded argument (“==”, “+”,. . .), explicit con-
current Boolean conjunctions, or only in the I/O monad similarly to Concurrent Haskell
[21].

Despite all the drawbacks, our proposal is a reasonable approach to simplify the
design of Curry and make it more convenient for the programmer.

8 Acknowledgments

This material is based upon work partially supported by the National Science Founda-
tion under Grant No. CCF-1317249.

References

1. H. Aı̈t-Kaci and A. Podelski. Towards a meaning of LIFE. In Proc. of the 3rd Int. Sympo-
sium on Programming Language Implementation and Logic Programming, pages 255–274.
Springer LNCS 528, 1991.

2. S. Antoy. Definitional trees. In Proc. of the 3rd International Conference on Algebraic and
Logic Programming, pages 143–157. Springer LNCS 632, 1992.

3. S. Antoy. Optimal non-deterministic functional logic computations. In Proceedings of the
Sixth International Conference on Algebraic and Logic Programming (ALP’97), pages 16–
30, Southampton, UK, September 1997. Springer LNCS 1298. Extended version at http:
//cs.pdx.edu/∼antoy/homepage/publications/alp97/full.pdf.

4. S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of
the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6–22. Springer LNCS 3901, 2005.

5. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic programs.
In Proceedings of the 22nd International Conference on Logic Programming (ICLP 2006),
pages 87–101. Springer LNCS 4079, 2006.

153

6. S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’09), pages 73–82. ACM Press, 2009.

7. B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional logic com-
putations. Journal of Functional and Logic Programming, 2004(6), 2004.

8. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry to
Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint) Logic
Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.

9. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. Implementing equational constraints in a
functional language. In Proc. of the 15th International Symposium on Practical Aspects of
Declarative Languages (PADL 2013), pages 125–140. Springer LNCS 7752, 2013.

10. J. Christiansen, M. Hanus, F. Reck, and D. Seidel. A semantics for weakly encapsulated
search in functional logic programs. In Proc. of the 15th International Symposium on Prin-
ciple and Practice of Declarative Programming (PPDP’13), pages 49–60. ACM Press, 2013.

11. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog - the standard: reference manual. Springer,
1996.

12. N. Dershowitz. Termination of rewriting. J. Symb. Comput., 3(1/2):69–116, 1987.
13. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
14. The JSON Data Interchange Standard.
15. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre, and

F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at http://www.

informatik.uni-kiel.de/∼pakcs/, 2013.
16. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.3). Available at

http://www.curry-language.org, 2012.
17. J. Lloyd. Programming in an integrated functional and logic language. Journal of Functional

and Logic Programming, 1999(3):1–49, 1999.
18. F.J. López-Fraguas and J. Sánchez-Hernández. A proof theoretic approach to failure in func-

tional logic programming. Theory and Practice of Logic Programming, 4(1):41–74, 2004.
19. G. Orwell. Animal Farm: A Fairy Story. Secker and Warburg, London, UK, 1945.
20. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-

bridge University Press, 2003.
21. S.L. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. 23rd ACM Sym-

posium on Principles of Programming Languages (POPL’96), pages 295–308. ACM Press,
1996.

22. J. Sánchez-Hernández. Constructive failure in functional-logic programming: From theory
to implementation. Journal of Universal Computer Science, 12(11):1574–1593, 2006.

23. J.R. Slagle. Automated theorem-proving for theories with simplifiers, commutativity, and
associativity. Journal of the ACM, 21(4):622–642, 1974.

154

A Partial Evaluator for Curry

Michael Hanus and Björn Peemöller

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
{mh|bjp}@informatik.uni-kiel.de

Abstract. We present a partial evaluator for functional logic programs written in
Curry. In contrast to previous approaches to the partial evaluation of functional
logic programs, we take into account the features used in contemporary Curry
programs, in particular, non-deterministic operations and recursive let expres-
sions. For this purpose, we base our partial evaluator on FlatCurry, an intermedi-
ate language for the representation of Curry programs. We sketch our approach
and present initial benchmarks of our implementation.

1 Introduction

Partial evaluation of programs is a technique to anticipate the evaluation of computa-
tions once at compile time instead of performing them (possibly several times) at run
time. This is possible if some part of the input data, also called static data, is known at
compile time. In this case, some parts of the program are evaluated so that a residual
program, i.e., a specialized version of the original one, is returned. Since some compu-
tations have been performed at compile time, the run time of the specialized program
could be considerably decreased. The static data does not need to be some user input,
but can also be subexpressions in the original program. Offline partial evaluators ob-
tain information about static data from a separate static analysis phase (binding-time
analysis), whereas online partial evaluators obtain this information on the fly and prop-
agate it during the partial evaluation process. In this work we follow the online partial
evaluation approach.

Partial evaluation has already been studied for different kinds of programming lan-
guages, like functional languages, logic languages, as well as for combined functional
logic languages. An interesting aspect of the partial evaluation of functional logic pro-
grams is the fact that the effects of supercompilation [23] can be obtained by applying
the operational semantics of the source language (narrowing) at partial evaluation time
[5]: if a function is called with unknown arguments, narrowing instantiates these ar-
guments such that the rules defining this function can be applied. Hence, one mainly
needs to control the partial evaluator, i.e., avoiding infinite unfoldings and instantiations
of logic variables, in order to obtain residual programs.

Thanks to this insight, partial evaluators for functional logic languages can be con-
structed with techniques similarly to the implementation of these languages. For in-
stance, Albert et al. [3] proposed a partial evaluator for Curry [17] based on the inter-
mediate language FlatCurry. Since FlatCurry makes the evaluation strategy of Curry
programs explicit [1], the use of FlatCurry led to a partial evaluator able to optimize
practical Curry programs. Unfortunately, when this partial evaluator was constructed,

155

the use of non-deterministic operations, although proposed some years ago [14], was
not well established. Therefore, the partial evaluation scheme was based on term rewrit-
ing and restricted to confluent programs, i.e., all operations were required to be deter-
ministic, and recursive let expressions were also not taken into account. Thus, if this
partial evaluator is applied to programs containing non-deterministic operations, which
is a useful programming pattern in contemporary functional logic programs [6,8], the
resulting programs are not semantically equivalent to the source programs.

In order to deal with realistic Curry programs, it is crucial for a partial evaluator to
cover the full source language, including both logic features such as non-determinism
and functional features such as recursive let expressions. Therefore, we extend in this
work the partial evaluator of Albert et al. [3] to cover the full language of FlatCurry. In
contrast to [3], we base our partial evaluator on an operational semantics [1] which is
adequate for contemporary Curry programs.

We start with an introduction to the functional logic language Curry in Sect. 2 before
we sketch the structure of the partial evaluator in Sect. 3. The partial evaluation scheme
is presented in Sect. 4, whereas control issues are discussed in Sect. 5. We evaluate our
implementation with some benchmarks in Sect. 6 before we conclude in Sect. 7.

2 Curry

We briefly review the basic concepts of the functional logic language Curry. More de-
tails can be found in recent surveys on functional logic programming [7,15] and in the
language report [17].

The syntax of Curry [17] is close to Haskell [21], i.e., type variables and names
of defined operations usually start with lowercase letters and the names of type and
data constructors start with an uppercase letter. The application of an operation f to an
expression e is denoted by juxtaposition (“f e”). In addition to Haskell, Curry allows
free (logic) variables in rules and initial expressions. If the data type of Booleans and a
negation operation are defined by
data Bool = False | True
not True = False
not False = True

the expression “not x where x free” non-deterministically reduces to False with
the binding x=True, and to True with the binding x=False. A further kind of non-
determinism is supported in Curry by the choice operator “?”, which can be considered
as predefined by the overlapping rules
x ? _ = x
_ ? y = y

Thus, we can define a non-deterministic operation coin yielding the values 0 and 1 by
coin = 0 ? 1

If non-deterministic operations are used as arguments in other operations, a seman-
tical ambiguity might occur. Consider the operation
double x = x + x

and the expression “double coin”. If we evaluated this expression by term rewriting,
we could have the reduction

156

double coin → coin + coin → 0 + coin → 0 + 1 → 1

leading to the unintended result 1. Note that this result cannot be obtained with a strict
reduction strategy where arguments are evaluated prior to the function calls. In order
to avoid dependencies on the evaluation strategies and exclude such unintended results,
Curry is based on the rewriting logic CRWL, proposed by González-Moreno et al. [14]
as a logical (execution- and strategy-independent) foundation for declarative program-
ming with non-strict and non-deterministic operations. This logic specifies the call-time
choice semantics [18] where values of the arguments of an operation are determined be-
fore the operation is evaluated. In a lazy strategy, this can be enforced by sharing actual
arguments. For instance, the expression above can be lazily evaluated provided that all
occurrences of coin are shared so that all of them consistently reduce to either 0 or 1.

3 Overview of the Partial Evaluator

Before describing the details of the partial evaluation process, we provide an overview
of the partial evaluator and its usage. Since our partial evaluator is an extension of the
first partial evaluator for Curry described in [3], our representation is oriented towards
the original description.

Our partial evaluator is intended to specialize some parts of a given input program
in order to create an optimized, residual program. In order to support the specification
of expressions to be optimized, we assume that these expressions are annotated with
PEVAL. For example, we assume a program which contains the function definition
main xs = map (twice square) xs

We can then annotate the main expression (or parts of it) as follows:
main xs = PEVAL (map (twice square) xs)

Actually, PEVAL is the identity function, i.e., it has the type a → a. As a consequence,
annotations with PEVAL do not change the semantics of the original program. After
annotating the program, the process of partial evaluation is fully automatic. The process
itself consists of the following phases (depicted in Fig. 1):

1. The partial evaluator is called for a given program, containing annotated expres-
sions as described above. This source program is converted into the standard inter-
mediate representation for Curry programs, called FlatCurry (see Sect. 4.1).

2. The process continues by extracting the set of annotated expressions and creating a
copy of the original program without annotations.

3. Both form the input for the partial evaluation phase, which is later described.
4. The output of the partial evaluation is a set of semantically equivalent, potentially

more efficient expressions. These expressions are converted to new function defini-
tions to allow reuse, a process called renaming.

5. The evaluation process tends to produce some “intermediate” functions which only
pass their parameters to another function. Therefore, the process is finished by a
compression phase which removes such intermediate functions by inlining and sim-
plifies expressions to produce a more efficient and legible result.

6. Finally, the annotated expressions of the form (PEVAL e) are replaced with their
(hopefully more efficient) equivalents e′, where e′ is the renaming of e. This opti-
mized program is then stored as a FlatCurry program.

157

Annotated
Curry program

Final
FlatCurry program

Annotated
FlatCurry program

Program without
annotations

Annotated
expressions

Residual
expressions

New function
definitions

Compressed
definitions

Partial Evaluator

(1)
(2) (3)

(4)

(5)

(6)

Fig. 1. Overview of the partial evaluation process with phases (1) to (6)

For instance, with the usual definitions of map, twice, and square, the example above
is transformed into
main xs = map0 xs
map0 xs = case xs of [] → []

y:ys → let z = (y*y) in (z*z) : map0 ys

so that the overhead of the higher-order operations map and twice is eliminated.
The fact that the partial evaluator internally operates on the FlatCurry format is no

restriction, since this format is used by current Curry compilers anyway, e.g., PAKCS
[16] or KiCS2 [11]. Hence, the partial evaluator can easily be incorporated into a com-
pilation chain.

4 The Partial Evaluation Scheme

As already mentioned, the partial evaluator described in [3] lacks support for two lan-
guage features, namely non-deterministic operations and let expressions. For instance,
consider the definition
main = PEVAL (double coin)

w.r.t. the definitions of coin and double shown in Sect. 2. The partial evaluator [3]
unfolds the call to double in the body of main to (0 ? 1) + (0 ? 1), so that the
residual program yields the values 0, 1, 1, and 2 for main. However, according to the
call-time choice semantics of Curry [14,18], the correct result would be 0 or 2 but not
1. This problem arises from the residual semantics of the original partial evaluator,
which is based on term-rewriting so that non-determinism in shared subexpressions is
duplicated in the residual programs.

The second missing feature are (mutually recursive) let expressions, i.e., bindings
where the variables to be bound might occur in the right-hand side of the bindings. For
example, it is not possible to partially evaluate the program
ones = let ones = 1 : ones in ones
main = PEVAL (take 2 ones)

One might encounter that this does not impose a real restriction because recursive let-
bindings could be interpreted by recursive function definitions (at the cost of some
overhead). While this is possible for the example above, it is not whenever a non-
deterministic value should be shared. For instance, consider the following program:
digits = let digits = (0 ? 1) : digits in digits
main = PEVAL (take 2 digits)

158

P ∶∶= Dm (program)
D ∶∶= f(xn) = e (defined function)
e ∶∶= x (variable)∣ c(ek) (constructor call)∣ f(ek) (function call)∣ let{ xn = en }in e (recursive let binding)∣ let xn free in e (free variables)∣ e1 ? e2 (disjunction)∣ case e of{ pk → ek } (case expression, pi pairwise different)
p ∶∶= c(xn) (constructor pattern)

Fig. 2. The FlatCurry representation of programs

Because of the let binding, the decision to bind digit to either 0 or 1 is shared, and, in
consequence, the expression main evaluates to either [0,0] or [1,1]. If we replaced
the definition of digits by a top-level operation, as in
digits = (0 ? 1) : digits
main = PEVAL (take 2 digits)

the expression main would produce the additional results [0,1] and [1,0]. Thus,
recursive let expressions cannot be transformed into operations but must be explicitly
considered by a partial evaluator.

The usage of both features in contemporary Curry programs is the motivation for us
to develop a new partial evaluator. In contrast to [3], we do not use a semantics based
on term rewriting. Instead, we base our work on the natural semantics for FlatCurry
proposed in [1] which is intended to specify the call-time choice semantics of non-
deterministic operations by modeling a heap structure to express sharing. A similar
semantics has been used in [13] in a partial evaluator for first-order functional programs.
In contrast to our approach, non-determinism, which is essential for Curry, has not been
considered there.

4.1 FlatCurry

FlatCurry is a simple intermediate language used by Curry compilers [11,16]. More-
over, it is also the basis of precise descriptions of the semantics of Curry [3] and
semantics-based tools for Curry (e.g., [2,3,4]). The syntax of this representation is de-
picted in Fig. 2, where we denote a sequence of objects o1, . . . , on by on. A FlatCurry
program P consists of a sequence of function definitions D such that each function
must be defined by a single rule with a linear left-hand side, i.e., the variables xn must
be pairwise different. The right-hand side of a function definition is an expression e
composed of variables (x, y, z, . . .), constructors (A, B, C, . . .), and function calls (f ,
g, h, . . .). In the following, we denote by φ a constructor c or a function f . For the
sake of simplicity, we assume that literals occurring in the source program, like num-
bers or characters, are represented as nullary constructors. Additionally, we allow local
(mutually recursive) bindings of variables, the introduction of free (logic) variables,
disjunctions (to represent overlapping left-hand sides in the source language), and pat-
tern matching. The patterns pi in case expressions are required to be pairwise different

159

and only consist of constructors applied to variables. In consequence, nested patterns in
the source language are represented by nested case expressions. For example, the list
concatenation conc is represented in FlatCurry as
conc(xs,ys) = case xs of { [] → ys

; z:zs → z : conc(zs,ys) }

Note that, in contrast to [1], we do not distinguish between flexible and rigid case

expressions. Although they behave differently on free (logic) variables [17], this differ-
ence is not relevant for partial evaluation [3]. Furthermore, we omit the representation
of external functions like arithmetics, which are implemented in the partial evaluator
but do not play a significant role in the evaluation scheme. Finally, we do not consider
higher-order applications in the syntax of FlatCurry since they can be represented by an
operation apply where partial applications are interpreted as constructor calls [3].

4.2 Natural Semantics

We base our partial evaluator on a variant of the operational semantics of FlatCurry
[1], also referred to as the natural semantics of FlatCurry. The semantics uses a heap
structure to specify sharing of expressions and computes the (flat) value of an expression
which is either a logic variable (w.r.t. the associated heap) or a constructor applied to
variables.

Heap = V → {free,∎} ⊎Exp V alue ∶∶= x ∣ c(xn)
A heap is a partial mapping from a set of variables V to either an expression (Exp is
the set of expressions according to the syntax of FlatCurry), a special symbol “free”
to represent a free variable,1 or a symbol “∎” representing a black hole.2 We denote
the empty heap by [], and the value associated to a variable x in a heap Γ by Γ [x].
Γ [x↦ e] denotes a heap Γ ′ with Γ ′[x] = e and Γ ′[y] = Γ [y] for all y ≠ x.

We use judgements of the form Γ ∶ e ⇓ ∆ ∶ v which express the fact that “the
expression e under the heap Γ evaluates to the value v and the (possibly modified) heap
∆ ”. The basic inference rules of the natural semantics are depicted in Fig. 3. We briefly
describe these rules and explain the differences to the original version of [1].

(Value) Evaluation of a value directly returns the value without modifying the heap.
(VarExp) This rule implements sharing of subexpressions. If a variable to be evaluated

is bound to an expression, the expression is evaluated and its value is returned.
In addition, the heap is updated with the value. During evaluation of the expres-
sion, the binding is replaced by ∎, in contrast to [1]. This allows the detection of
black holes and is necessary for the correctness of the semantics [10] (see also
Appendix A for a detailed explanation).

(Flatten) To correctly implement sharing, arguments of function or constructor calls
must be represented in the heap. This is usually achieved by a preprocessing step
called flattening or normalization [1,19], but it can also be performed on demand.

1 [1] represents free variables by circular let bindings of the form let {x = x} in e, but
this prohibits the correct representation of such bindings occurring in the source code.

2 We use a special symbol for black holes instead of simply removing the binding for a variable
(as in [19]) in order to distinguish black holes from unbound variables.

160

(Value) Γ ∶ v ⇓ Γ ∶ v where v = c(xn) or v ∈ V with Γ [v] = free

(VarExp)
Γ [x↦ ∎] ∶ e ⇓ ∆ ∶ v

Γ [x↦ e] ∶ x ⇓ ∆[x↦ v] ∶ v where e ∉ {free,∎}
(Flatten)

Γ [y ↦ ei] ∶ φ(x1, . . . , xi−1, y, ei+1, . . . , ek) ⇓ ∆ ∶ v
Γ ∶ φ(x1, . . . , xi−1, ei, ei+1, . . . , ek) ⇓ ∆ ∶ v where ei ∉ V, y fresh

(Fun)
Γ ∶ σ(e) ⇓ ∆ ∶ v
Γ ∶ f(yn) ⇓ ∆ ∶ v where f(xn) = e ∈ P, σ = {xn ↦ yn}

(Let)
Γ [yk ↦ σ(ek)] ∶ σ(e) ⇓ ∆ ∶ v
Γ ∶ let{ xk = ek }in e ⇓ ∆ ∶ v where σ = {xk ↦ yk}, yk fresh

(Or)
Γ ∶ ei ⇓ ∆ ∶ v

Γ ∶ e1 ? e2 ⇓ ∆ ∶ v where i ∈ {1,2}
(Free)

Γ [yn ↦ free] ∶ σ(e) ⇓ ∆ ∶ v
Γ ∶ let xn free in e ⇓ ∆ ∶ v where σ = {xn ↦ yn}, yn fresh

(Select)
Γ ∶ e ⇓ ∆ ∶ c(yn) ∆ ∶ σ(ei) ⇓ Θ ∶ v
Γ ∶ case e of{ pk → ek } ⇓ Θ ∶ v where

pi = c(xn),
σ = {xn ↦ yn}

(Guess)

Γ ∶ e ⇓ ∆[x↦ free] ∶ x ∆[x↦ σ(pi), yn ↦ free] ∶ σ(ei) ⇓ Θ ∶ v
Γ ∶ case e of{ pk → ek } ⇓ Θ ∶ v

where i ∈ {1, . . . , k}, pi = c(xn), σ = {xn ↦ yn}, yn fresh

Fig. 3. Natural semantics

(Fun) This rule unfolds a function call, where the result is obtained by evaluation of
the function’s right-hand side. We assume that the program P is a global parameter
of the calculus. Generally, whenever new variables are introduced by the program,
we apply a renaming substitution σ to prohibit name clashes.

(Let) The bindings of a let construct are added to the heap after all variables have
been renamed to fresh variable names.

(Or) This rule non-deterministically chooses one of the arguments to be futher evalu-
ated. In consequence, this rule introduces non-determinism into the calculus itself.

(Free) Like variables bound to expressions, logic variables are renamed and afterwards
bound in the heap.

(Select) For case expressions whose argument evaluates to a constructor-rooted term
the right-hand side of the corresponding alternative is selected and evaluated.

(Guess) For case expressions whose argument evaluates to a logic variable, one of
the alternatives is non-deterministically chosen to be evaluated. The variable is then
bound to the corresponding pattern where the variables inside the pattern are also
bound as logic variables.

4.3 Ensuring Termination

Following the general idea of partial evaluation of functional logic programs [5] as
well as logic programs [20], we evaluate an annotated expression e with a (possibly

161

incomplete) standard derivation [] ∶ e ⇓ ∆ ∶ e′. In order to ensure the termination of the
partial evaluation process, we defer the evaluation of some expressions. For example,
consider the program
loop xs = loop xs
main xs = PEVAL (loop xs)

The evaluation of the expression main does not terminate due to the recursive function
call to loop. To achieve termination of the partial evaluation process, we modify the
natural semantics as follows:

1. The evaluation of an expression can be deferred to avoid non-termination.
2. An operation proceed is used to decide whether a function call should be unfolded

or deferred.

This residualizing natural semantics is similar to [3,4] but more complex due to the
use of a heap for sharing instead of term rewriting. Regarding the first modification, we
extend the representation of values with a new symbol ⟪⋅⟫ which encloses expressions
whose evaluation should be deferred.

V alue ∶∶= . . . ∣ ⟪e⟫ (annotated expression)
This annotation directly corresponds to the PEVAL annotation in source programs. Sec-
ond, we extend the inference system with the operation proceed , deciding whether a
function call should be unfolded, and replace the rule Fun with:3

(FunEval)
Γ ∶ σ(e) ⇓ ∆ ∶ v
Γ ∶ f(yn) ⇓ ∆ ∶ v where

f(xn) = e ∈ P,σ = {xn ↦ yn},
proceed(Γ, f(yn)) = true

(FunDefer) Γ ∶ f(yn) ⇓ Γ ∶ ⟪f(yn)⟫ where
f(xn) = e ∈ P,σ = {xn ↦ yn},
proceed(Γ, f(yn)) = false

Approaches for the concrete definition of proceed will be discussed in Sect. 5.1. Fur-
thermore, we extend the rule Value to also return deferred expressions unchanged and
constrain the rule VarExp in that the value must not be a deferred expression. Finally,
we add two more rules for deferred expressions where the annotation is lifted upwards:

(VarDefer)
Γ [x↦ ∎] ∶ e ⇓ ∆ ∶ ⟪e′⟫

Γ [x↦ e] ∶ x ⇓ ∆[x↦ e′] ∶ ⟪x⟫ where e ∉ {free,∎}
(CaseDefer)

Γ ∶ e ⇓ ∆ ∶ ⟪e′⟫
Γ ∶ case e of{ pk → ek } ⇓ ∆ ∶ ⟪case e′ of{ pk → ek }⟫

4.4 Dealing with Partial Information

In contrast to the evaluation performed in a standard interpreter, the partial evalua-
tion process has to deal with partial knowledge in the form of unbound variables. For
instance, if the right-hand side of a function declaration like f x = PEVAL (g x)

should be evaluated, there is no binding information for the parameter variable x.

3 Actually, the operation proceed also takes into account the context of reductions already per-
formed, but we omit them here for the sake of simplicity.

162

A possible solution is to handle such unbound variables as logic variables, as done
in [5], so that they are bound to appropriate values by the partial evaluator. Since it
has been shown in [2] that the back-propagation of these bindings can lead to incorrect
residual programs, [3] uses a residualizing semantics which represents such bindings
by case expressions in the residual program. However, this is only necessary for un-
bound variables. Explicitly introduced logic variables are known to be free during the
actual evaluation so that they can be bound during partial evaluation time. For instance,
consider the expression
let x free in case x of { True → 1 }

Here we can bind x to True, since this binding is not visible outside the scope of this
expression, select the (single) branch as the value of the case expression, and continue
by evaluating its right-hand side. In consequence, our implementation evaluates this ex-
pression to 1, while the partial evaluator described in [3] cannot evaluate the expression
any further.

Hence, we distinguish unbound variables from logic variables by not binding them
in the heap. Furthermore, we assume that rule Value is also applicable to variables not
bound in the heap so that unknown variables reduce to themselves. Thus, only the rules
for case expressions have to be changed, where it is now also possible that the scru-
tinized value is an unknown variable. Following the idea of [3], we generate residual
case expressions to defer the inspection of the variable to the run time of the specialized
program. Therefore, we extend the definition of values to

V alue ∶∶= . . . ∣ case x of{ pk → vk } (residual case expression)
where the variable x inspected in the case expression is not bound in the corresponding
heap. Because case expressions are now contained in the set of values, we also have
to consider them as the value of a variable or an expression examined by another case
expression. Hence, we add the following rules:

(CaseUnbound)

Γ ∶ e ⇓ ∆ ∶ x
Γ ∶ case e of{ pk → ek } ⇓ ∆ ∶ case x of{ pk → ⟪ek⟫ }

where x ∉ dom(∆)
(CaseCase)

Γ ∶ e ⇓ ∆ ∶ case x of{ p′j → ⟪e′j⟫ }
Γ ∶ case e of{ pk → ek } ⇓ ∆ ∶ case x of{ p′j → ⟪case e′j of

{ pk → ek }
⟫ }

(VarCase)
Γ [x↦ ∎] ∶ e ⇓ ∆ ∶ case y of{ pk → ⟪ek⟫ }

Γ [x↦ e] ∶ x ⇓ ∆[x↦ case y of{ pk → ek }] ∶ x where e ∉ {free,∎}

(CaseVarCase)

Γ ∶ e ⇓ ∆ ∶ x
Γ ∶ case e of{ pk → ek } ⇓ ∆ ∶ case y of{ p′j → ⟪case x of

{ pk → ek }
⟫ }

where ∆[x] = case y of{ p′j → e′j }
The general idea is to lift case expressions inspecting an unbound variable upwards
and to defer the evaluation of the alternatives. Such deferred expressions are not further
evaluated in the residual semantics but later extracted by the global iterative process

163

as the initial expressions of a new specialization run. Because the alternatives are then
evaluated independently, it will be possible to take the binding information of the case
expression into account. For instance, if we consider the expression
case x of { True → not x }

a subsequent evaluation of the right-hand side not x may respect the binding of x to
True and, thus, directly evaluate to False.

4.5 Dereferencing the Heap

After evaluating an expression to a residual value, this value might contain variables
which are either free or bound to expressions in the corresponding heap. To be able
to replace parts of the input program with residual values, these bindings have to be
added to the values to form valid expressions, a process we call dereferencing the heap.
Conceptually, for a given configuration Γ ∶ e, we retrieve the set of variables transitively
reachable from e and bound in Γ and add the corresponding bindings to the expression.
For residual case expressions, we also respect the bindings represented by the case
expression. The bindings are divided into logic variables (fv) and variables bound to
expressions (bv) and added to the original expression:

drf (Γ, e) = ⎧⎪⎪⎨⎪⎪⎩
case x of{ pk → drf (Γ [x↦ pk], ek) } if e = case x of{ pk → ek }⟪let fv(Γ, e) free in let bv(Γ, e) in e⟫ otherwise

For instance, if we consider the configuration

[y↦ free] ∶ case x of {True -> x; False -> y}

then dereferencing will produce the expression

case x of{ True→ ⟪let{ x = True }in x⟫;False→ ⟪let y free in y⟫ }
5 Control

Our partial evaluation algorithm follows the general procedure of Alpuente et. al. [5],
which is parametric w.r.t. an unfolding rule used to construct a finite derivation for an
expression and an abstraction operator used to guarantee that only finitely many ex-
pressions are evaluated. The basic algorithm is depicted in Fig. 4 and works as follows.
Given an input program P and a set of annotated expressions E, the algorithm starts by
applying an unfolding rule which evaluates each expression according to the residual
semantics presented in the previous section and extracts the results by drf . If there is
more than one derivation in the residual semantics due to the non-deterministic infer-
ence rules Or and Guess, the different extracted results of the derivation are combined
by the choice operator “?”. If there is no derivation at all, the result is represented by the
predefined operation failed. In the next step, an abstraction operator is applied to this
set, adding the new expressions to the set of already evaluated expressions. This phase
yields a new set which may need further evaluation, hence, this process is iteratively re-
peated until no more expressions are added to the set. This iteration is necessary for the
correctness of partial deduction [20] in order to achieve a “closed” set of expressions

164

Input: A program P and a set of expressions E
Output: A set of expressions S
i ∶= 0; E0 ∶= E;
repeat

E′ ∶= unfold(Ei, P);
Ei+1 ∶= abstract(Ei,E

′);
i ∶= i + 1;

until Ei = Ei+1 (modulo renaming);
return S ∶= Ei

Fig. 4. Basic algorithm for partial evaluation

that covers all expressions possibly occurring in the residual program. To generate the
resulting program, the same unfolding rule has to be applied to the resulting set of ex-
pressions to generate the corresponding resultants, i.e., the rules of the residual program
(in our implementation, this step is integrated into the algorithm). Finally, the set of gen-
erated resultants are compressed to eliminate intermediate and redundant functions (see
[5] for details).

This procedure distinguishes two levels of control, namely the local level, managed
by the unfolding rule to avoid infinite evaluations, and the global level, managed by the
abstraction operator to avoid infinitely repetitions of the partial evaluation algorithm. To
ensure termination of the whole process, both local and global termination is required.

5.1 Local Control

Termination of the unfolding rule directly corresponds to termination of the residual se-
mantics presented in Sect. 4. For this purpose, the semantics has already been extended
by an oracle proceed(Γ, e) responsible for the decision whether a function call should
be unfolded or not. There exist several well-known techniques in the literature to come
to this decision, e. g., depth-bounds, loop-checks [9], well-founded orderings [12], or
well-quasi orderings [22]. Our implementation currently supports the following simple
strategies:

None No unfolding is performed for user-defined functions.
One Only one function call is unfolded for each evaluation.
Each At most one call is unfolded for each user-defined function, subsequent calls are

deferred.
All All function calls are unfolded, which corresponds to the original inference system.

This does not guarantee termination but may be useful if the user is sure that the
process terminates.

Note that, regardless of the chosen strategy, built-in functions (such as arithmetics) are
evaluated in any case, since they are known to terminate.

Expressions that have been deferred during evaluation will be extracted and eventu-
ally added to the set of expressions to be evaluated, depending on the operation abstract
(see Sect. 5.2 for details). Generally, a strategy that allows more evaluation steps in
one derivation than another strategy might seem superior. If an evaluation is split into
multiple derivations with deferred subexpressions, each of these subexpressions has to

165

be evaluated anew and leads to a new residual function to be generated. In contrast,
longer derivations will produce less deferred subexpressions and, hence, less residual
functions. Nevertheless, although a simpler strategy may produce more intermediate
expressions, there are better chances that some of these expressions have already been
encountered before, reducing the overall number of expressions to be evaluated. Fur-
thermore, the final compression phase will eliminate intermediate functions so that even
the simple strategies perform very well in practice.

5.2 Global Control

The local control is parametric w.r.t. the decision whether to stop or to proceed with the
evaluation, since it is safe to terminate the evaluation at any point. This flexibility does
not apply to the global control because we cannot stop the iterative extension of the set
of expressions until all function calls in this set are “closed” w.r.t. the set of expressions.
An expression e is closed w.r.t. a set of expressions if it is an instance of an expression
in the set and all expressions in the matching substitution are recursively closed (see [5]
for details). This condition is necessary to ensure the correctness of the partial evaluator
so that the specialized program computes the same solutions as the original program.
In order to avoid the construction of infinite sets of expressions, expressions in this set
are generalized to ensure termination of this process.

Hence, the operation abstract returns a safe approximation of Ei ∪E′ so that each
expression in the set of Ei ∪ E′ is closed w.r.t. the result of abstract(Ei,E

′). More
precisely, an expression e′ ∈ E′ is added to the set Ei according to the following rules
(note that the result of unfolding is either a variable, a deferred expression, a constructor
appplication, a case expression, or a choice of these results):

1. If e′ is a variable, it is discarded.
2. If e′ has the form ⟪e⟫, one of the following options is considered:

(a) add e to the set Ei,
(b) discard the expression e, or
(c) compute the most specific generalization of e and some expression e′ ∈ E′, say

ê, and try to add both ê and the expressions in the corresponding substitutions
σ and θ, where e = σ(ê) and e′ = θ(ê).

3. For all other cases (constructor calls, case expressions, choices), the corresponding
subexpressions are considered.

Like for the unfolding rule, the abstraction can be parameterized by a criterion to decide
the option taken in (2). Our implementation currently supports abstractions using a well-
founded ordering or an embedding ordering to distinguish between (2a) and (2c), i.e.,
smaller expressions are added but larger expressions are generalized.

To achieve a good level of specialization, it is crucial to recognize different variants
of one expression as equivalent in order to discard them in (2b). This is more com-
plex in our framework compared to [3], since we take let expressions into account.
For example, consider the equivalent expressions “map(square,xs)” and “let {f
= square} in map(f,xs)”. If we do not recognize them as variants, they might be
generalized to map(f,xs) which could not further be specialized. Therefore, we nor-
malize expressions by applying α-conversion and flattening [19] before computing their
abstractions.

166

Benchmark Time for PE Original Specialized Speedup

allOnes 280 180 140 1.29
doubleApp 330 190 160 1.19
doubleFlip 330 230 210 1.10
lengthApp 320 120 90 1.33
kmp 6100 1000 50 20.00

foldr (+) 0 xs (sum) 300 600 400 1.50
foldr (+) 0 (map square xs) 340 1280 800 1.60
foldr (++) [] xs (concat) 400 440 220 2.00
map (twice square) xs 420 1600 1410 1.13

foldr (?) failed ys (choose) 330 50 40 1.25
head (perm ys) 410 2960 40 74.00

Table 1. Benchmarks of selected partial evaluation examples (in msec)

6 Experimental Results

In this section we evaluate the implementation of our partial evaluator by some bench-
marks. We compile both the partial evaluator and the benchmarks with the PAKCS
Curry compiler (version 1.11.3, based on SICStus Prolog 4.2.3). All benchmarks were
executed on a Linux machine (Debian Wheezy) with an Intel Core i5-750 (2.66GHz)
processor and 4GiB of memory. The timings were performed using the profiling oper-
ation profileTimeNF of PAKCS and denote the time required for computing the nor-
mal form of the respective result in milliseconds (the arguments passed to the various
functions were evaluated before to bring out the speedup obtained by partial evaluation).
The benchmark examples have been specialized with one unfolding per evaluation and
without any abstraction, since all examples terminated. Experiments with both a well-
founded ordering or a well-quasi ordering resulted in the same or worse performance.
Table 1 presents the time required for the partial evaluation process itself, for executing
the original and the specialized program, and the gained speedup.

In the first group of benchmarks, we consider some typical examples of partial de-
duction and functional program transformations. These are simple functions working
on lists or trees as (intermediate) data structures: allOnes computes the length of its
input list, represented as Peano numbers, and constructs a new list of the same length
with 1 as all elements, doubleApp is the concatenation of three lists, doubleFlip flips
a tree structure twice, returning the same tree, lengthApp computes the length of the
concatenation of two lists, and kmp implements a generic string pattern matcher. The
first four functions were specialized without static input data, while the kmp example
was specialized w.r.t. a fixed pattern of length 4, explaining both the time needed for
partial evaluation and the gained speedup.

In the second group, we benchmark some examples with higher-order functions: the
computation of the sum of list elements using foldr, the sum of squared numbers, the
concatenation of a list of lists, and repeatedly applying a function to a list. All functions
are applied to an input list xs containing 200,000 elements. The speedup is generally
achieved because of the removal of intermediate data structures. For instance, the Curry

167

expression “foldr (+) 0 (map square xs)” is specialized to the following resid-
ual FlatCurry definition:
sumSquare(xs) = case xs of { [] → 0

; y:ys → (y*y) + sumSquare(ys) }

Finally, we evaluate two (complicated) variants of the function choose, which non-
deterministically chooses one element of a given list ys containing 10,000 elements:
choose (x:xs) = x ? choose xs

Our partial evaluator computes this simple implementation of choose for the first ex-
ample. The result for the second example only differs from choose in the order in
which the two non-deterministic alternatives are taken, which stems from the imple-
mentation of perm. The huge speedup is achieved because of the omission of the non-
deterministic intermediate list structure.

To summarize, our partial evaluator shows promising results and is capable of per-
forming optimizations such as deforestation [24] and transformation of higher-order
functions to first-order ones. In addition, non-deterministic operations are correctly
specialized in contrast to [3], and the results for deterministic operations are almost
identical.

7 Conclusions and Future Work

We have presented a new partial evaluation scheme for the functional logic language
Curry based on its intermediate representation FlatCurry. The partial evaluator is based
on an adaptation of the natural semantics of FlatCurry, extending the semantics to deal
with the requirements of partial evaluation such as ensuring termination. In contrast
to the original partial evaluator [3], which is based on term rewriting without shar-
ing, the new implementation correctly handles both recursive let expressions and
non-deterministic operations and, thus, supports full (Flat)Curry. As our benchmarks
demonstrate, the implementation is capable of powerful optimizations both to deter-
ministic and non-deterministic programs.

For future work, we intend to formally prove the correctness of the partial evalu-
ation scheme, which should be manageable due to the similarity of the original and
residual semantics. Another aspect for further investigations is the improvement of the
abstraction operator. While the abstraction is necessary to ensure termination, a too
general abstraction reduces the quality of the specialization. Thus, more sophisticated
abstraction operators might be beneficial.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics for declarative
multi-paradigm languages. Journal of Symbolic Computation, 40(1):795–829, 2005.

2. E. Albert, M. Hanus, and G. Vidal. Using an abstract representation to specialize functional
logic programs. In Proc. of the 7th International Conference on Logic for Programming and
Automated Reasoning (LPAR 2000), pages 381–398. Springer LNCS 1955, 2000.

3. E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

168

4. E. Albert, M. Hanus, and G. Vidal. A residualizing semantics for the partial evaluation of
functional logic programs. Information Processing Letters, 85(1):19–25, 2003.

5. M. Alpuente, M. Falaschi, and G. Vidal. Partial evaluation of functional logic programs.
ACM Transactions on Programming Languages and Systems, 20(4):768–844, 1998.

6. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. International
Conference on Algebraic and Logic Programming (ALP’97), pages 16–30. Springer LNCS
1298, 1997.

7. S. Antoy and M. Hanus. Functional logic programming. Communications of the ACM,
53(4):74–85, 2010.

8. S. Antoy and M. Hanus. New functional logic design patterns. In Proc. of the 20th Interna-
tional Workshop on Functional and (Constraint) Logic Programming (WFLP 2011), pages
19–34. Springer LNCS 6816, 2011.

9. R.N. Bol. Loop checking in partial deduction. Journal of Logic Programming, 16(1&2):25–
46, 1993.

10. B. Braßel. Implementing Functional Logic Programs by Translation into Purely Functional
Programs. PhD thesis, Christian-Albrechts-Universität zu Kiel, 2011.

11. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry to
Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint) Logic
Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.

12. M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding infinite
unfolding. New Generation Computing, 11(1):47–79, 1992.

13. S. Fischer, J. Silva, S. Tamarit, and G. Vidal. Preserving sharing in the partial evaluation of
lazy functional programs. In A. King, editor, Logic-based Program Synthesis and Transfor-
mation (revised and selected papers from LOPSTR’07), pages 74–89. Springer LNCS 4915,
2008.

14. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodríguez-
Artalejo. An approach to declarative programming based on a rewriting logic. Journal
of Logic Programming, 40:47–87, 1999.

15. M. Hanus. Functional logic programming: From theory to Curry. In Programming Logics -
Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS 7797, 2013.

16. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at http:
//www.informatik.uni-kiel.de/~pakcs/, 2013.

17. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.3). Available at
http://www.curry-language.org, 2012.

18. H. Hussmann. Nondeterministic algebraic specifications and nonconfluent term rewriting.
Journal of Logic Programming, 12:237–255, 1992.

19. J. Launchbury. A natural semantics for lazy evaluation. In Proc. 20th ACM Symposium on
Principles of Programming Languages (POPL’93), pages 144–154. ACM Press, 1993.

20. J.W. Lloyd and J.C. Shepherdson. Partial evaluation in logic programming. Journal of Logic
Programming, 11:217–242, 1991.

21. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, 2003.

22. M.H. Sørensen and R. Glück. An algorithm of generalization in positive supercompilation.
In Proc. of the 1995 International Logic Programming Symposium, pages 465–479. MIT
Press, 1995.

23. V.F. Turchin. The concept of a supercompiler. ACM Transactions on Programming Lan-
guages and Systems, 8(3), 1986.

24. P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science, 73:231–248, 1990.

169

A Black Hole Detection

As mentioned in Sect. 4.2, rule VarExp of the natural semantics shown in Fig. 3 re-
places the variable binding x ↦ e by x ↦ ∎ in the heap when evaluating the associated
expression e. This allows the detection of black holes (a self-dependent infinite loop)
[19], as done in some implementations of functional (logic) languages. For instance,
an attempt to evaluate the expression “let {x = x} in x” would result in a finite
but incomplete derivation tree, whereas it would trigger the construction of an infinite
derivation tree if the binding x↦ e was kept.

The detection of black holes included in the semantics seems to be an optimization
that could be omitted for deterministic programs [19]. However, it is crucial in combi-
nation with non-determinism in order to prevent the binding of a variable to different
values in the same derivation, as shown in [10]. For example, consider the expression
“let { x = T ? case x of { T → F }} in x”. If we do not replace the vari-
able binding in rule VarExp, the following derivation would be possible:

Γ ∶ T ⇓ Γ ∶ T
Γ ∶ T ? case x of{ T→ F } ⇓ Γ ∶ T

Γ ∶ x ⇓ [x↦ T] ∶ T [x↦ T] ∶ F ⇓ [x↦ T] ∶ F
Γ ∶ case x of{ T→ F } ⇓ [x↦ T] ∶ F

Γ ∶ T ? case x of{ T→ F } ⇓ [x↦ T] ∶ F
Γ ∶ x ⇓ [x↦ F] ∶ F[] ∶ let{ x = T ? case x of{ T→ F } }in x ⇓ [x↦ F] ∶ F

where Γ = [x↦ T ? case x of{ T→ F }]
In this derivation, the variable x is looked up in the heap twice, where at first the right
(non-deterministic) branch is chosen and afterwards the left branch. Hence, x is bound
to T as well as F, which violates the single assignment property of call-time choice.

With our semantics, there is one successful and one failing derivation but no deriva-
tion where x is bound to T as well as F:

[x↦ ∎] ∶ T ⇓ [x↦ ∎] ∶ T[x↦ ∎] ∶ T ? case x of{ T→ F } ⇓ [x↦ ∎] ∶ T[x↦ T ? case x of{ T→ F }] ∶ x ⇓ [x↦ T] ∶ T[] ∶ let{ x = T ? case x of{ T→ F } }in x ⇓ [x↦ T] ∶ T
[x↦ ∎] ∶ x ⇓ failure[x↦ ∎] ∶ case x of{ T→ F } ⇓[x↦ ∎] ∶ T ? case x of{ T→ F } ⇓[x↦ T ? case x of{ T→ F }] ∶ x ⇓[] ∶ let{ x = T ? case x of{ T→ F } }in x ⇓

B Residualizing Semantics

Since the various rules of the residualizing semantics used in our partial evaluator are
distributed over the paper and some of them were only informally sketched, we sum-
marize in the following the complete set of rules of our residualizing semantics.

170

(Value) Γ ∶ v ⇓ Γ ∶ v where
v = c(xn) or v = ⟪e′⟫ or v ∈ V
with (v ∉ dom(Γ) or Γ [v] = free)

(VarExp)
Γ [x↦ ∎] ∶ e ⇓ ∆ ∶ v

Γ [x↦ e] ∶ x ⇓ ∆[x↦ v] ∶ v where
e ∉ {free,∎}
and (v ∈ V or v = c(xn))

(VarDefer)
Γ [x↦ ∎] ∶ e ⇓ ∆ ∶ ⟪e′⟫

Γ [x↦ e] ∶ x ⇓ ∆[x↦ e′] ∶ ⟪x⟫ where e ∉ {free,∎}
(VarCase)

Γ [x↦ ∎] ∶ e ⇓ ∆ ∶ case y of{ pk → ⟪ek⟫ }
Γ [x↦ e] ∶ x ⇓ ∆[x↦ case y of{ pk → ek }] ∶ x where e ∉ {free,∎}

(Flatten)
Γ [y ↦ ei] ∶ φ(x1, . . . , xi−1, y, ei+1, . . . , ek) ⇓ ∆ ∶ v

Γ ∶ φ(x1, . . . , xi−1, ei, ei+1, . . . , ek) ⇓ ∆ ∶ v where ei ∉ V, y fresh

(FunEval)
Γ ∶ σ(e) ⇓ ∆ ∶ v
Γ ∶ f(yn) ⇓ ∆ ∶ v where

f(xn) = e ∈ P,σ = {xn ↦ yn},
proceed(Γ, f(yn)) = true

(FunDefer) Γ ∶ f(yn) ⇓ Γ ∶ ⟪f(yn)⟫ where
f(xn) = e ∈ P,σ = {xn ↦ yn},
proceed(Γ, f(yn)) = false

(Let)
Γ [yk ↦ σ(ek)] ∶ σ(e) ⇓ ∆ ∶ v
Γ ∶ let{ xk = ek }in e ⇓ ∆ ∶ v where σ = {xk ↦ yk}, yk fresh

(Or)
Γ ∶ ei ⇓ ∆ ∶ v

Γ ∶ e1 ? e2 ⇓ ∆ ∶ v where i ∈ {1,2}
(Free)

Γ [yn ↦ free] ∶ σ(e) ⇓ ∆ ∶ v
Γ ∶ let xn free in e ⇓ ∆ ∶ v where σ = {xn ↦ yn}, yn fresh

(Select)
Γ ∶ e ⇓ ∆ ∶ c(yn) ∆ ∶ σ(ei) ⇓ Θ ∶ v
Γ ∶ case e of{ pk → ek } ⇓ Θ ∶ v where

pi = c(xn),
σ = {xn ↦ yn}

(Guess)

Γ ∶ e ⇓ ∆[x↦ free] ∶ x ∆[x↦ σ(pi), yn ↦ free] ∶ σ(ei) ⇓ Θ ∶ v
Γ ∶ case e of{ pk → ek } ⇓ Θ ∶ v

where i ∈ {1, . . . , k}, pi = c(xn), σ = {xn ↦ yn}, yn fresh

(CaseDefer)
Γ ∶ e ⇓ ∆ ∶ ⟪e′⟫

Γ ∶ case e of{ pk → ek } ⇓ ∆ ∶ ⟪case e′ of{ pk → ek }⟫
(CaseUnbound)

Γ ∶ e ⇓ ∆ ∶ x
Γ ∶ case e of{ pk → ek } ⇓ ∆ ∶ case x of{ pk → ⟪ek⟫ }

where x ∉ dom(∆)
(CaseCase)

Γ ∶ e ⇓ ∆ ∶ case x of{ p′j → ⟪e′j⟫ }
Γ ∶ case e of

{ pk → ek }
⇓ ∆ ∶ case x of

{ p′j → ⟪case e′j of{ pk → ek }⟫ }

(CaseVarCase)

Γ ∶ e ⇓ ∆ ∶ x
Γ ∶ case e of

{ pk → ek }
⇓ ∆ ∶ case y of

{ p′j → ⟪case x of{ pk → ek }⟫ }
where ∆[x] = case y of{ p′j → e′j }

171

Automatic Testing of Operation Invariance

Tobias Gödderz and Janis Voigtländer

University of Bonn, Germany, {goedderz,jv}@cs.uni-bonn.de

Abstract. We present an approach to automatically generating operation invari-
ance tests for use with Haskell’s random testing framework QuickCheck. The
motivation stems from a paper by Holdermans [8] which showed how to address
certain shortcomings of straightforward testing of implementations of an abstract
datatype. While effective, his solution requires extra generation work from the test
engineer. Also, it may not even be doable if the person responsible for testing has
no knowledge about, and program-level access to, the internals of the concrete
datatype implementation under test. We propose and realize a refinement to Hol-
dermans’ solution that improves on both aspects: Required operation invariance
tests can be formulated even in ignorance of implementation internals, and can be
automatically generated using Template Haskell.

1 Introduction

It is good software engineering practice to test one’s, and possibly other’s, code. In
declarative languages, QuickCheck [4] and related tools [1, 3, 10] are an attractive
option, combining convenient ways of generating test input data and a DSL for expressing
properties to be tested.

One recurring situation where property-based testing is desirable is in connection
with implementations of an abstract datatype (ADT) specification. The scenario is that
some interface (API) is given as a collection of type signatures of operations along
with a collection of equational axioms that are expected to hold of those operations.
Then there is an, or possibly several, implementations of that specification. The user of
such an implementation should not need to be concerned with its internals, but would
still like to be convinced of its correctness. It seems very natural to simply turn the
given axioms into QuickCheck-like properties, and to accept an implementation as
correct if it passes all those axioms-become-tests. However, it has been known for a
while that such an approach is not enough to uncover all possible errors [6, 9]. Subtle
bugs can remain hidden, due to an unfortunate interplay of buggy implementation and
programmed equality (while actual semantic equality is impossible to test in general).
Recently, Holdermans [8] presented a solution that works by adding operation invariance
tests, to ensure that the assumed notion of equality is not just an equivalence relation, but
actually a congruence relation. His solution has its own problems though. Specifically, it
requires hand-writing a certain kind of additional test input data generator. But not only
is that something which may depend on implementation internals (so is not necessarily
something that a user having access only to the datatype’s external API could do); it is
also extra work and an additional source of potential errors: get that generator wrong by
not covering enough ground, and even the additional tests will not be enough to really
establish overall correctness. We set out to improve on these aspects.

172

2 The Need for Operation Invariance Tests

This section is largely a recap of material from Holdermans’ paper. Specifically, we also
use his very compelling example of how the approach of simply (and only) testing the
axioms from the specification of an ADT may lead to a false sense of security.

Assume a set of people is interested in integer FIFO queues, and in particular
in separately specifying, implementing, and using them. The specification is just a
mathematical entity, consisting of a listing of signatures of desirable operations:

empty ::Queue
enqueue :: Int→ Queue→ Queue
isEmpty ::Queue→ Bool
dequeue ::Queue→ Queue
front ::Queue→ Int

and of axioms expected to hold:

Q1: isEmpty empty = True

Q2: isEmpty (enqueue x q) = False

Q3: front (enqueue x empty) = x

Q4: front (enqueue x q) = front q if isEmpty q = False

Q5: dequeue (enqueue x empty) = empty

Q6: dequeue (enqueue x q) = enqueue x (dequeue q) if isEmpty q = False

An implementation in Haskell would be a module

module Queue (Queue,empty,enqueue, isEmpty, front,dequeue) where
. . .

that contains some definition for Queue as well as definitions for the operations adhering
to the type signatures from the specification. Importantly, the type Queue is exported
without any data constructors, so from the outside of the module, Queue values can only
be created, manipulated, and inspected using the provided operations. A prospective
user of the implementation can import the above module and call those operations in
application code. Now, the user would like to have some certainty that the implementa-
tion is correct. The appropriate notion of correctness is adherence to the axioms from
the mathematical specification, on which user and implementer should have agreed
beforehand. One way for the implementer to convince the user of the correctness is to
do extensive property-based testing to establish validity of the specification’s axioms
for the provided implementation. Using QuickCheck, the test suite would consist of the
following properties:

q1 = property (isEmpty empty == True)

q2 = property (λx q→ isEmpty (enqueue x q) == False)

q3 = property (λx→ front (enqueue x empty) == x)

173

q4 = property (λx q→ isEmpty q == False
=⇒
front (enqueue x q) == front q)

q5 = property (λx→ dequeue (enqueue x empty) == empty)

q6 = property (λx q→ isEmpty q == False
=⇒
dequeue (enqueue x q) == enqueue x (dequeue q))

These could even be written down by the user person in ignorance of any internals of the
implementation. However, the use of == on Queue values requires availability of an
appropriate instance of the Eq type class (which is how Haskell organizes overloading of
==). Let us assume the implementer provides such an instance. Moreover, we have to
assume that the implementer also provides an appropriate random generator for Queue
values (the q values quantified via the lambda-abstractions above – whereas for the Int
values quantified as x we can take for granted that a random generator already exists),
because otherwise the properties cannot be tested. In general, the implementer may even
have to provide several random Queue generators for different purposes, for example
since otherwise certain preconditions in axioms might be too seldom fulfilled, thus
preventing effective testing.1 But in the example here this is not an issue, since both
empty and nonempty queues will appear with reasonable likelihood among the generated
test data.

So if a Queue implementation passes all the above tests, it should be correct, right?
Unfortunately not. As Holdermans [8] demonstrates, it can happen, even under all the
assumptions above, that an implementation passes all the tests but is still harmfully
incorrect. Let us repeat that faulty implementation in full as well (also since we will later
want to refer to it in checking the adequacy of our own testing solution to the overall
problem). Here it is:

data Queue= BQ [Int] [Int]

bq :: [Int]→ [Int]→ Queue
bq [] r = BQ (reverse r) []
bq f r = BQ f r

empty ::Queue
empty = bq [] []

enqueue :: Int→ Queue→ Queue
enqueue x (BQ f r) = bq f (x : r)

isEmpty ::Queue→ Bool
isEmpty (BQ f) = null f

1 QuickCheck’s restricting conditional operator =⇒, written as ==>, does not count “A” being
false as evidence for “A implies B” being true. Thus, in order to reach a certain number of
positive test cases for “A implies B”, that many cases with both “A” and “B” being true must
be encountered (and, of course, not a single case with “A” true but “B” false). Consequently,
QuickCheck gives up testing if not enough cases with “A” being true are encountered.

174

front ::Queue→ Int
front (BQ f) = last f

dequeue ::Queue→ Queue
dequeue (BQ f r) = bq (tail f) r

This implementation uses the “smart constructor” bq to preserve the invariant that, for
every BQ f r, it holds that null f implies null r, which makes front simpler to implement.
Ironically, in the implementation above the error nevertheless lies in the definition of
front, which should have been head f rather than last f .

As already mentioned, in order to test properties q1–q6, we need a definition of ==
for Queue and a random generator for Queue values. The implementer is kind enough
to provide both (and both are perfectly sane) within the Queue module:

instance Eq Queue where
q == q′ = toList q == toList q′

toList ::Queue→ [Int]
toList (BQ f r) = f ++ reverse r

instance Arbitrary Queue where
arbitrary = do f ← arbitrary

r← arbitrary
return (bq f r)

Now we can run tests quickCheck q1 through quickCheck q6, and find that all are satisfied.
And this is not just happenstance, by incidentally not hitting a counterexample during the
random generation of test input data. No, it is a mathematical fact that the implementation
above satisfies the ==-equations in properties q1–q6. And yet the implementation is
incorrect. To see this, consider:

> front (dequeue (enqueue 3 (enqueue 2 (enqueue 1 empty))))
3

Clearly, a correct implementation of a FIFO queue should have output 2 here. In fact,
Q2–Q6 can be used to prove, by equational reasoning, that

front (dequeue (enqueue 3 (enqueue 2 (enqueue 1 empty)))) = 2

The key to what went wrong here (the implementation being incorrect and yet passing
all the tests derived from the specification axioms) is that properties q1–q6 do not, and
in fact cannot, test for semantic equivalence. They can only be formulated using the
programmed equivalence ==. That would be fine if == were not just any equivalence
relation that satisfies q1–q6 (which we know it does), but actually a congruence relation
that does so. For otherwise, == cannot correspond to the semantic equivalence =
intuitively used in Q1–Q6. Being a congruence relation means to, in addition to being an
equivalence relation, be compatible with all operations from the ADT specification. And
that is not the case for the implementation given above. For example,

> let q = dequeue (enqueue 3 (enqueue 2 (enqueue 1 empty)))
> let q′ = enqueue 3 (dequeue (enqueue 2 (enqueue 1 empty)))

175

> q == q′

True

but

> front q == front q′

False

That does not necessarily mean that, morally, the implementation of == given for Queue
(and used in the tests) is wrong. The real bug here resides in the implementation of front,
but it cannot be detected by just checking q1–q6; one additionally needs appropriate
compatibility axioms.2

So Holdermans [8] observes that one should check additional axioms like

q7 = property (λq q′→ q == q′ =⇒ front q == front q′)

Actually, he wisely adds a non-emptiness check to the precondition to prevent both
front q and front q′ from leading to a runtime error. But even then, the new axiom (or
any of the other added compatibility axioms) does not – except in very lucky attempts –
actually uncover the bug in the implementation. The problem is that it is very unlikely
to hit a case with q == q′ for random q and q′. And even if QuickCheck hits one
such case every now and then, it is not very likely that it is also a counterexample to
front q == front q′. So in the vast majority of test runs QuickCheck simply gives up,
and we are none the wiser about whether the compatibility axioms do hold for the given
implementation or do not.

Holdermans’ solution to this problem is to invest manual effort into randomly
generating pairs of q and q′ that ought to be considered equivalent queues. Concretely,

data Equiv a = a :≡: a

instance Arbitrary (Equiv Queue) where
arbitrary = do z← arbitrary

x← from z
y← from z
return (x :≡: y)

where
from xs = do i← choose (0, length xs−1)

let (xs1,xs2) = splitAt i xs
return (bq xs1 (reverse xs2))

Given some Show instances for Queue and Equiv Queue, testing the newly formulated
property

q7 = property (λ (q :≡: q′)→ not (isEmpty q) =⇒ front q == front q′)

would yield, for example:
2 In general, one should also convince oneself in the first place that == is indeed an equivalence

relation as well (reflexive, symmetric, transitive), but often this will be a triviality. For example,
any definition of the form x == x′ = f x == f x′ for some function f , like in the Eq instance for
Queue, is already guaranteed to give an equivalence relation if == on the target type of f is
known to be an equivalence relation.

176

> quickCheck q7
*** Failed! Falsifiable (after 5 tests):

BQ [2,0] [] :≡: BQ [2] [0]

That, finally, is useful information which can be used to figure out the bug in the
implementation of front.

But this success depends on the implementer having provided a good definition
for the Arbitrary (Equiv Queue) instance above, specifically, a good from-function for
“perturbing” a randomly generated queue in different ways. Note, this is not something
the user could do themselves, or exercise any control over, since implementing that
instance crucially depends on having access to the internals of the queue implementation
module. If the implementer makes a mistake in writing that function/instance, then the
bug in the original implementation of front will possibly remain unnoticed. For example,
in an extreme case, the implementer may accidentally write the Arbitrary (Equiv Queue)
instance in such a way that from is semantically equivalent to return, in which case q7
and all other compatibility axioms will be tested positively, despite the implementation of
front still being incorrect. Holdermans notes that one might test the chosen perturbation
functionality itself to ensure not having introduced an error there. But this, which would
correspond to a test quickCheck (λ (q :≡: q′)→ q == q′) does not help with judging
the suitability of the perturbation in terms of having “enough randomness”; clearly
from xs = return xs would make this test succeed as well. And the inverse property, that
any pair of equivalent queues q == q′ has indeed a chance of also being generated as
q :≡: q′, is unfortunately not expressible as a QuickCheck test.

Our purpose now is to avoid the need of defining an Arbitrary (Equiv Queue) in-
stance. Thus, we will empower the user to detect operation invariance violations in an
ADT implementation without having access to internals or relying on the implementer
to generate the required pairs of equivalent values for tests.

3 Thoughts on Random Terms

A simple idea would be to work purely symbolically as long as possible. For example,
the values

q = dequeue (enqueue 3 (enqueue 2 (enqueue 1 empty)))

and

q′ = enqueue 3 (dequeue (enqueue 2 (enqueue 1 empty)))

that we first mentioned as evidence for a case with q == q′ but front q /= front q′3,
are semantically equivalent according to Q1–Q6. Naturally, any pair of conceptually
equivalent queues can be shown (mathematically) to be equivalent by using those original
axioms. After all, that is the whole point of having the ADT specification comprising of
those axioms in the first place.

3 We have /= as the negation of programmed equivalence ==.

177

So a suitable strategy for generating terms q and q′ that would be eligible as q :≡: q′

pairs might be to start from the given signatures of operations, randomly generate a
well-typed term q from those operations, then randomly apply a random selection of the
axioms Q1–Q6 at random places in the term q to obtain another term q′. Using pairs of
such q and q′ for tests like front q == front q′ (now actually computing the result, no
longer working symbolically) would indeed, in principle, have the power to detect the
bugs that violate operation invariance. In fact, this is exactly the strategy we initially
pursued.

However, it does not work out in practice. Already generating random terms is
known to be non-trivial, though solutions exist [5]. Moreover applying random axioms
at random places is difficult in general to get right in the sense of ending up with a
probability distribution that is effective in terms of hitting cases that uncover bugs. For
example, given an integer queue, only the root node can be of type Bool, which will
lead to a low probability of axiom Q2 to be applicable at a randomly selected node and
an even lower probability of it to be selected for application, especially for large terms.
Conversely first deciding on an axiom to apply and then randomly generating a (sub)term
at which it is indeed applicable leads to similar uncertainties about coverage.

Additionally, there is a problem with “infeasible” terms. For integer queues, that is
every term where dequeue or front is applied to a subterm t with isEmpty t being True.
Assume for now that x in each term enqueue x q might only be an integer (and not a
more complex subterm front q′).4 Then the tree of each term is a path. Its leaf will be
empty, its root node one of enqueue, isEmpty, front, or dequeue. All inner nodes can
only be one of enqueue or dequeue. If at any node in the path more of its descendants
are of type dequeue than enqueue, then the term is not valid. The probability that a term
of length n is feasible is 1

2 for n = 1, 252
1024 for n = 10, and about 0.125 for n = 40. This

might be much worse for ADTs with more complex terms.
Without prior knowledge about which operations are problematic and which axioms

contribute to situations of equivalent values (queues, in the example) whose equivalence
is not preserved by applying an operation, there is not much hope with the naive approach
described above. But of course we precisely want to avoid having to invest any such
knowledge about a specific ADT or implementation, since our goal is a generic solution
to the problem. Also, working purely symbolically would not be practical for another
reason: some axioms, like Q4 and Q6, have preconditions that need to be established
before application. So in the hypothetical rewriting of q into q′ by random applications of
axioms described above, we would either have to symbolically prove such preconditions
along the way (arbitrarily hard in general), or resort to actually computing values of
subterms of q to establish whether some axiom is applicable there or not.

4 Our Solution

So what can we do instead? We want to avoid having to apply arbitrarily many rewrites
at random places deep in some terms. Toward a solution, let us discuss the case of a
binary operation f with two argument positions to be filled by a value of the abstract

4 This could be seen as having an operation enqueuex ::Queue→Queue for every x :: Int.

178

datatype (unlike in the case of Queue, where no operation takes more than one queue as
input).5 The required operation invariance test would be that t1 :≡: t′1 and t2 :≡: t′2 imply
f t1 t2 == f t′1 t′2, where ti :≡: t′i means that ti and t′i are convertible, i.e., there is a sequence
of axiom applications that leads from term ti to term t′i. We claim that it would be enough
to focus on the two argument positions of f separately, and to consider only single axiom
applications. Indeed, assume the above test leads to a counterexample, i.e., f t1 t2 /= f t′1 t′2.
Then there are already t, t′, and t′′ with f t t′ /= f t t′′ or f t′ t /= f t′′ t and where t′ and t′′

are exactly one axiom application apart. Why? By the given assumptions, we can form a
sequence f t1 t2 = . . .= f t′1 t2 = . . .= f t′1 t′2 of single axiom applications, where in the
first part of that sequence axioms are only applied inside the first argument position of f ,
later only inside the second one. Now if t, t′, and t′′ with the claimed properties would not
exist, then it would have to be the case that f t1 t2 == . . .== f t′1 t2 == . . .== f t′1 t′2 and
thus f t1 t2 == f t′1 t′2 by transitivity of ==6. But this is a contradiction to f t1 t2 /= f t′1 t′2.

So, generalizing from the case of a binary operation, we have that in order to es-
tablish operation invariance overall, it suffices to test that for every operation f it holds
f . . . t′ . . .== f . . . t′′ . . . for every argument position and all pairs t′ and t′′ of terms related
by exactly one axiom application and where the other argument positions are appropri-
ately filled with random input (but with the same on left and right; this is what the “. . .”
indicate in f . . . t′ . . .== f . . . t′′ . . .). Still, the axiom application relating t′ and t′′ could
be somewhere deeply nested, i.e., t′ could be f1 . . .(f2 . . .(. . .(fn . . . lhs . . .) . . .) . . .) . . .
and t′′ be f1 . . .(f2 . . .(. . .(fn . . . rhs . . .) . . .) . . .) . . . , where lhs and rhs are the two sides
of an instantiated axiom, while all the other parts (“. . .”) in the two nestings agree. We
could generate tests arising from this, an important observation being that for the “. . .”
parts, since they are equal on both sides (not only equivalent), we can simply use random
values – no random symbolic terms are necessary, which is an important gain. Note that,
as Haskell is purely functional, it is not necessary to model dependencies between argu-
ments to obtain completeness. Actually, we restrict to a subset of all tests, namely ones
where the axiom application in fact is at the root of t′ and t′′. That is, we only employ
tests f . . . lhs . . .== f . . . rhs . . . , not e.g. f . . .(f1 . . . lhs . . .) . . .== f . . .(f1 . . . rhs . . .) . . .
– a pragmatic decision, but also one that has turned out well so far. We have not en-
countered a situation where this narrowing of test cases has missed some bug, ex-
cept in very artificial examples manufactured just for that purpose. The intuitive rea-
son seems to be that by doing all tests f . . . lhs . . . == f . . . rhs . . . , which of course
also includes the tests f1 . . . lhs . . . == f1 . . . rhs . . . , for varying lhs/rhs as obtained
from all axioms, one casts a fine enough net – situations where these all go through,
along with all standard instantiations lhs == rhs obtained from the axioms, but where
f . . .(f1 . . . lhs . . .) . . .== f . . .(f1 . . . rhs . . .) . . . would fail, appear to be extremely rare.

To summarize, we propose to test operation invariance via properties of the following
form, for each combination of one operation, one argument position, and one axiom:

f x1 . . .(axiomlhs y1 . . .ym) . . .xn == f x1 . . .(axiomrhs y1 . . .ym) . . .xn

5 The consideration of binary operations here is without loss of generality. Dealing with unary
operations is simpler, and dealing with operations of higher arity than two is analogous to
dealing with binary operations, just requires more index fiddling in the discussion.

6 Note that while the operation invariance property of == is still under test, we were willing to
simply take for granted that == is at least an equivalence relation. See also Footnote 2

179

where like the xi (alluded to as the “other” values above), the y j – which are meant
to fill any variable positions in a symbolic axiom lhs = rhs – can be simply values.
No need for symbolic terms, since neither in the xi nor in the y j positions we need to
assume any further possible axiom rewrites. Also, no need to generate terms/values in
an implementation-dependent way, since the signature and axiom information from the
ADT specification suffices. The discussion in the paragraphs preceding this one implies
that the proposed approach is sound (if a counterexample is found, then there is a genuine
problem with the ADT implementation under test), but not in general complete (even if
the axioms and our subset of operation invariance properties are tested exhaustively, some
bug in the ADT implementation might be missed – due to our pragmatic decision not to
consider deeper nested rewrites like f x1 . . .(f1 y1 . . .(axiomlhs z1 . . .zl) . . .ym) . . .xn ==
f x1 . . .(f1 y1 . . .(axiomrhs z1 . . .zl) . . .ym) . . .xn).

The full set of tests of the proposed form for integer queues follows. An index
enqueue1 or enqueue2 indicates that the first or second argument position of enqueue is
filled by the particular axiom, respectively. Parameters with a prime (i.e. q′ and x′) fill
the other arguments of the tested operation as opposed to being variables of the relevant
axiom.

enqueue1 q3 = property (λx q′→ let lhs = front (enqueue x empty)
rhs = x

in enqueue lhs q′ == enqueue rhs q′)

enqueue1 q4 = property (λx q q′→ isEmpty q == False
=⇒
let lhs = front (enqueue x q)

rhs = front q
in enqueue lhs q′ == enqueue rhs q′)

enqueue2 q5 = property (λx x′→ let lhs = dequeue (enqueue x empty)
rhs = empty

in enqueue x′ lhs == enqueue x′ rhs)

isEmpty q5 = property (λx→ let lhs = dequeue (enqueue x empty)
rhs = empty

in isEmpty lhs == isEmpty rhs)

enqueue2 q6 = property (λx q x′→ isEmpty q == False
=⇒
let lhs = dequeue (enqueue x q)

rhs = enqueue x (dequeue q)
in enqueue x′ lhs == enqueue x′ rhs)

isEmpty q6 = property (λx q→ isEmpty q == False
=⇒
let lhs = dequeue (enqueue x q)

rhs = enqueue x (dequeue q)
in isEmpty lhs == isEmpty rhs)

dequeue q6 = property (λx q→ isEmpty q == False
=⇒

180

let lhs = dequeue (enqueue x q)
rhs = enqueue x (dequeue q)

in not (isEmpty lhs) =⇒
dequeue lhs == dequeue rhs)

front q6 = property (λx q→ isEmpty q == False
=⇒
let lhs = dequeue (enqueue x q)

rhs = enqueue x (dequeue q)
in not (isEmpty lhs) =⇒

front lhs == front rhs)

There are two additional tests that syntactically belong to the others, but do not really
add anything:

dequeue q5 = property (λx→ let lhs = dequeue (enqueue x empty)
rhs = empty

in not (isEmpty lhs) =⇒
dequeue lhs == dequeue rhs)

front q5 = property (λx→ let lhs = dequeue (enqueue x empty)
rhs = empty

in not (isEmpty lhs) =⇒
front lhs == front rhs)

This is because both sides of Q5 are empty queues, but neither dequeue nor front work
on those.

5 A Practical Implementation

The tests shown in the previous section can (almost) strictly syntactically be derived from
the specification. For every operation, every argument the operation has, and every axiom,
one test can be obtained – by applying the operation at the selected argument to the
axiom if the types allow it. In addition, constraints may have to be added per operation
to prevent their application to invalid values, like the constraints not (isEmpty lhs) in
dequeue q6 and front q6 (and in dequeue q5 and front q5).

A tool or library that generates these tests automatically needs type information
about both operations and axioms. Details about the implementation of the datatype and
operations, or the specific terms in the axioms, are not necessary. As relatively arbitrarily
typed code must be generated, it seems to be at least very tricky to do this with plain
Haskell and without a lot of manual help. Thus, to automate our solution as much as
possible, we used Template Haskell [11]. As a result, none of the shown tests need to be
hand-written by the user.

As a case study, we demonstrate here different ways how our tool/library (in a
new module Test.OITestGenerator) can be used to generate appropriate QuickCheck
tests. First, the axioms have to be specified. For this, OITestGenerator exports a datatype
AxiomResult a, its constructor =!=, and a restricting conditional operatorV7 that works

7 which is written as ===>

181

akin to =⇒ as known from QuickCheck. Axioms with variables are written as functions
with corresponding arguments, returning an AxiomResult a where a is the codomain of
the axiom’s left- and right-hand side.

q1 ::AxiomResult Bool
q1 = isEmpty empty =!= True

q2 :: Int→ Queue→ AxiomResult Bool
q2 = λx q→ isEmpty (enqueue x q) =!= False

q3 :: Int→ AxiomResult Int
q3 = λx→ front (enqueue x empty) =!= x

q4 :: Int→ Queue→ AxiomResult Int
q4 = λx q→ not (isEmpty q)V front (enqueue x q) =!= front q

q5 :: Int→ AxiomResult Queue
q5 = λx→ dequeue (enqueue x empty) =!= empty

q6 :: Int→ Queue→ AxiomResult Queue
q6 = λx q→ not (isEmpty q)V dequeue (enqueue x q) =!= enqueue x (dequeue q)

This is already enough preparation to generate the basic tests, i.e., direct translations of
the axioms, with the provided function generate basic tests. It gets one argument, a list
of Axioms. Axiom is a container holding a) the name of an axiom, which (the axiom)
must be a function returning an AxiomResult a, and b) possibly custom generators for
the function’s arguments. It has one constructor function axiom, which takes a Name –
custom generators can be assigned to an Axiom via withGens, which is explained later.
Then generate basic tests returns an expression of type [Property]. Property is the type
of QuickCheck tests, as returned by the function property in the earlier given versions of
q1–q6.

In using generate basic tests to generate the basic tests from the above functions
returning AxiomResults, two of Template Haskell’s syntactic constructs will be needed:
The first are splices. A splice is written $(. . .), where . . . is an expression. A splice may
occur instead of an expression. The splice will be evaluated at compile time and the
syntax tree returned by it will be inserted in its place. The second construct used is ’ . . . ,
where . . . is a name of a function variable or data constructor. Then ’ . . . is of type Name
and its value represents the name of the . . . that was quoted. Using these constructs, we
can write:

adt basic tests :: [Property]
adt basic tests = $(let axs = map axiom [’q1, ’q2, ’q3, ’q4, ’q5, ’q6]

in generate basic tests axs)

Now, adt basic tests can be executed via mapM quickCheck adt basic tests.
Before the, for our purposes more interesting, operation invariance tests can be

generated, constraints for dequeue and front must be specified. Such a constraint function
has the purpose of deciding whether a set of arguments is valid for the respective
operation. Thus it takes the same arguments, but returns a Bool independently of the
operation’s return type.

182

may dequeue ::Queue→ Bool
may dequeue = not ◦ isEmpty

may front ::Queue→ Bool
may front = not ◦ isEmpty

Given these, the operation invariance tests can be generated by the provided function
generate oi tests. For operations there exists a datatype Op similar to Axiom, with one
constructor function op. The function withConstraint may be used to add a constraint to
an operation.8 It may also be used multiple times on the same operation, in which case
the constraints are connected with a logical “and”.

adt oi tests :: [Property]
adt oi tests = $(let ops = [op ’empty

,op ’enqueue
,op ’isEmpty
,withConstraint (op ’dequeue) ’may dequeue
,withConstraint (op ’front) ’may front]

axs = map axiom [’q1, ’q2, ’q3, ’q4, ’q5, ’q6]
in generate oi tests axs ops)

Note that the repeated local definition of axs (in both adt basic tests and adt oi tests)
is necessary due to Template Haskell’s stage restrictions. It is not possible to refer to a
top-level declaration in the same file, because it is still being compiled when the splices
are executed. Note also that empty could be omitted here from the list of operations as it
takes no arguments.

Running the tests automatically generated above is enough to detect the buggy
implementation of front!

+++ OK, passed 100 tests (100% Queue.enqueue@1/Main.q3).

+++ OK, passed 100 tests (100% Queue.enqueue@1/Main.q4).

+++ OK, passed 100 tests (100% Queue.enqueue@2/Main.q5).

+++ OK, passed 100 tests (100% Queue.isEmpty@1/Main.q5).

*** Gave up! Passed only 0 tests.

*** Gave up! Passed only 0 tests.

+++ OK, passed 100 tests (100% Queue.enqueue@2/Main.q6).

+++ OK, passed 100 tests (100% Queue.isEmpty@1/Main.q6).

+++ OK, passed 100 tests (100% Queue.dequeue@1/Main.q6).

*** Failed! Falsifiable (after 5 tests):

3

BQ [4] [4,−3]

The test that fails here is front q6 (which would have appeared in the output as
Queue.front@1/Main.q6). Note that two tests were generated that are correctly typed
but have no valid input (as already observed further above when writing down proper-
ties by hand); namely dequeue q5 and front q5 alias Queue.dequeue@1/Main.q5 and

8 As opposed to constraints for axioms, which are specified usingV in the function whose name
is passed to axiom.

183

Queue.front@1/Main.q5. They could be avoided by using other functions exported
by OITestGenerator and explained below.

Generators can be passed to an operation via withGens in a list, with one generator
name for each argument, as in withGens (op ’enqueue) [’arbitrary, ’arbitrary]. It is not
allowed to omit generators when using withGens; instead arbitrary must be passed if
no special generator should be used for some position. The function withGens can be
intermingled with withConstraint and may also be used on Axioms.

Also, there is a convenience function generate axiom’s tests which takes only one
Axiom and a list of Ops. It is useful when certain combinations of axioms and operations
should be excluded. It can also be used when only specific argument positions of an
operation should be excluded for an axiom. The function but ::Op→ Arg→ Op, when
called as o ‘but‘ i, excludes the ith argument from o when generating tests. Arg has a
single constructor function arg :: Int→ Arg. The function but may be called multiple
times on the same operation to exclude multiple arguments. To supplement it, there also
is only ::Op→ Arg→ Op to include only one argument. For illustration:

all q5 :: [Property]
all q5 = $(let ops = [op ’empty

,op ’enqueue
,op ’isEmpty
,op ’dequeue ‘but‘ arg 1
,op ’front ‘but‘ arg 1]

in generate axiom’s tests (axiom ’q5) ops)

Of course, in this case, dequeue and front could simply be omitted completely as they
do only have one argument.

Another convenience function is generate single test, which again works similarly
to generate oi tests, but takes only one Axiom and one Op instead of lists, and generates
only a single test. It may be used when more control is needed.

enqueue1 q3 = $(generate single test (axiom ’q3) (op ’enqueue ‘only‘ 1))
enqueue1 q4 = $(generate single test (axiom ’q4) (op ’enqueue ‘only‘ 1))
enqueue2 q5 = $(generate single test (axiom ’q5) (op ’enqueue ‘only‘ 2))
isEmpty1 q5 = $(generate single test (axiom ’q5) (op ’isEmpty ‘only‘ 1))
enqueue2 q6 = $(generate single test (axiom ’q6) (op ’enqueue ‘only‘ 2))
isEmpty1 q6 = $(generate single test (axiom ’q6) (op ’isEmpty ‘only‘ 1))
dequeue1 q6 = $(generate single test (axiom ’q6) (op ’dequeue ‘only‘ 1))
front1 q6 = $(generate single test (axiom ’q6) (op ’front ‘only‘ 1))

No constraints are passed here because the superfluous tests dequeue1 q5 and front1 q5
were purposefully omitted, and because no axiom but Q5 can result in an empty queue.

As writing such a list of tests is cumbersome, there is a function show all tests ::
Maybe (String→ Int→ String→ String)→ [Name]→ [Name]→ ExpQ which takes
an optional formatting function, a list of axiom names, and a list of operation names,
and produces a String-typed expression whose content is exactly the code above (plus
dequeue1 q5 and front1 q5, which were removed manually from the output).

184

single test str = $(let ops = [’empty, ’enqueue, ’isEmpty, ’dequeue, ’front]
axs = [’q1, ’q2, ’q3, ’q4, ’q5, ’q6]

in show all tests Nothing axs ops)

If constraints have to be added to the generated code, they must be added manually. On
the other hand, all ‘only‘n could be omitted in the case above, since there is no operation
with two arguments of the same type.9 Instead of Nothing above, a custom formatting
function can be passed that generates the names of the properties.

The implementation is available as a Cabal package at http://hackage.haskell.
org/package/qc-oi-testgenerator. Insights into the implementation, as well as
more discussion of formal aspects of the overall approach, can be found in the first
author’s diploma thesis [7].

6 Conclusion and Discussion

We have presented and implemented an approach for automatically checking operation in-
variance for Haskell implementations of abstract datatypes. The user writes down axioms
by closely following standard QuickCheck syntax, and both the ordinary QuickCheck
tests as well as additional operation invariance tests are derived from that.

It might have been more desirable to obtain the necessary information about axioms
directly from existing QuickCheck tests, freeing the user from possibly having to rewrite
them. For this it would be necessary, in the implementation, to obtain the syntax tree of
a given Haskell declaration and find the axiom by looking for a call to ==. Then, type
information for the left- and right-hand side would be needed. As of today, neither is
possible with Template Haskell: The Info data structure returned by reify has a field of
type Maybe Dec to hold the syntax tree of the right-hand side of a declaration. However,
according to the documentation of Template Haskell’s most current version 2.9.0.0,
there is no implementation for this and the field always contains Nothing. Another way
to obtain the syntax tree would be to write the axioms in expression quotations. In
both cases, though, Template Haskell offers no way of obtaining the necessary type
information, as those can only be retrieved for Names using reify, but not for arbitrary
syntax trees. Also due to Template Haskell not offering a way of calling the type checker
or other convenient ways to help generate correctly typed code yet, the implementation
does not currently support polymorphic types. A workaround making it possible to test
polymorphic abstract datatypes is to construct a (suitably chosen, cf. [2]) monomorphic
instance and rename all participating functions. That way, reify returns the monomorphic
types.

On the conceptual side, it would be attractive to gain more insight into how effective
the kind of tests we generate are in finding bugs in general. This might be achieved by a
formalization of our approach and/or collecting experimental evidence from more case
studies. Here we discuss only a small variation on the running example, which illustrates
an interesting aspect concerning the implementation of equality:

9 The function generate single test throws a compile time error unless there is exactly one way
to combine the given Axiom and Op.

185

The error in the shown version of front is hidden from the basic tests only because
the implemented equality compares two values by how the implementer thinks they
should behave. An observational equality like the following one, which even does not
touch the internals, would not so be fooled.

q == q′ | isEmpty q /= isEmpty q′ = False
| isEmpty q = True
| otherwise = front q == front q′ ∧ dequeue q == dequeue q′

Still, the basic tests will not suffice in general. As a very artificial example, consider the
queue implementation used so far, but now without the error in front, and replace the
following two functions:

bq f r = BQ (f ++ reverse r) []

enqueue x q@(BQ f r) | isEmpty q = bq f (r ++ [x])
| otherwise = BQ f (r ++ [x])

This error will never be found with the basic tests and using the above observational
equality. So using operation invariance tests is still a good idea.

Acknowledgments

We thank the anonymous reviewers for their comments and suggestions.

References
[1] C. Amaral, M. Florido, and V.S. Costa. PrologCheck – Property-based testing in Prolog. In

FLOPS, pages 1–17. Springer, 2014.
[2] J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In ESOP, pages

125–144. Springer, 2010.
[3] J. Christiansen and S. Fischer. EasyCheck – Test data for free. In FLOPS, pages 322–336.

Springer, 2008.
[4] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of Haskell

programs. In ICFP, pages 268–279. ACM, 2000.
[5] J. Duregård, P. Jansson, and M. Wang. Feat: Functional enumeration of algebraic types. In

Haskell Symposium, pages 61–72. ACM, 2012.
[6] J. Gannon, P. McMullin, and R. Hamlet. Data abstraction, implementation, specification,

and testing. ACM Trans. Program. Lang. Syst., 3(3):211–223, 1981.
[7] T. Gödderz. Verification of abstract data types: Automatic testing of operation invariance.

Diploma thesis, University of Bonn, Germany, 2014. http://tobias.goedderz.info/
dt-inf.pdf.

[8] S. Holdermans. Random testing of purely functional abstract datatypes: Guidelines for
dealing with operation invariance. In PPDP, pages 275–284. ACM, 2013.

[9] P. Koopman, P. Achten, and R. Plasmeijer. Model based testing with logical properties
versus state machines. In IFL, pages 116–133. Springer, 2012.

[10] C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy SmallCheck: Automatic
exhaustive testing for small values. In Haskell Symposium, pages 37–48. ACM, 2008.

[11] T. Sheard and S. Peyton Jones. Template meta-programming for Haskell. In Haskell
Workshop, pages 1–16. ACM, 2002.

186

	About WLP 2014
	About WFLP 2014
	I 28th Workshop on (Constraint) Logic Programming
	II 23rd International Workshop on Functional and (Constraint) Logic Programming

