
A Model-Based Approach to Formal Verification in Early

Development Phases: A Desalination Plant Case Study ∗

Alarico Campetelli, Maximilian Junker, Birthe Böhm, Maria Davidich,

Vasileios Koutsoumpas, Xiuna Zhu Jan Christoph Wehrstedt

Technische Universität München Siemens AG

Garching bei München, 85748, Germany Otto-Hahn-Ring 6, München, 81739, Germany

Abstract: Model-based development approaches have attracted a lot of attention in the
last decade due to their ability to deal with complexity in large software engineering
projects. However, a natural question raises, to what extent model-based development
approaches are suited to tackle engineering challenges from other application domains
such as the automation domain. In order to answer this question, we apply the model
based SPES development method to an industrial case study from the automation do-
main, focusing on the control software components of a desalination plant. In partic-
ular, we demonstrate the formalization of requirements, the elicitation of a functional
and a logical specification with automatic verification of formal requirements. Com-
pared to classical software engineering approaches, where verification phase is done
after the logical implementation phase, our approach focuses on a strict integration
of modelling and automatic verification of formal requirements in early development
phases such as the system functionalities definition.

Keywords: embedded systems, model-based development, requirements management, for-

mal verification, automation domain

1 Introduction

Formal methods are widely recognized as powerful engineering methods for the specifica-

tion, simulation, development, and verification of embedded systems [BS01]. They follow

the principle of “correctness by construction” and are therefore well suited for safety-

critical systems [HC02]. Although the advantages of formal methods are well known

[LG97], there are many limitations preventing their usage in industrial systems.

The industrial systems evolve to more and more complex structures to meet the increasing

complexity of requirements, especially when combining embedded systems with physical

components, termed Cyber-Physical Systems (CPSs). Moreover, the involvement of mul-

tiple engineering disciplines, which are targeting cross cutting aspects of the system under

development, facilitates wider application of formal methods, which can overcome the

underlying challenges. In particular, the pursuit of shorter development time and smaller

project budgets requires: 1) an increased parallelization of the single development steps

2) consistent exchange of information between the involved disciplines 3) a strategy for the

∗This work was partially funded by the German Federal Ministry of Education and Research (BMBF), grant

“SPES XT, 01IS12005M”. The responsibility for this article lies with the authors.

91



validation of functional requirements at an early stage. Thus, flexible and efficient mod-

elling frameworks are required which should include more powerful engineering tools and

methods. Such a modelling framework has been developed within the German research

project SPES XT1[PHAB12], which on the one hand facilitates reuse and allows an effi-

cient artefacts development while on the other hand it is designed to be independent of any

application domain. In doing so, we apply the SPES methodology to a case study from the

automation domain, focusing on the control software components of a desalination plant.

This paper is structured as follows: Section 2 presents the related foundations w.r.t. the sys-

tem model, the development method and tool support required for the case study. Section

3 illustrates the set-up of a case study of a desalination plant which is modelled according

to a formal system model FOCUS and the SPES development method. Furthermore, the

verification of functional requirements is addressed. Section 4, discusses the benefits of

a model-based development approach. Finally, Section 5 concludes the present work and

describes possible future directions.

2 Background

We perform this case study based on the formal system model FOCUS [BS01], the model-

based development method SPES[BDH+12], as well as the CASE tool AutoFOCUS 3

which supports both the formal system model as well as the development method.

2.1 System Model

The system model FOCUS (for details, see [BS01]) is based on a specific notion of a

system. A system is represented as a model consisting of a syntactic interface, denoting

the input and output channels. Through the channels the system can communicate with its

environment. The behavior of the system can be observed at the interface.

Formally, we can represent a syntactic interface as a pair I ⊲ O, where I is a set of input

channels and O is a set of output channels. We can represent the behaviour of a system

as a function I
∞

→ O
∞

. Here, C
∞

denotes an infinite sequence of messages for every

channel in the channel set C. Using this notion of a system and its behaviour, we can

compose systems from subsystems. Formally, we can define the composition S1 ⊗ S2 for

two interface behaviours S1 and S2 representing the behaviour of the subsystems.

2.2 Development Method

In the research project SPES, the SPES Modelling Framework (SPES MF) is developed

to enable seamless model based development for embedded systems [BDH+12]. The

SPES MF focuses on artefacts that are created during the development of embedded sys-

tems and structures artefacts according to viewpoints. The SPES MF differentiates be-

tween the following four viewpoints:

1http://spes2020.informatik.tu-muenchen.de/spes xt-home.html

92



• Requirements Viewpoint: structured documentation and analysis of requirements

• Functional Viewpoint: structured documentation and analysis of system functions

and their behaviour (Functional Architecture)

• Logical Viewpoint: structured documentation and analysis of the logical solution

(Logical Architecture)

• Technical Viewpoint: structured documentation and analysis of the technical solu-

tion (Technical Architecture).

To further reduce the complexity of the engineering process, the SPES MF introduces

layers of granularity, where a coarse-grained engineering problem is decomposed into a

number of more fine-grained engineering problems following the principle “divide and

conquer”, i.e. the composition of the fine-grained solutions is a solution for the coarse-

grained engineering problem. Whenever a coarse-grained engineering subject is decom-

posed into a number of fine-grained engineering subjects, a new layer of granularity is

constructed. Hereby, the system is decomposed into smaller and less complex parts. Since

the number of such layers depends on the properties of the individual engineering context

of an embedded system, the SPES MF does not define a fixed number of granularity layers.

Most artefacts that are included within the SPES MF can formally be described using the

formal system model outlined above.

2.3 Tooling

AutoFOCUS 3 [HF11] is an open source research tool supporting model-based develop-

ment, formal specification and analysis, as well as design space exploration techniques2.

It provides a broad range of modelling concepts at different levels of formalization for

different phases in the development ranging from requirements (using the AutoFOCUS 3

plugin MIRA [TMR13]) to platform architecture and deployment. Specifically, it provides

support for most of the modelling artefacts described in the SPES MF.

3 Case Study

Yet today, 780 million people live in lands where there is a lack access to potable water.

The production of drinking water by desalination of sea water represents a way to reduce

the lack of clean water. In the following we consider a typical desalination plant with

reverse osmosis (See Figure 1). The general principle of desalination plant with reverse

osmosis is the following.

Water is collected by four beach wells along the coast. The salt water is then pumped

into the seawater tank, where it is collected. After pretreating with various chemicals

for stabilization and biochemical cleaning the actual desalination process can take place.

Therefore the water passes several filters before separating the salt in the high pressure

section. After post treatment new drinking water can be delivered into the water net.

2http://af3.fortiss.org

93



Figure 1: Configuration of a desalination plant 3.

Figure 2: Determining the system boundary.

This type of plant usually is of middle to high automation complexity. As the entire de-

salination plant is very complex, therefore for plausibility we consider only a small part of

the Beach Well-section (BWS).

3.1 System Overview

The main function of BWS in a desalination plant is pumping seawater from the sea to

the sea water tank. This water is filtered by natural layers of sand. In order to guarantee

sufficient water to operate this desalination plant, the level of the seawater tank should be

monitored and controlled by switching pump valves.

3The technical properties of this running example were taken from a free instructional DVD available at

http://goo.gl/ppsNNo

94



Figure 3: Beach well pump instrumentation.

Our work focused on formal modelling of functional requirements of the BWS. The com-

municating signals and data types of signals are provided by requirements documents. The

target BWS consists of the following main components: four Beach Wells (BW), GUI, Sea

Water Tank, and Beach Well Automation (BA). Fig. 2 illustrates the system boundary and

interface descriptions of the components modelled in AutoFOCUS 3. Beach Well Automa-

tion is a central component which coordinates the other components. GUI describes the

interaction between the plant operator (i.e. the user) and the automation software during

plant operation. The sea water tank has a level sensor which monitors the water tank level,

whereas each Beach Well has the same facilities and functionalities. Fig. 3 depicts the pro-

cess and instrumentation diagram of Beach Well pump 1. Each Beach Well has a pump,

a saline water source, a bypass control and a discharge valve. The sea water tank flow is

controlled by pumps, whereas the Bypass control guarantees a minimal load for pumps.

The Discharge valve protects the pump and guarantees smooth starting and stopping of the

pumps. The pump is driven by an electrical motor which is controlled by the automation

software as well.

3.2 Requirement Modelling

We start our proposed seamless and continuous design approach by system requirement

modelling of BWS. To provide artefacts of the system like glossary, use cases description,

architectural constraints, and external environment of the system, MIRA is used in this

phase to elicit, specify and analyse requirements. For instance, to avoid wrong interpreta-

tion we defined all relevant technical terms by building a glossary.

To formalize the textual requirements we propose to categorize requirement. In this ex-

ample, all requirements are categorized into two categories according to the component to

which they deploy: Beach Well (BW) and Beach Well Automation (BA).

Then each requirement is specified in text form and analysed as an use case. Take a require-

ment on controlling Discharge Valve and Motor Pump (BW4) as an example. As shown

in Table 2, each single requirement in AutoFOCUS 3 is formalized based on a pattern with

a name, type, description, status, priority and tagged if it belongs to safety requirements.

95



BW1 Every pump delivers between 400 and 750 m3/h
BW2 Pumps are only allowed to run if filling level of beach well is sufficient

BW3 Bypass control guaranties minimal load for pump

BW4a Discharge valve has to be closed before pump starts

BW4b Discharge valve has to open after pump starts

BW4c Discharge valve has to close after pump stops

BA1 One pump has to be in standby

BA2 Adapt pump load to achieve 80% filling level in sea water

BA3 Pumps start and stop cascaded

BA4 In case of failure standby pump has to take over

Table 1: Textual requirements.

Name BW4

Type Requirement

Description

Discharge valve has to be closed before pump starts.

Discharge valve has to open after pump starts.

Discharge valve has to close after pump stops.

Status identified

Priority normal

Safety requirement no

Table 2: Formalization of requirement BW4 in a pattern.

Figure 4: Interface definition based on requirement analyses.

The requirement analysis is integrated with architecture design, since the component in-

terface is derived by the relevant use cases specification which describes the components

and the interactions between them. As shown in Fig.4, the partial interface of a component

can be derived from the BW4 use case description of the component Beach Well. Require-

ment BW4 has two input ports (FB Closed and FB Open, which indicate the feedback of

pump to mark if discharge valve is closed or open) and two output ports (QON and QOFF

which determine pump motor’s work state is on or off). In this example, all i/o ports are

Boolean-valued.

To avoid the consistency and ambiguity problems, the informal requirements should be

modelled formally with structured text templates but still in a use-friendly textual man-

ner. Fig.5 illustrates the Assumption/Guarantee (A/G) specification of requirement BW4.

Thus, requirements for completeness, correctness, and consistency can be later analysed

96



Figure 5: Assumption/Guarantee specification. The informal requirement BW4a is formalized as
A/G specification interpreted as property that ‘FB Closed && !FB Open’ is true before ‘QON ’.

Figure 6: The functions of the functional architecture root (left) and the state machine implementing
the requirement BW4 where each state represent a mode of a beach well (right).

with a model checker (cf. Sec. 3.4). Thereby, verification is possible in the early stage of

requirement modelling process.

3.3 Functional Architecture

A functional architecture of the system is derived from the requirement artefacts according

to the presented SPES development method. This view is focused on the behaviour of the

system, i.e. on functionalities and features. Moreover, it represents also a sort of docu-

mentation of the system to be developed. Functions can be subdivided in sub-functions

and relations can be structured between them.

We constructed a functional representation of the system in AutoFOCUS 3 using compo-

nent architectures. Each component has a formal defined interface through i/o ports and

an internal behaviour. We defined a root component that represents the whole functional

architecture. We subdivided the requirements in two categories: requirements relative to

the control of the whole plant and to a single beach well element. Therefore, we model

each requirement category as a subcomponent, which is contained in the root component

of the functional architecture. The i/o ports of these components are derived directly from

the relative requirement artefacts. In fact, the functional specifications of the requirements

permit to define the typed i/o interface of the functional architecture components.

97



We decided to implement the internal behaviour of each component with a finite state ma-

chine. There are also other alternatives, as for instance functional and code specifications.

In Figure 6 the components corresponding to the requirement categories are depicted and

the state machine implementing the single beach well functionalities is represented. This

implementation has only the states and transitions relevant for the presented BW4 require-

ment. State machines can be simulated with desired environment conditions and can be

formally verified as explained in the next section.

3.4 Verification

The definition of a functional architecture of the system permits to detect inconsistent and

incomplete requirements using simulation and verification techniques. That is possible

with enough detailed definition of the requirements with informal and formal artefacts.

In our case study, we modelled formally each requirement through verification patterns,

which permits the formal verification of its validity through the NuSMV4 model checker.

Model checking offers an automatic and exhaustive proof of the system. The patterns are

used for the presentation, codification and reuse of formal properties for AutoFOCUS 3

models. We associate verification patterns from the requirement to the functional archi-

tecture with refinement rules, which define a correspondence between the i/o ports of the

formalized requirements and the functional architecture.

The verification patterns integrated in the AutoFOCUS 3 model view are of two types:

patterns based on the specification patterns presented in [DAC99] and specifications con-

ceived for AutoFOCUS 3 model. Further information about the specification of properties

and the model checking integration in AutoFOCUS 3 are in [CHN11]. A verification pat-

tern represents common and recurrent properties, as for instance a state or event of the

system that must be reached after a state or event has happened. They are saved with the

verification results along with the model itself. Each pattern is structured in a predefined

logical part of the property, which determines its semantics and text fields to be filled. Typ-

ically, the user writes in these fields expressions that correspond to states, events, or port

values and logical operators to combine them. When the pattern is completed an automatic

type and name check is made to prove the correctness of the information inserted. Short

descriptions help the user to understand the role of each text field.

A verification context has to be specified, in terms of components to be considered, to exe-

cute the verification. Then the tool translates the property to a formal logical property and

the AutoFOCUS 3 model to an input model for NuSMV and executes it. A counterexample

is reported if the result of the verification is negative. A counterexample may represent in

the state machine either a path from the initial state to an erroneous state or a loop, where a

desired behaviour never happens. Each step of the counterexample sequence is described

by the actual value of variables and i/o ports of the verified model. The counterexample can

be stepwise simulated in a graphical view of the tool to debug the AutoFOCUS 3 model.

In each simulation step the variables and i/o ports values are visualized. The verification

of the requirements in the functional architecture and the counterexample simulation are

shown in Figure 7.

4http://nusmv.fbk.eu

98



Figure 7: Model checking of the requirement BW4 in the functional architecture: representation of
the requirement through verification patterns (upper part) and the simulation of the counterexample
that is generated because the requirement BW4a was violated (lower part).

4 Discussion

In the presented case study we formally verified requirements over the system behaviour

expressed in the functional architecture. We studied a seamless model integration between

requirements, formal properties definition, model checking and counterexample simula-

tion. AutoFOCUS 3 provided a suitable environment to apply these concepts to our au-

tomation case study of beach wells. Our verification approach in the early development

phases allows to avoid errors and incomplete requirements that can be much more expen-

sive, if detected in successive development phases. In the requirements definition and elic-

itation phases, we specified for each requirement a typed i/o interface in a functional spec-

ification and we formalized behaviours in logical formulas expressed in verification pat-

terns. These specifications make the requirements much more precise and with a defined

semantics, in comparison with textual informal or semi-formal requirements descriptions.

Furthermore, we verified and executed counterexample analysis without requirements of

specific skills in formal verification.

Besides erroneous behaviour and incompleteness, the definition of dependencies between

functions helps to solve interaction conflicts. Moreover, there is an improvement in the

communication between experts of different disciplines, which are normally involved in

the development of automation software. In fact, functional descriptions do not require all

implementation details in contrast to the following logical and technical representations of

the system. In these representations the functions modelled in the functional architecture

are refined. Our verification approach proofs the system in a representation that abstracts

from many details. Some of them are specific for a certain discipline. Therefore, we have

an executable and verifiable system representation in a sort of discipline neutral language.

99



5 Conclusion & Outlook

In this paper we investigated the application of the SPES development method for the

automation domain. In particular, a case example of a seawater desalination plant was

modelled according to that method. Special emphasis was given to the verification of func-

tional requirements at an early stage of the development process. Moreover, AutoFOCUS 3

permits to model the successive logical and technical representations of the system.

Thus, the intention of this paper was to provide an example in order to exhibit the addi-

tional value provided by SPES development method in the automation domain. Last but

not least, possible future direction will be to explore the scalability of our approach, how

to integrate real-time aspects and how deployment of these verified models to the engi-

neering tools and the hardware used in the automation domain is possible. This gives a

chance to transfer know-how to other application domains such as the smart grid domain

and the execution of custom case studies within these domains.

References

[BDH+12] Manfred Broy, Werner Damm, Stefan Henkler, Klaus Pohl, Andreas Vogelsang, and
Thorsten Weyer. Introduction to the SPES Modeling Framework. In Klaus Pohl, Harald
Hönninger, Reinhold Achatz, and Manfred Broy, editors, Model-Based Engineering of
Embedded Systems, pages 31–49. Springer Berlin Heidelberg, 2012.

[BS01] M. Broy and K. Stølen. Specification and development of interactive systems: focus on
streams, interfaces, and refinement. Springer, 2001.

[CHN11] Alarico Campetelli, Florian Hölzl, and Philipp Neubeck. User-friendly Model Checking
Integration in Model-based Development. In 24th International Conference on Com-
puter Applications in Industry and Engineering, 2011.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Property
Specifications for Finite-State Verification. In ICSE, pages 411–420, 1999.

[HC02] Anthony Hall and Roderick Chapman. Correctness by construction: Developing a com-
mercial secure system. Software, IEEE, 19(1):18–25, 2002.

[HF11] Florian Hölzl and Martin Feilkas. AutoFOCUS 3 - A Scientific Tool Prototype for
Model-Based Development of Component-Based, Reactive, Distributed Systems. In
Model-Based Engineering of Embedded Real-Time Systems, volume 6100 of Lecture
Notes in Computer Science, pages 317–322. Springer Berlin / Heidelberg, 2011.

[LG97] Luqi and Joseph A Goguen. Formal methods: promises and problems. Software, IEEE,
14(1):73–85, Jan 1997.

[PHAB12] Klaus Pohl, Harald Hönninger, Reinhold Achatz, and Manfred Broy. Model-based En-
gineering of Embedded Systems: The SPES 2020 Methodology. Springer, 2012.

[TMR13] Sabine Teufl, Dongyue Mou, and Daniel Ratiu. MIRA: A Tooling-Framework to Ex-
periment with Model-Based Requirements Engineering. In RE, 2013.

100


