
Challenges in Rendering and Maintaining

Trustworthiness for Long-Living Software Systems

Azadeh Alebrahim

azadeh.alebrahim@paluno.uni-due.de

Nazila Gol Mohammadi

nazila.golmohammadi@paluno.uni-due.de

Maritta Heisel

maritta.heisel@paluno.uni-due.de

paluno - The Ruhr Institute for Software Technology
University of Duisburg-Essen, Duisburg, Germany

Abstract

Trustworthiness plays a key role in acceptance and adoption of soft-
ware by the end-users. When maintaining long-living software systems,
trustworthiness has to be addressed since trust of the end-user is volatile
and can change over time. In this paper, we discuss the challenges re-
garding trustworthiness of long-living software systems. Trustworthi-
ness should be considered in the whole life-cycle of a long-living system,
i.e., in all development phases aiming at building trustworthiness into
the core of the system at design-time and later maintaining it during
run-time. But, our focus in this paper is on challenges in requirements
engineering and also planning for the run-time activities, e.g., what are
the needed monitor interfaces, what are the planned actions and how
are the execution interfaces for performing those actions.

1 Introduction

During the life-cycle of long-living software systems requirements and particularly quality requirements evolve
in response to changes. Such changes can have different origins, such as environment, usage profile, and business
demands [DKK+12]. Long-living software systems must continuously satisfy their evolving requirements.

Trust is defined as a “bet” about the future contingent actions of a system [Szt00]. The components of
this definition are belief and commitment. There is a belief that placing trust in a software or a system will
lead to a good outcome. Then, the user commits the placing trust by taking an action on using the system
[GMPB+13]. This means, when a user decides to use a service, e.g., a health care service on the web, then
she is confident that it will meet her expectations. Trust is subjective and different from user to user, e.g.,
organizations require confidence about their business critical data, whereas an elderly person using a health
care service (end-users) may be more concerned about the usability. These concerns manifest themselves as
trustworthiness requirements. Thus, software systems and services need to be made trustworthy to mitigate the
risks in engaging software systems and trust concerns of their users.

Trustworthiness is a quality of the system that potentialy influence the trust in the system in a positive
way. Trustworthiness has been used sometimes as a synonym for security and sometimes for dependability.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

103



However, security is not the only aspect of trustworthiness. Most existing approaches have assumed that one-
dimensional properties of services lead to trustworthiness of such services, and even to trust in it by users,
such as a certification, the presence of certain technologies, or the use of certain methodologies. Maintaining
security requirements for long-living software systems has been studied in [GRB+14]. However, trustworthiness
is rather a broad-spectrum term with notions including reliability, security, performance, and usability as parts
of trustworthiness attributes [MHX12]. Trustworthiness attributes are domain and application dependent, e.g.,
in health care applications, the set of attributes which have primarily been considered consists of availability,
confidentiality, integrity, maintainability, reliability and safety, but also performance and timeliness.

Likewise, trust is dependent on different factors, i.e., two different stakeholders may have different levels of
trust for the same system depending on factors such as age, gender, cultural background, or the level of experience.
Trust concerns of the end-user are volatile and can change over the time [GMPB+13]. This introduces a challenge
for long-living software systems, in which the long period of time can cause new trust concerns of the user based
on her experienced incidences or advancing in age. Hence, trustworthiness requirements evolve by either new
trust concerns of the end-users over a long period of time or by modifications in the environmental settings
such as change of third party service provider, infrastructure migration, and regulations can negatively affect
trustworthiness properties of long-living software systems. For example, if you consider service provisioning or
service substitution, this should be in conformance to Service-Level Agreements (SLAs) [ADC10]. SLAs are
documented in a contract between the customer and the service provider. A new service substitution has to
guarantee the agreed (trustworthiness) SLA. But, new service or service provider policies may not respect the
established trust conditions. The user should have the capacity to trust evaluation in order to enforce the agreed
service terms and trust relation conditions. Figure 1 shows the boundaries of the system and its context with
involved actors as well as the influencing factors to established trust relation. It illustrates exemplary origins of
the changes which may affect the trustworthiness of the system with respect to the established trust relation.

Figure 1: Boundaries of the System for Trustworthiness

2 Challenges in Addressing Trustworthiness

As mentioned before, the major challenge is to maintain the trustworthiness over a long period of time considering
long-living software systems. We break down the main challenge to the following questions which need to be
answered:

How can trustworthiness-related issues be identified? As illustrated in Figure 1, trustworthiness
properties of the software can be compromised by different parties within the system boundary. For example,
substitution of one service which is a valid adaptation action with regard to performance might cause violation of
trustworthiness in terms of privacy (see 1 in Figure 1). Therefore, analyzing the effect of applying the adaptation
actions with regard to trustworthiness of the software has to be performed before applying the adaptation.

How can a situation causing a change in trustworthiness be identified? There are different kinds
of changes in the system which can affect trustworthiness. Some of them are observable by the software, e.g.,
reconfiguration, substitution of third party services (see 2 in Figure 1), etc. Other kinds of changes are not
observable by the software, such as changes in regulations (see 3 in Figure 1) and trust expectations of the user

104



(see 4 in Figure 1). Examples for such a situation are:

• A user has already engaged using a software. She obtains awareness about the consequences of sharing
sensitive data. Therefore, privacy plays a role in her trust concerns now. This may lead to changes in the
trustworthiness requirements (see 4 in Figure 1).

• A software provides new features to the user requiring access to the location data. The user is not willing
to share her location data. Updating the software with the new features is violating the trustworthiness as
the old features did not require access to the location data (see 5 in Figure 1).

How can the new trust concerns of the users be gathered? Since the trust concerns are not directly
observable by the software, a mechanism should be developed to capture the new trustworthiness requirements
of the user timely before the trust shaking incidents happen.

Our presented challenges are upon to the trust relation establishment, i.e., we identify the challenges in
maintaining and keeping thresholds in order to respect and avoid any violation in terms of trustworthiness. Since
any violation in those trust promising properties may lead to lost of trust. In our above mentioned example,
we assume that the user has placed her trust based on some analysis of the service provider past behavior, e.g.,
history, reputation and etc. The user would not have committed to use the service from a provider who has
violated the user’s privacy in the past. Since, the usage patterns of service providers may change in the future and
those changes are not always in conformance to established trust relation. Therefore, there should be capabilities
to identify and evaluate the trustworthiness of long-living software systems. Providing the capabilities for the
user to easily analysis in making decision whether engage a system is also important, but it is out of our interest
for this work.

3 Conclusions

During the life-cycle of a software, (quality) requirements evolve in response to changes. Long-living software
systems must continuously satisfy their quality requirements. This becomes even more critical and challeng-
ing when considering trustworthiness requirements. In this paper, we identified the challenges for maintaining
trustworthiness of long-living software systems. To address those challenges, continuous monitoring of trustwor-
thiness requirements changes is needed. As consequence, an evolution mechanism in order to recover the desired
trustworthiness level of the system has to be provided. Assessing requirements of long-living software systems
with respect to trustworthiness is worthy since software design is directly affected by its requirements. Such an
assessment offers useful support for requirements engineers upon the reported incidents that shake the trust.
Further studies in introduced research directions are needed.

References

[ADC10] M. Alhamad, T. Dillon, and E. Chang. Conceptual service level agreement framework for cloud
computing. In Digital Ecosystems and Technologies (DEST), 2010 4th IEEE International Confer-
ence on, pages 606–610, April 2010.

[DKK+12] Z. Durdik, B. Klatt, H. Koziolek, K. Krogmann, J. Stammel, and R. Weiss. Sustainability guidelines
for long-living software systems. In Proceedings of the 28th IEEE International Conference on
Software Maintenance (ICSM), pages 517–526, Sept 2012.

[GMPB+13] N. Gol Mohammadi, S. Paulus, M. Bishr, M. Metzger, H. Könnecke, S. Hartenstein, T. Weyer, and
K. Pohl. Trustworthiness attributes and metrics for engineering trusted internet-based software
systems. In Proceedings of the 3rd International Conference of Cloud Computing and Services
Science CLOSER, pages 19–35, 2013.

[GRB+14] S. Gartner, T. Ruhroth, J. Burger, K. Schneider, and J. Jurjens. Maintaining requirements for
long-living software systems by incorporating security knowledge. In Proceedings of the 22nd IEEE
International Requirements Engineering Conference (RE), pages 103–112, Aug 2014.

[MHX12] H. Mei, G. Huang, and T. Xie. Internetware: A software paradigm for internet computing. Com-
puter, 45(6):26–31, June 2012.

[Szt00] P. Sztompka. Trust: A Sociological Theory. Cambridge, UK: Cambridge University Press, 2000.

105


