
Documenting Assumptions about the Operational Context
of Long-Living Collaborative Embedded Systems

Marian Daun, Bastian Tenbergen, Jennifer Brings, Thorsten Weyer

paluno – The Ruhr Institute for Software Technology

University of Duisburg-Essen, Germany

marian.daun, bastian.tenbergen, jennifer.brings, thorsten.weyer@paluno.uni-due.de

Abstract: Today’s embedded systems operate in highly interactive collaborative

system networks to fullfill an overall purpose within a complex technical system

(e.g., motor vehicles, aircrafts, industrial plants). The lifespan of such complex

technical systems typically covers several decades in which a modernization or

replacement of individual embedded systems is accompanied by high efforts and

costs. Consequently, collaborative embedded systems need to be designed to cope

with changes in their operational context throughout the prospective lifespan. In

this paper, we outline the advantage of explicitly documenting assumptions about

the operational context of long-living collaborative embedded systems.

Documenting assumptions about the operational context fosters the engineering of

collaborative embedded systems insofar that these systems are able to cope with

specific changes in their operational context throughout their lifespan.

1 Introduction

In the automotive or avionics industries, embedded systems typically serve very long

lifespans. Aircraft are designed to be in service for 30 years or longer and must be

supplied with spare parts over several decades, as is the case with automobiles.

Moreover, embedded systems in these domains are typically closely integrated in their

operational contexts, i.e. the external actors the systems interact with during operation

(see [DTW12]): Embedded systems monitor context measurements using sensors,

exchange instructions with external actors, compute necessary control commands, and

exert influence onto their context by means of actuators. In many cases, these embedded

systems are part of a collaborative system network in order to achieve a common goal.

However, as such long-living and collaborative embedded systems age, their contexts

inevitably change. For example, aircraft routinely undergo several major overhauls, in

which systems are replaced with more modern equivalents, upgraded to offer additional

functionality, or updated to fix deprecated or suboptimal behavior. Therefore, during

development, it is necessary to account for possible changes in the operational context

over the long years of operation.

In the engineering of embedded systems, the focus of development typically lies on the

specification of behavioral requirements and the definition of a functional design, which

115

defines the system’s functions and specifies the interplay between functions to fulfill the

behavioral requirements (cf. [DHW14]). By doing so, the development process typically

does not account for possible changes in the operational context during the operational

phase (e.g., a new sensor technology or the replacement of a neighboring system, which

impairs the functional interplay within the collaborative system network). Therefore, the

long-living nature of collaborative embedded systems makes it necessary to explicitly

document assumptions about the operational context (cf. [DB+14]). These assumptions

must be documented during the development phase (i.e. during requirements engineering

or development of the functional design, see [DTW12]) such that changes in the

operational context can be monitored and acted upon during the operational phase.

2 Explicit Documentation of Assumed Context Configurations

To assist the development of long-living collaborative embedded systems, we suggest

that assumption about the operational context be documented explicitly during the

development phase. By doing so, engineers make assumptions about the nature of the

interaction between the system and it’s operational context and can anticipate what
happens when changes occur in the context during the operational phase. When

explicitly documenting these assumptions alongside the regular engineering artifacts,

permissable context configurations at different stages of the operational phase can be

captured, which are known to retain adequate functionality. For long-living systems,

explicit documentation of such context assumptions means that alternative context

configurations, which specify permissable changes in the operational context, can be

predicted. This enables the use of automated validation and verification techniques

during the development phase during the operational phase, e.g., to check if a proposed

upgrade to one system will result in safe behavior of the entire collaborative system

network. Figure 1 illustrates the relation between assumed context configurations during

the development phase and actual configurations during the operational phase.

Context Change 3
(unpredicted)

Development Phase Operational Phase

Engineering
Artifacts

Assumed
Context 2

Assumed
Context 3

Assumed
Context 1

p2!

p1!

p3!

Deployment /
Comissioning

Context Change 2 Context Change 4

p1? p3? p3?

Context Change 1

Legend

V&V of Engineering Artifacts during Development Phase

Validation of Permissible Context Changes during Operational Phase

Verification of Violated Behavioral Constraints during Operational Phase

Figure 1: Checking assumed context configurations against actual context configurations

As can be seen in Figure 1, the assumed context configurations can be used for

verification purposes against the system’s engineering artifacts, as is commonly done

116

during development. Multiple assumed context configurations can be documented, in

which, through verification, it becomes certain that adequate functionality of the system

is maintained. As can be further seen, these multiple assumed context configurations

allow for runtime verification during the operaitonal phase of a long-living collaborative

system: Changes in the operational context (e.g., a major overhaul or system upgrade)

can be validated by checking the system’s actual, perceived context against the assumed

context configurations. In case the system’s acutal context has not been assumed to be a
permissable context configuration, runtime verification of the system’s behavior with
regard to the unforeseen context change must be conducted. This can, for example, be

done during system maintenance.

3 Towards an Integrated Methodology

Explicit documentation of context information has also been considered a prerequisite

for various quality assurance and analysis approaches such as model checking of static

properties of engineering artifacts (e.g., [DP+09]) as well as checking of behavioral

properties (e.g., [AH01]). Ontology-based approaches have also been proposed for

context documentation in the past (e.g., [SLF03]), yet they focus on non-collaborative

systems. In prior work, we investigated documenting engineering artifacts with regard to

context interactions [DTW12]. Furthermore, we proposed an ontology-centric approach

to document and analyse knowledge sources, which impact the engineering process

[DB+14]. Currently, our work is focused on an ontology-centric approach, which allows

documenting static-structural, functional, and behavioral context properties of

collaborative embedded systems in accordance with [ISO11].

Acknowledgements. This research was funded by the German Federal Ministry of

Education and Research (grant no. 01IS12005C).

References

[AH01] Alfaro, L. de; Henzinger, T.: Interface automata. In: Proc. ESEC/FSE, 2001; 109–120.

[DB+14] Daun, M.; Brings, J.; Tenbergen, B; Weyer, T.: On the Model-based Documentation of

Knowledge Sources in the Engineering of Embedded Systems. In: Proc. ENVISION

2020, 2014; 67-76.

[DHW14]Daun, M.; Höfflinger, J.; Weyer, T.: Function-Centered Engineering of Embedded

Systems – Evaluating Industry Needs and Possible Solutions. In: Proc. ENASE, 2014;

226-234.

[DP+09] Dhaussy, P.; Pillain, P.; Creff, S.; Raji, A.; Traon, Y.; Baudry, B.: Evaluating Context

Descriptions and Property Definition Patterns for Software Formal Validation. In: Model

Driven Engineering Languages and Systems, Springer, 2009; 438–452.

[DTW12]Daun, M.; Tenbergen, B.; Weyer, T.: Requirements Viewpoint. In: Model-Based

Engineering of Embedded Systems, Springer, 2012; 51-68.

[ISO11] ISO 42010: Systems and software engineering - Architecture description, 2011

[SLF03] Strang, T.; Linnhoff-Popien, C.; Frank, K.: CoOL: A Context Ontology Language to

Enable Contextual Interoperability. In: Distributed Applications and Interoperable

Systems, Springer, 2003; 236–247.

117

