
An automatic way of generating incoherent
terminologies with parameters

Yu Zhang, Dantong Ouyang, and Yuxin Ye ?

College of Computer Science and Technology,
Jilin University, Changchun 130012, China

Abstract. The minimal incoherence preserving sub-terminologies (Mip-
s) is defined for identifying the axioms responsible for the unsatisfiable
concepts in incoherent ontology. While a great many performance evalu-
ations have been proposed in the past, what remains to be investigated
is whether we have effective reasoners to solve the Mips problems, in
which case a particular reasoner will be more efficiency than others.
After analyzing the structural complexity of terminology, we develop a
Mips Benchmark (MipsBM) to evaluate the performances of reasoners by
defining six complexity metrics based on concept dependency network-
s model. Evaluation experiments show that the proposed metrics can
effectively reflect the complexity of benchmark data. Not only can the
benchmark help the users to determine which reasoner is likely to per-
form best in their applications, but also help the developers to improve
the performances and qualities of their reasoners.

Keywords: Incoherent terminology; Mips; Benchmark; MipsBM

1 Introduction

In practice, building an ontology is a very complicated process and is easy to
make errors, an ontology O is incoherent if there exists an unsatisfiable concept
in O, and the existence of unsatisfiable concept indicates that the formal def-
inition is incorrect. Therefore, how to find all the unsatisfiable concepts is the
challenging of ontology debugging. Researchers have proposed various methods
to debug incoherent ontology. Ontology debugging is achieved by using reason-
ers, currently, most of the reasoners, such as Pellet [1], HermiT[2], FaCT++[3],
TrOWL[4] and JFact support the inference tasks. A great many performance
evaluations for reasoners have been performed in the past, What remains to be
investigated is whether we have effective reasoners to solve the Mips problems,
in which cases a particular reasoner will be more efficiency than others. There
are several criteria for a good benchmark test data. First, we need to system-
atically construct several types of logical contradictions to create an incoherent
TBox. Second, there must be a number of parameters that could influence the
complexity of benchmark data and the difficulty for reasoning.

? corresponding author: yeyx@jlu.edu.cn (Yuxin Ye).



2 Related Work

In the research of knowledge base query, (LUBM) [5] is developed based on sev-
eral complexity metrics of ontology and provides 14 test queries to assess the
efficiency, correctness and completeness of the knowledge base. However, the cor-
relations between the classes of LUBM are low, thus Li Ma extends it to Univer-
sity Ontology Benchmark (UOBM) [6] by adding a series of association classes.
However, either LUBM or UOBM only can evaluate single ontology, thus Yingjie
Li et al. [7] develop a multi-ontology synthetic benchmark that can evaluate not
only single ontology but also federated ontologies. In the research of ontology
matching, Alfio Ferrara et al. [8] propose a disciplined approach to the semi-
automatic generation of benchmarks called SWING (Semantic Web Instance
Generation), but all the evaluations in SWING are only for single language, so
Christian Meilicke et al. [9] design a benchmark for multilingual ontology match-
ing called MultiFarm. Besides, the work in [10] presents the design of a modular
test generator to evaluate different matchers on the generated tests. In the re-
search of ontology reasoning and debugging, the benchmarks proposed in [11]
and [12] are used to evaluate the classification performances of reasoners. The
work in [13] focus on the applicability of specific reasoners to certain expressivi-
ty clusters, and evaluate the loading time, classification and conjunctive queries
performances of reasoners. JustBench [14] is a typical benchmark to evaluate
the reasoners for calcuating justification. In [15], several machine learning tech-
niques are used to predict classification time and determine the metrics that can
be used to predict reasoning performance. The work in [16] proposes a method
to construct the justification dataset from realistic ontologies with different sizes
and expressivities.

3 Complexity Analysis for Incoherent TBox

The expressivity of a particular DL is determined by the concept constructors it
provides [17]. SHOIN (D) is a very expressive DL that provides the constructors
including H (role hierarchies), O(nominals), I(inverse roles), N (Number restric-
tion) and S is the abbreviation forALC with transitive roles.ALC is the basic de-
scription logic consisting of the constructors ¬C (negation), CuD(conjunction),
C tD(disjunction), ∃r.C(existential restriction) and ∀r.C(value restriction).

Example 1. Suppose a SHOIN (D) TBox contains the following axioms:
α1 : S1 ≡ ∃r1.B1, α2 : S2 ≡ ∀r2.B2, α3 : S3 ≡ {B2} t {B3},
α4 : S4 v S1 t S2, α5 : S5 v ∃r4.S3 u S4, α6 : S6 ≡ ∃r5.B4,
α7 : S7 ≡ {B4} t {B5}, α8 : S8 v ∃r6.S6 u S7, α9 : C1 ≡ ∀t1.¬A1,
α10 : C2 ≡ ∃t1.A1u∀t2.A2, α11 : C3 ≡ ∀t2.A2u∃t2.¬A2, α12 : C4 ≡ ∃t2.¬A2,
α13 : C5 ≡≥ 3t3u ≤ 2t3, α14 : C6 v C1 u C2, α15 : C7 v C2,
α16 : C8 v C4, α17 : C9 v C7 u C8, α18 : C10 v C5 u C6 u C9,
α19 : r1 ≡ r−4 , α20 : r2 v r3, α21 : r5 ◦ r5 v r5

118



Stefan Schlobach proposes the minimal unsatisfiability preserving sub-TBox
(Mups)[18] to identify the axioms responsible for the unsatisfiability of concepts
in incoherent TBox. For T in example 1, it can be shown that the concepts
C3, C5, C6, C9, C10 are unsatisfiable by using standard DL TBox reasoning. We
can get their Mups:

Mups(T , C3) = {{α11}}, Mups(T , C5) = {{α13}},
Mups(T , C6) = {{α9, α10, α14}}, Mups(T , C9) = {{α10, α12, α15, α16, α17}},
Mups(T , C10) = {{α13, α18}, {α9, α10, α14, α18}, {α10, α12, α15, α16, α17, α18}}.

Definition 1 (MIPS[18]). A TBox T ′ ⊆ T is a minimal incoherence preserv-
ing sub-TBox (MIPS) of T if and only if T ′ is incoherent, and every sub-TBox
T ′′ ⊂ T ′ is coherent. The set of all MIPS of T is denoted as MIPS(T ).

We will abbreviate the set of MIPS for T by Mips(T ). For T in example 1 we
can get Mips(T ) = {{α11}, {α13}, {α9, α10, α14}, {α10, α12, α15, α16, α17}}.

Definition 2 (Mips Size). Let Mips(T ) be the Mips of an incoherent TBox
T , the number of axiom set in the Mips(T ) is called Mips Size.

Let Ms represent the Mips size, for Mips(T ) = {{α11}, {α13}, {α9, α10, α14},
{α10, α12, α15, α16, α17}}, there are four axiom sets in the Mips(T ), thus the
Mips size Ms =4.

Definition 3 (Mips Depth). Let Mips(T ) be the Mips of an incoherent TBox
T , the maximum number of axioms in all the axiom sets is called Mips Depth.

Let Md represent the Mips depth. Using the previous example again, both the
number of axioms in the first axiom set {α11} and the second axiom set {α13}
are one, while in the third axiom set {α9, α10, α14}, the number is three, and in
the last axiom set {α10, α12, α15, α16, α17}}, the number is five, thus the maxi-
mum number of axioms Md=5.

Given a TBox T , the concept dependency networks N are defined as follows.

Definition 4 (concept dependency networks). A directed graph N=(V,E)
is a corresponding concept dependency networks of a given TBox T , where V is
the set of vertices representing all the concepts in T , and E is the set of edges
representing all the dependencies between concepts.

Figure 1 represents the concept dependency networks of TBox T in Example 1.
On the basis of the concept dependency networks model, the semantic depen-
dency of concept can be defined as follows.

Definition 5 (concept depth). In the concept dependency networks of TBox
T , suppose the concept depth of C is cd(C), cd(C) can be recursively defined as
follows.
if C

.
= C1 u C2, then dep(C) = max(cd(C1), cd(C2)) + 1;

if C
.
= C1 t C2, then dep(C) = max(cd(C1), cd(C2)) + 1;

119



Fig. 1. concept dependency networks of TBox T .

if C
.
= ∃r.C1, then cd(C) = cd(C1) + 1;

if C
.
= ∀r.C1, then cd(C) = cd(C1) + 1;

if C
.
= C1, then cd(C) = cd(C1) + 1;

if C
.
= ¬C1, then dep(C) = cd(C1) + 1;

if C is an atom, then cd(C) = 0;
The

.
= is either ≡ or v.

If the concept depth of C is 1, C is called a simple concept, otherwise called a
complex concept. Suppose that TBox T contains p simple concepts and q com-
plex concepts, we have the total number of concepts m = p+q. Besides, the max-
imal concept depth of T , denoted as λ, can be defined as: λ = max(cd(Ci)), 1 ≤
i ≤ m.

Definition 6 (semantic cluster). In the TBox T , the subTBox T ′ ⊆ T which
is composed of concepts linked together by semantic dependency relationship, is
called a semantic cluster of T .

Suppose that the number of semantic dependency is µ. The semantic cluster
must satisfy the constraint p+µ

∑λ
i=1 dep(Ci) = m. Furthermore, the clustering

coefficient can be defined as:

η =
µ
∑λ
i=1 dep(Ci)

m
. (1)

If µ = 0, which means there is not any semantic cluster in the TBox, so the
minimum of clustering coefficient ηmin = 0. If, however, p = 0, which means the
TBox is composed only of complex concepts, then µ

∑λ
i=1 dep(Ci) = m, so the

maximum of clustering coefficient ηmax = 1.

4 MipsBM System

MipsBM consists of two components: satisfiable concept generator and unsatis-
fiable concept generator. According to the characteristics of axioms appearing
in SHOIN (D) TBox, we categorize them into two groups: constructors and
operands. The constructors group consists of concept constructor and property
constructor. And the operands group is composed of atom set and role set. The
constructors and operands table are shown in Table 1.

120



Table 1. Constructors and Operands Table

Satisfiable Constructors Unsatisfiable Constructors

SatConceptConstructor Syntax unSatConceptConstructor Syntax

subClass S1 v S2 subClass C1 v C2

equivalentClass S1 ≡ S2 equivalentClass C1 ≡ C2

intersection S1 u S2 intersection C1 u C2

allValues ∀r1.B1 allValues ∀t1.A1

someValues ∃r2.B2 someValues ∃t2.A2

union S1 t S2 complement ¬A
oneOf {x1, x2, x3} disjointWith C1 v ¬C2

PropertyConstructor Syntax maxCardinality ≥ nr1
subProperty r1 v r2 minCardinality ≤ nr1

equivalentProperty r1 ≡ r2 PropertyConstructor Syntax
TransitiveProperty r+1 v r2 subProperty t1 v t2

inverseOf r− equivalentProperty t1 ≡ t2
Satisfiable Operands Unsatisfiable Operands

SatAtomSet B1, B2, · · · , Bm unSatAtomSet A1, A2, · · · , An

SatRoleSet r1, r2, · · · , rm unSatRoleSet t1, t2, · · · , tn

Algorithm 1: satGenerator
Input:satnum: number of satisfiable concepts

µ: number of semantic clusters
λ: maximum concept depth

output: S: satisfiable concept set
1 while(µ > 0)
2 constructork = randomSelect(SatConceptConstructor);
3 opk = randomSelect(SatAtomSet,SatRoleSet);
4 Sk = generateAxiom(constructork, opk), S.add(Sk), k + +;
5 while(λ > 0 )
6 conceptstructork = randomSelect(SatConceptConstructor);
7 propstructork = randomSelect(SatPropertyConstructor);
8 opk = randomSelect(SatAtomSet,SatRoleSet), opk = opk ∪ Sk;
9 {Sk, Pk} = generateAxioms(conceptstructork, propstructork, opk);
10 S = S ∪ {Sk}, λ−−, k + +;
11 µ−−;
12 num = satnum− size(S);
13 while(num ≥ 0)
14 constructork = randomSelect(SatConceptConstructor);
15 opk = randomSelect(SatAtomSet,SatRoleSet);
16 Sk = generateAxiom(constructork, opk);
17 return S

The proof for Algorithm 1 is as follows.

121



Proof. Because there are not any complement or disjoint constructors in the
Satisfiable Constructors in Table 1, the concepts generated by Algorithm 1 must
be satisfiable.

The first while loop corresponds to the number of semantic clusters, in each
loop, the algorithm creates a semantic cluster, and the value of µ is decreased
by 1 until µ = 0. The second while loop corresponds to the maximum concept
depth, in each loop, the algorithm creates a concept, and the concept depth of
the latter concept is 1 bigger than that of the former one. When the loop is
finished, the concept depth of the last concept reaches λ. After that, the number
of satisfiable concepts is obtained, the rest of the concepts are created in the
third while loop.

In order to build an incoherent terminology, MipsBM needs to create several
unsatisfiable concepts which can be achieved through systematically constructing
logical clashes.

Definition 7 (Independent Unsatisfiable Concept). C is an independent
unsatisfiable concept if the unsatisfiability of C depends on the concept definition
rather than the unsatisfiability of other concepts.

Definition 8 (Dependent Unsatisfiable Concept). C is a dependent un-
satisfiable concept if the unsatisfiability of C depends on the unsatisfiability of
other concepts.

From the Example 1, C3, C5, C6 and C9 are independent unsatisfiable concepts,
C10 is dependent unsatisfiable concept because its unsatisfiability depends on
unsatisfiable concepts C5, C6, C9.

Definition 9 (Clash Sequences). Let Seq+(C) be the positive clash sequence
of C, and Seq−(C) the negative clash sequence. Seq+(C) is of the form < (C1, I1, C2)
, (C2, I2, C3), · · · , (Cm, Im, C) > (i = 1, · · · ,m), where Ci v Ci−1, Ii repre-
sents the indexes of axioms related to Ci v Ci−1. Seq−(C) is of the form
< (¬C1, I

′
1, C

′
2), (C ′2, I

′
2, C

′
3), · · · , (C ′n, I ′n, C) > (i = 1, · · · , n), where C ′i v C ′i−1 ,

I ′i represents the indexes of axioms related to C ′i v C ′i−1. After that, the unsat-
isfiable concept C can be generated by C v Cm u C ′n.

For example, The clash sequences of C9:
Seq+(C9)=< (A1, {α10}, C2), (C2, {α10, α15}, C7), (C7, {α10, α15, α17}, C9)) >,
Seq−(C9)=< (¬A1, {α12}, C4), (C4, {α12, α16}, C8), (C8, {α12, α16, α17}, C9) >.
Unsatisfiable concepts can be divided into two types as follows.
complement clash: C is a complement clash concept if it is a subclass of both

class A and the complement of class A. For example:
α1 : C1 v ∀t1.A1 u ∃t1.¬A1. Then C1 is a complement clash root concept.
cardinality clash: C is a cardinality clash concept if the at-least restriction is

bigger than the at-most restriction in its definition. For example:
α2 : C2 ≡≥ 2.t2u ≤ 1.t2. Then C2 is a cardinality clash root concept.
Unsatisfiable concept generator (Algorithm 2) creates the satisfiable concepts

by constructing clash sequences.

122



Algorithm 2: unsatGenerator(unsatnum,Ms,iMd)
inputs:unsatnum: number of unsatisfiable concept

Ms: Mips size; iMd : increasement of Mips depth
output: U : unsatisfiable concept set; Mips(T ): the Mips of T
01 U = ∅, Mips(T ) = ∅, k = 0, len = 0;
02 constructor = randomSelect(UnsatConceptConstructor;)
03 construct a pair of clsh sequences : {Seq+,Seq+}
04 D0 ← Seq+, D′0 ← Seq−;
05 I(Ck) : Ck

.
= intersectionOf(D0, D

′
0);

06 CR.add(Ck), Mips.add(I(Ck)), k++, len++;
07 while(k ≤ Ms)
08 len=len+iMd;
09 construct a pair of clsh sequences : {Seq+,Seq+}
10 D0 ← Seq+, D′0 ← Seq−;
11 for(i=j=1; j < len; i++,j=j+2)
12 Sx,y ← (SatAtomSet,SatRoleSet,someValues,allValues);
13 I(Di) : Di

.
= intersectionOf(Di−1, Sx);

14 I ′(D′
i)

: D′i
.
= intersectionOf(D′i−1, Sy);

15 Mips.add(I(Di), I
′
(D′

i)
);

16 I(Ck) : Ck
.
= intersectionOf(Di, D

′
i), CR.add(Ck), Mips.add(I(Ck));

17 U .add(CR), Mips(T ).add(Mips), k++;
18 num = unsatnum− k;
19 while(m ≤ num)
20 Cr ←randomSelect(CR);
21 Sz ← (SatAtomSet,SatRoleSet,someValues,allValues);
22 Ck

.
= intersectionOf(Cr, Sz);

23 U .add(Ck),m+ +;
24 return U,Mips(T )

Theorem 1 The unions of clash sequences of independent unsatisfiable concepts
are the Mips of TBox.

Proof. By Definition 1(Incoherent TBox), we have that a TBox T is incoherent
if and only if there is a concept name in T which is unsatisfiable. Therefore,
according to Definition 3(Mips), we can prove Theorem 1 based on two points:

� One concept is unsatisfiable in the union of contradiction sequences.
� And the concept is satisfiable in every subset of the union of contradiction

sequences.
We prove the first point. Let Ck be a satisfiable concept, According to the

unsatGenerator algorithm, Ck is created by Ck v DiuD′i, where Di v Di−1 and
D′i v D′i−1 . Similarly, Di−1 v Di−2, · · · , D2 v D1 and D′i−1 v D′i−2, · · · , D′2 v
D′1. The corresponding clash sequences are:

< (D1, I1, D2), (D2, I2, D3), · · · , (Di, Ii, Ck) >, where Ii = Ii ∪ Ii−1.
< (D′1, I

′
1, D

′
2), (D′2, I

′
2, D

′
3), · · · , (D′i, I ′i, Ck) >, where I ′i = I ′i ∪ I ′i−1.

D1 and D′1 have the form either D1 ≡ A,D′1 ≡ ¬A or D1 ≡≥ mt,D′1 ≡≤
nt(m > n, and t is a role name). this implies that Ck v D1 and Ck v D′1, i.e.

123



Ck v A u ¬A or Ck v≥ mtu ≤ nt(m > n). Therefore, Ck is unsatisfiable in
T ′ = Ii ∪ I ′i, i.e. Ck is unsatisfiable in the union of clash sequences.

Next, we prove the second point. Let T ′′ be the every subset of T ′ after
removing any one axiom αj from Ii ∪ I ′i. If αj occurs in the Seq+ of Ck, we have
that DiuDi−1, Di−1 v Di−2, · · · , αj : Dj v Dj−1, · · · , D2 v D1. Removing αj is
equivalent to removing Dj v Dj−1 from the Seq+ of Ck, so Di is not the subset of
D1. If αj occurs in the Seq− of Ck, we have that D′iuD′i−1, D′i−1 v D′i−2, · · · , αj :
D′j v D′j−1, · · · , D′2 v D′1. Removing αj is equivalent to removing D′j v D′j−1
from the Seq− of Ck, so D′i is not the subset of D′1. We know Ck v Di uD′i, so
Ck is not the subset of both D1 and D′1. Therefore, Ck is satisfiable in T ′′, i.e.
Ck is satisfiable in every subset of the union of clash sequences.

5 Evaluation with MipsBM

The MipsBM experiments demonstrate how to evaluate the performances of
reasoners for Calculating Mips. Pellet 2.3.1 1, HermiT 1.3.8 2, FaCT++ 1.6.2 3,
JFact 1.0.0 4 and TrOWL 1.4 5 are the five most widely-used description logics
reasoners used in our experiments. The tests are performed on a PC (Intel(R)
Core(TM) CPU 3.40Ghz) with 4 GB RAM. Our performance measure is the run
time (in seconds) to calculate Mips.

Fig. 2. evaluations for the number of satis-
fiable concepts

Fig. 3. evaluations for the clustering coeffi-
cient

From Figure 2, we can conclude from the second experiment that TBox size
plays a significant influence on the performances of different reasoners. Therefore,
the following evaluations can be viewed from two aspects: small scale TBox (the
number of concepts m = 2000) and large scale TBox (m = 20000).

1 http://clarkparsia.com/pellet
2 http://www.hermit-reasoner.com/
3 http://code.google.com/p/factplusplus/
4 http://sourceforge.net/projects/jfact/
5 http://trowl.eu/

124



In the case of large scale TBox In the case of small scale TBox

Fig. 4. performance evaluations for reasoners about complexity metrics

125



After the evaluation experiments, we give a further analysis from two per-
spectives.

What makes an incoherent TBox difficult to calculate Mips? In order to
answer this question, we consider the impact of construction parameters on
structure complexity of incoherent terminology. A large number of satisfiable
concepts mean a large size of TBox, Reasoners have to take a lot of time to
perform satisfiability checking, so the run time becomes longer. There are many
relevance relations between one concept and others if the concept depth is large,
as the number of semantic clusters increases, the number of semantic dependen-
cies between the concepts will grow significantly. The Mips size corresponds to
the scale of minimal conflict axiom set, our reasoners need to find the minimal
conflict axiom set of the incoherent TBox, thus the size of semantic dependency
is strictly determined by the Mips depth. According to Definition 9, the clash
sequences of unsatisfiable concepts correspond to the increase of Mips depth, the
larger the depth is, the longer the clash sequences are, therefore, a larger value
of the increase of Mips depth leads to a higher complex of incoherent TBox.

Which is the most appropriate reasoner to solve Mips problem? Because of
the differences of optimization approaches, the five reasoners have different per-
formances for the same benchmark test data. When the number reaches 8000,
Pellet is faster than FaCT++, when reaches 14000, TrOWL is faster than FaC-
T++, and when reaches 18000, HermiT performs better than FaCT++. In the
process of consistency checking, HermiT uses the anywhere blocking technique
to limit the sizes of models which are constructed, so it has an advantage over
ABox. Unfortunately, the ontology test data generated by our MipsBM only con-
sists of TBox, thus the advantages haven’t been fully fulfilled. Our experiments
show that timeout is the main reason to cause the failures of JFact, especially
for a large inputs, It is because JFact takes longer to load the TBox than others.
In the case of large scale TBox, JFact fails to resolve the Mips problems when
the number of clusters increases beyond 80 in the fourth experiment.

6 Conclusion and future work

This paper presents a benchmark to generate different complicated terminologies
to evaluate the performances of description logics reasoners for calculating Mips.
Our purpose is to find out the reasons which result in the difficulty and high cost
of ontology debugging. Experiments show that the six construction parameters
can fully reflect the complexity of incoherent TBox.

As for future work, we plan to improve our benchmark under realistic se-
mantic web conditions to evaluate reasoners by using realistic TBox data, and
focus on different ontology reasoning and debugging algorithms to evaluate their
completeness and correctness by using our extended benchmark.

References

1. Sirin Evren, Parsia Bijan, et al., Pellet:A practical OWL-DL reasoner, Web Se-
mantics: science, services and agents on the World Wide Web, 2007, 5(2):51-53.

126



2. Rob Shearer, Boris Motik, and Ian Horrocks, HermiT: A highly-efficient owl rea-
soner, in: Proceedings of the 5th International Workshop on OWL: Experiences
and Directions. Karlsruhe, Germany. 2008.

3. Dmitry Tsarkov and Ian Horrocks, FaCT++ Description Logic Reasoner: System
Description, in: Proceddings of Third International Joint Conference on Automated
Reasoning. Seattle, WA, USA, 2006, pp.292-297.

4. Edward Thomas, Jeff Z. Pan, Yuan Ren, TrOWL: Tractable OWL 2 Reasoning
Infrastructure, in: Proceedings of 7th Extended Semantic Web Conference. Herak-
lion, Crete, Greece, 2010, pp.431-435.

5. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin, LUBM: A benchmark for OWL
knowledge base systems, Web Semantics: Science, Services and Agents on the
World Wide Web, 2005, 3(2): 158-182.

6. Li Ma, Yang Yang, Zhaoming Qiu, et al., Towards a complete owl ontology bench-
mark, in: Proceedings of the 3rd European Semantic Web Conference (ESWC),
Budva, Montenegro, June, 2006, pp.125-139.

7. Yingjie Li, Yang Yu and Jeff Hefli, A multi-ontology synthetic benchmark for the
semantic web, in: Proceedings of the 1st International Workshop on Evaluation of
Semantic Technologies, Shanghai, China. 2010.

8. Alfio Ferrara, Stefano Montanelli, et al., Benchmarking matching applications on
the semantic web, The Semanic Web: Research and Applications, Springer Berlin
Heidelberg, 2011, pp.108-122.

9. Christian Meilicke, Raul Garca-Castro, et al., MultiFarm: A benchmark for mul-
tilingual ontology matching, Web Semantics: Science, Services and Agents on the
World Wide Web, 2012, 15: 62-68.

10. Maria Rosoiu, Cassia Trojahn Dos Santos, et al., Ontology matching benchmarks:
generation and evaluation, in: Proceedings of the 6th ISWC workshop on ontology
matching (OM), 2011, pp.73-84.

11. Zhengxiang Pan, Benchmarking DL Reasoners Using Realistic Ontologies, in: Pro-
ceedings of the OWLED05 Workshop on OWL: Experiences and Directions, Gal-
way, Ireland, November, 2005, 188.

12. Tom Gardiner, Ian Horrocks and Dmitry Tsarkov, Automated benchmarking of
description logic reasoners, in: Proceedings of the 19th International Workshop on
Description Logics, Windermere, Lake District, UK, May, 2006, pp. 167-174.

13. Jurgen Bock, Peter Haase, et al., Benchmarking OWL reasoners, in: Proceedings
of the ARea 2008 Workshop, Tenerife, Spain, June, 2008.

14. Samantha Bail, Bijan Parsia, Ulrike Sattler, JustBench: a framework for OWL
benchmarking, in: Proceedings of the 9th International Semantic Web Conference
(ISWC), Shanghai, China, November, 2010, pp.32-47.

15. Yong-Bin Kang, Yuan-Fang Li, Shonali Krishnaswamy, Predicting reasoning per-
formance using ontology metrics, in: Proceedings of the 11th International Seman-
tic Web Conference (ISWC), Boston, MA, USA, November, 2012, pp.198-214.

16. Ji Qiu, Gao Zhiqiang, Huang Zhisheng, et al., Measuring effectiveness of ontology
debugging systems, Knowledge-Based Systems, 2014, 71: 169-186.

17. Kathrin Dentler, Ronald Cornet, et al., Comparison of reasoners for large ontologies
in the OWL 2 EL profile, Semantic Web, 2011, 2(2): 71-87.

18. Stefan Schlobach, Zhisheng Huang, Ronald Cornet, et al., Debugging incoherent
terminologies, Journal of Automated Reasoning, 2007, 39(3):317-349.

19. Aditya Kalyanpur, Debugging and repair of owl ontologies, Washington DC, Amer-
ican: The University of Maryland, 2006.

127


