
A Practical Framework for RelBAC
Implementation

Lei Liu1, Quanzhu Tao1, Fausto Giunchiglia2 and Rui Zhang1?

1 CCST, Jilin University, Str. Qianjin 2699, Changchun, China 130012
liulei@jlu.edu.cn

tqzlimit@126.com

rui@jlu.edu.cn
2 DISI, University of Trento, Italy

fausto@disi.unitn.it

Abstract. RelBAC is a new access control model that has gradually
aroused the research interest in the domain of access control. But it is
still not mature enough for industrial application due to its high logical
complexity. In this paper, we present a framework to implement Rel-
BAC . First, access control queries to RelBAC knowledge base (KB) are
analysed and categorized into different queries as run-time or off-line.
Then the necessary knowledge is studied to answer each type of query.
We propose to separate the knowledge for run-time query, named as a
complete ABox, from the classical RelBAC KB and store it in a relation-
al database, so as to provide run-time answers within acceptable time.
Last, a theorem is proved to backbone our method and an algorithm is
proposed to calculate the complete ABox. This framework serves as a
meaningful attempt to put RelBAC into practice.

Keywords: RelBAC , Description Logic, Complete ABox

1 Introduction

Access control models evolute with the advances of technologies. The famous
Role-based Access Control model RBAC [4] was proposed in the 20th century,
has now flourished in practical access control systems such as in Windows oper-
ation systems. It evolves into different models such as ARBAC [11], GeoRBAC
[3], ARBAC [8] etc.

As a new access control model, RelBAC [6] connects the subject that query to
access the object with the permission as a binary relation. The model provides
intuitive and straightforward semantics to home users without formal access
control experiences. But RelBAC has not flourished as expected in industry
solutions. What hinders the model from practical application is the shortage
of background supporting mechanism, which is supposed to be the powerful
reasoning services provided by description logic (DL) reasoners. There is no
good enough general purpose reasoners for RelBAC yet.

? Corresponding Author

In this paper, we propose a practical framework to implement RelBAC . The
knowledge base (KB) of a RelBAC access control system can be classified into
different parts, namely, organization, authorization, constraint and environment.
Each part consists of its typical structured axioms or assertions. Such structures
are studied and classified into run-time and off-line queries to the KB. We prove
that to answer the run-time query, only part of the ABox assertions are necessary.
An algorithm is proposed to populate individuals of concepts to build a complete
ABox. Such ABox assertions are separated from the classical KB and stored
directly in a relational database. Then query from end user and/or system can
be parsed and distributed to different engines, i.e. the database query engine
to provide run-time response and the reasoning engine to check off-line queries.
The framework provides a practical path to implement RelBAC in industrial
solutions.

The paper is organized as follows. Section 2 gives a glance in RelBAC model;
Section 3 illustrate our framework; Section 4 shows our strategy to implement
RelBAC ; and we conclude in Section 5.

2 Preliminaries

Relation-based Access Control (RelBAC) is an access control model introduced
in [6] and formalized using the DLALCQIBO as described in [16]. In this section,
we will illustrate the basic RelBAC definitions and related access control policies.

2.1 Elementary

As shown in the ER Diagram of Figure 1, what distinguishes RelBAC from
other access control models is the way it models permissions. A PERMISSION is
modeled as an operation that users (SUBJECTs) can perform on certain resources
(OBJECTs). To capture this intuition, a PERMISSION is named with the name of
the operation it refers to. The generalization (loops) on each component repre-

Fig. 1. ER Diagram of RelBAC .

sents IS-A relations. Not only SUBJECT and OBJECT are organized along IS-A

hierarchies but also PERMISSION.

2.2 Formalization

Together with RelBAC , a logic ALCQIBO extends the DL ALC [2] with quali-
fied cardinalities, inverse roles, nominals and Boolean for roles (see [12, 10, 9] for

56

extensions of DLs with Booleans between roles). As described in [1], ALCQIBO
is applied in access control domain to formalize RelBAC .

ALCQIBO. The syntax of ALCQIBO is defined as follows.

C,D ::= A | ¬C | C uD | ≥ nR.C | {ai}
R,S ::= P | R− | ¬R | R u S

where A ∈ NC, P ∈ NR, ai ∈ NI and n ∈ N.
A KB (KB) is a pair K = 〈T ,A〉 where T , called TBox, is a finite set of general
concept inclusions (GCIs) of the form C v D and a finite set of general role
inclusions (GRIs) of the form R v S, while A, called ABox, is a finite set of
concept and role assertions of the form C(ai) and R(ai, aj), with ai, aj ∈ NI.

The corresponding semantics (partial) of ALCQIBO is defined as follows.

(R−)I := {(y, x) ∈ ∆×∆ | (x, y) ∈ RI},
(¬R)I := ∆×∆ \RI , (¬C)I := ∆ \ CI ,

(R u S)I := RI ∩ SI , (C uD)I := CI ∩DI ,
(> n R.C)I := {x ∈ ∆ |]{y ∈ ∆ | (x, y) ∈ RI and

y ∈ CI} ≥ n},
{ai}I := {aIi }.

An ALCQIBO-interpretation I = (∆, ·I) is said to be a model of a KB, K,
iff it satisfies CI ⊆ DI , for all C v D ∈ K, RI ⊆ SI , for all R v S ∈ K,
aIi ∈ CI , for all C(ai) ∈ A, and (aIi , a

I
j) ∈ RI , for all R(ai, aj) ∈ A. In this case

we say that K is satisfiable and write I |= K. A concept C (role R) is satisfiable
w.r.t. K if there exists a model I of K such that CI 6= ∅ (RI 6= ∅).

Formal Specification. In RelBAC we distinguish five different kinds of spec-
ifications that, altogether, constitute an access control system: the organiza-
tion information, the authorization policy, the control constraint, the environ-
ment factors and the administration query. RelBAC uses the description logic
ALCQIBO to express each specification by associating a concept name to each
SUBJECT and OBJECT while permissions are described by means of role names.

1. Organization, to organize the entities and relationships among entities into
hierarchical structures with partial order.

2. Authorization, to declare the permissions from SUBJECT to OBJECT.
3. Constraint, to declare general regulations that existing and new authoriza-

tion policies should follow.
4. Query, to check the instantiation or satisfiability of the current access con-

trol KB.

The first step of our work is to clarify the patterns latent in above specifica-
tions in order to analyze the difference of the reasoning services related to each
pattern.

57

3 Framework

Based on the theory of RelBAC , we propose a framework towards the imple-
mentation of the theory. It consists of three layers coherent to a standard MVC
structure, but specialized to fit the access control domain.

Figure 2 gives the conceptual model of the frame.

Fig. 2. Conceptual model of the frame for RelBAC Model.

As is shown in the figure, the framework consists of three major components,
interface, engine and KB. Let us get into the details of them one by one.

Interface It is the intermediate between the system internal components and
the outer ‘users’. A channel, predefined or constructed at runtime, servers
as interface is maintained by this component. It is not bounded to classical
user interface but provides three sub components, SI, AI and UI.

SI It stands for System Interface, which communicates with the outer in-
formation providers, such as time server, behavior monitor, audit record
server, etc. Environment information are mainly transmitted to the sys-
tem through SI.

AI It stands for Administrative Interface, which connects administrators to
the system via predefined graphical interfaces and facilitate tool inter-
faces.

UI It stands for Usser Interface, that provides classical graphical interfaces
to end users. AI pages could be reused for UI, only with appropriate
access control.

Engine It is the core part of the frame, that processes the info (updates, queries,
maintenance, etc.) and communicate (if needed) with the KB. It mainly
consists of three sub engines, PE, RE and QE.

PE It is the Parser Engine, which will preprocess the information from the
interface, and forward it to appropriate engines for further processes.
Different type of system queries will arrive, and fit in predefined or run-
time studied patterns, then re-formulated into processable intermediate

58

format, thereafter be sent to responsible engines. Details of the formats
and patterns will be discussed in Section 4.

RE It is the Reasoning Engine, that accepts OWL-API format reasoning
tasks and provides reasoning services together with the interaction with
the ontology KB(s).

QE It is the Query Engine that takes the database queries as input and
provides necessary query answers via access to the database in the KB.

KB It stores the knowledge necessary for the access control system function-
ality, such as the organization of the SUBJECT, OBJECT and PERMISSION;
the authorization and constraint policies; the environment factors, etc. It
is divided into two parts, the AK and DK, which stores the knowledge for
different purposes.
AK It is the Administrative Knowledge base, aims at general policies that

support the administrative queries. It usually interacts with RE as the
reasoning background.

CK It is the Control Knowledge implemented via classical relational database
techniques. Instantiated knowledge, such as the ABox assertion that
‘John is permitted to update the root path’ is stored here.

With the framework, the next step is to work out the details of each compo-
nent. We will describe the theoretical details in the next section.

4 Implementation

This section will focus on the theoretical aspects to implement the framework
introduced above. The patterns are clarified for the knowledge in a RelBAC
system. Then the distribution strategy is proposed in details.

4.1 Knowledge Pattern

One of the key issue to implement the framework is to clarify the possible knowl-
edge patterns. In Section 2.2, knowledge has been classified into four categories.
Here, we will identify the patterns from the categories.

1. Organization: In the access control terminology, SUBJECT, OBJECT and
PERMISSION may be organized in a taxonomy along the IS-A relation [5].
An IS-A relation is represented as a concept (or role) inclusion axiom in
RelBAC :

C v D or P v Q (1)

where C,D are both SUBJECTs or both OBJECTs; P,Q are both PERMISSIONs.
SUBJECT and OBJECT are easy to be organized into IS-A hierarchies, espe-
cially with concerned attributes. Besides, compound concepts constructed
with classical DL operator ¬ and u may also exist in the formula above. The
inversion operator − on role may also join in the inclusion axiom of roles in
Formula (1).

59

Moreover, in addition to the DL roles for PERMISSION, classical roles may also
exist to describe binary relations between entities that is not a PERMISSION,
such as ‘is-older-than’ or ‘has-published’ relation in a system with an aca-
demic background. The inverse role operator

The number restriction operator ≥ is seldom used in organization. Its com-
bination with the other operators will results in an axiom that could not be
instantiated, as it puts restrictions on cardinality rather than fix individuals.
This is more likely to be used in the specification of constraints.

2. Authorization: It specifies a permission existing between a SUBJECT and
an OBJECT both on organization level or instance level in various of forms.

S v ∀¬P.¬O or O v ∀¬P−.¬S (2)

which specifies that any SUBJECT in S is permitted to perform the operation
(with the same name) P on any OBJECT in O. For easy reading purpose, it
is transformed into a SWRL [14] rule as

S(?x), O(?y)→ P (?x, ?y) (2′)

Special cases exist for Formula (2′), with alternation of the concept(s) with
nominal(s), we have the following variations.

{..., si, ...} v ∀¬P.¬O
S v ∀¬P.¬{..., oj , ...}

{..., si, ...} v ∀¬P.¬{..., oj , ...} (2′′)

where i, j are natural number indexes for individuals of SUBJECT and OBJECT.
An authorization policy in the form of an ABox assertion P (s, o) is only a
special case of Formula (2′′).

3. Constraint: It specifies the restrictions or regulations that the authorization
policies should not violate. A constraint usually stays inactive in a running
system. But when environment factors change, such as the rise of the system
load, the crucial time point, the access behavior violation, etc. Therefore, the
reasoning engine should check the consistency of the KB when new knowl-
edge arrives or current knowledge updates.

Some of the most concerned constraints are:

(a) Separation of Duties (SoD): It regulates the mutual exclusiveness
of permissions. SoD lies in different levels and granularity. Given a set
of positions S = {S1, . . . , Sn}, where each Si is a concept name, a SoD
policy ‘a subject can take all the positions in S’, may take the form of
an unsatisfiable compound role (in contrast to an atomic role).

Cm
n⊔

i=1

(

ml

j=1

Sij) v ⊥ (3)

60

where Cm
n is the binomial coefficient of ‘n choose m’. A special case of

Formula (3) is in condition of m = n, then the formula changes into

nl

j=1

Sj v ⊥ (3′)

.
(b) Chinese Wall (CnW): The Chinese Wall property regulates conflict of

interest (CoI), that ‘the resources in the set of CoI could not be accessed
by the same user’. Given a set of sensitive resources, O = {O1, ..., On},
and the corresponding operation P = {P1, ..., Pn}, a CnW policy may
take the form as.

nl

i=1

∃Pi.Oi v ⊥ (4)

Specifically, when the operation remains the same, say P , then the for-
mula changes into

≥ 2 P.(

n⊔

i=1

Oi) v ⊥ (4′)

4. Query: A query searches for subjects, permissions and/or objects from the
KB. A consistent KB is denoted as Σ hereafter. A query is classified as either
control or administrative.

Control Query (CQ) It verifies wether a requester for the resource have or
not the permission to access certain number of objects. Given a SUBJECT

u, the query could be of the following patterns.
(a) whether a SUBJECT s has PERMISSION P on the OBJECT o;
(b) whether a SUBJECT s has PERMISSION P on the OBJECT in O.
correspond to the, so called, instance checking reasoning service:

Σ |=P (s, o), (5)

Σ |=(∀¬P.¬O)(s). (6)

in which Formula (6) could be reformed into a satisfiability check as in
Formula (8) and (9). We will discuss it later at the end of this subsection.
It is obvious that all these three formulae of CQ should be answered
within acceptable time by the system.

Administrative Query (AQ) It checks the state of the access control sys-
tem, such as
(a) search for all the SUBJECT that has PERMISSION P on OBJECT o;
(b) search for all the OBJECT that is permitted to some SUBJECT s via

PERMISSION P ;
(c) whether the current system KB is consistent;
(d) whether an intended policy implied in the KB;
(e) whether an intended policy conflicts with the KB;
(f) whether an intended policy irrelevant to the KB;

61

(g) whether an intended update of environment violates the KB;
(h) whether an intended update consistent with the KB;
(i) whether an intended update irrelevant to the KB;
The first two AQ’s lie in the reasoning of instance retrieval for a com-
pound concept, say ∃P.{o} and ∃P−.{u}, as the following,

retrieve all SUBJECT u thatΣ |= ∃P.{o}(u) (7)

retrieve all OBJECT o thatΣ |= ∃P−.{u}(o) (8)

Here the compound concept is not bounded to permission, environment
attributes could be considered too. Therefore the concept on the right
side of |= could be conjunction or union of multiple concepts. The third
AQ lies in consistency checking for the KB.

Σ |= ⊥ (9)

If there is no model exists for Σ, the answer is inconsistent.
DL reasoning assumes an Open World Assumption [2], which does not
imply a negation if the positive is not a deduction result, and vise versa.
This means we cannot conclude that some policy (in format of an ax-
iom) is unsatisfiable if it is not deduced from the KB. Therefore, given a
concerned policy as an axiom A, the fourth AQ could be answered with
a consistency checking as Formula (9), of the renewed KB as Σ |= {A}.
The fifth AQ could be answered with a consistency checking of the re-
newed KB as Σ |= {¬A}. The sixth AQ however, could not be answered
with a single consistency check because of the open world assumption.
It is answered as irrelevant only if the fourth and fifth queries are both
answered consistent.
The last three AQ’s are similar to AQ 4-6, with the only difference that
instead of adding a new axiom A, an existing entity e, say a SUBJECT,
OBJECT or PERMISSION, will be alternated by a ‘new’ entity with its
attribute changed, i.e. all appearance of e will be replaced with an e′.
Then the ‘new’ KB is checked in respect of Σ.

As mentioned for Formula (6), it could be decomposed into two steps.

1. Instance Retrieval: retrieve all the OBJECT o for the compound concept
∃ P−.{u} with respect to Formula (8), which makes a set X;

2. Satisfiability Check: check the satisfiability of the axiom A in the form of
O v X with respect to Formula (9).

Here in this subsection, nine patterns are discovered in Formulae (1 to 9).
Different strategies will be applied on the patterns to enhance the run-time
performance of the system.

4.2 Task Distribution

As is shown in Figure 2 in Section 3, the queries through interfaces are trans-
formed by the Parse Engine PE and then transported to the other engines to

62

process via interaction(s) with the KB. However, a general purpose reasoner such
as [15], [7] and [13] does not provide good enough responses to RelBAC queries.
To be precise, they cannot reason on RelBAC with the logic ALCQIBO., not
to say provide run-time answers. How to transform RelBAC into a form that
could be operated by DL reasoners will not be covered for page limits. The aim
of this paper is to make the system work at run-time.

The strategy is to distribute the queries to different engines, i.e. RE or QE.
With the pattern clarification of RelBAC in Section 4.1, we distinguish the
knowledge patterns into nine formulae (Formula 1 - 9). We see that only the
CQ’s relate to run-time queries. Moreover, they are all related to instances.
Therefore, we design an algorithm to populate all the individuals inside the KB
into possible concepts which named as ABoxing, and get to a theorem as the
following.

Definition 1. The ABox assertion set A of an ontology O is complete, if and
only if any ABox assertion α implied by O is explicitly inside A.

A = {α|α is an ABox assertion,O |= α}
Then we have the following theorem which gives that,

Theorem 1. If the ABox assertion set of an ontology A is complete, then any
answer by O to a CQ is the same as answered by A.

Proof. Given a CQ, the pattern of the query falls into one of the three form as
Formula (5-6).

For a query in pattern of Formula (5), if P (s, o) can be deduced from Σ
then with Definition 1, it should be explicitly in A, which will derive P (s, o)
apparently. If it is not deduced from Σ, either ¬P (s, o) is deduced, or neither is
deduced. For the first case, ¬P (s, o) should be explicitly asserted in A, therefore
P (s, o) cannot be derived; for the second case, without TBox axioms, A is only
a set of assertions that could not deduce any fact that is not explicitly asserted
in A, then P (s, o) cannot be derived.

For a query in pattern of Formula (6) if for each oi ∈ O, P (s, oi) can be
deduced from Σ, then s satisfies Formula (6); if A is complete then for each
oi ∈ O, P (s, oi) and O(oi) are explicitly asserted in A, then can s is verified to
fit Formula (6). Otherwise, if for all oi ∈ O, there exists one P (s, oi) can not be
deduced from Σ, it is then not asserted in A, and cannot fit Formula (6).

An algorithm is proposed to populate individuals to concept in A. In Al-
gorithm 1, ABox assertion set and TBox axiom set are initialized on Line 1-2.
The the loop in Line 3-10 computes all the necessary TBox axioms and explic-
itly adds them into T . Then the second loop in Line 11-24 compute the ABox
assertions according to the computed T .

After population, A is complete. Each assertion in A could be coded into
classical database record. Then the task to answer any CQ query is distributed
to classical database queries. For the rest AQ, the task could be carried out with
general purpose reasoners that support SWRL, which might be time-consuming,
but acceptable for off-line administration.

63

Algorithm 1: ABox Population

Input: An ontology O, consists of two parts namely the ABox assertions in a
set A and the TBox axioms in a set T .

Output: The complete ABox assertion set A of O
1 A ← O.A
2 T ← O.T
3 while T grows do
4 for each a ∈T do
5 if a is C v D then
6 T +={C v D}
7 if a is C ≡ D then
8 T +={C v D,D v C}
9 if a is C uD v E then

10 T +={C v E,D v E}

11 while A grows do
12 for each b ∈ A do
13 if b is C(x) then
14 for each a ∈ T do
15 if a is C v D then
16 A +={D(x)}

17 if b is R(x, y) then
18 for each a ∈ T do
19 if a is R v S or R ≡ S then
20 A +={S(x, y)}
21 if a is ∀ R.> v D then
22 A +={D(x)}
23 if a is ∀ R−.> v D then
24 A +={D(y)}

25 return A

5 Conclusion

RelBAC stands out of many other access control models for its rich expressive-
ness and formalism. Its logical complexity hinders its application in industry.
We provide a framework to implement RelBAC in real-world software solu-
tions. Queries that should be answered in run-time are distributed to classi-
cal database, that has complete ABox assertions coded into database records.
Queries that could be answered off-line are distributed to DL reasoners with ser-
vices of consistency checking, satisfiability checking, instance retrieval etc. With
this combination in our framework, advantages of each query-answer mechanism
could be taken and a practical implementation of RelBAC is foreseen.

64

References

1. Artale, A., Crispo, B., Giunchiglia, F., Turkmen, F., Zhang, R.: Reasoning about
relation based access control. In: Xiang, Y., Samarati, P., Hu, J., Zhou, W.,
Sadeghi, A.R. (eds.) NSS. pp. 231–238. IEEE Computer Society (2010)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA (2003)

3. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: Geo-rbac: A spatially aware
rbac. ACM Transactions on Information and System Security 10(1) (2007)

4. Ferraiolo, D.F., Cugini, J.A., Kuhn, D.R.: Role-Based Access Control (RBAC):
Features and Motivations. In: 11th Annual Computer Security Applications Pro-
ceedings (1995)

5. Giunchiglia, F., Zaihrayeu, I.: Lightweight ontologies. In: Encyclopedia of Database
Systems. Springer (2008)

6. Giunchiglia, F., Zhang, R., Crispo, B.: Relbac: Relation based access control. In:
SKG ’08: Proceedings of the 2008 Fourth International Conference on Semantics,
Knowledge and Grid. pp. 3–11. IEEE Computer Society, Washington, DC, USA
(2008)

7. Haarslev, V., Möller, R.: Racer: A core inference engine for the semantic web.
In: Proceedings of the 2nd International Workshop on Evaluation of Ontology-
based Tools (EON2003), located at the 2nd International Semantic Web Conference
ISWC 2003, Sanibel Island, Florida, USA, October 20. pp. 27–36 (2003)

8. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based
access control. IEEE Computer 43(6), 79–81 (2010), http://dblp.uni-
trier.de/db/journals/computer/computer43.html#KuhnCW10

9. Lutz, C., Sattler, U.: The complexity of reasoning with boolean modal logics. In:
Wolter, F., Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Advances in Modal
Logics Volume 3. CSLI Publications, Stanford (2001)

10. Lutz, C., Walther, D.: Pdl with negation of atomic programs. Journal of Applied
Non-Classical Logic 15(2), 189–214 (2005)

11. Oh, S., Sandhu, R.S.: A model for role administration using organization structure.
In: SACMAT. pp. 155–162 (2002)

12. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics
with role negation. In: 6th International Semantic Web Conference, 2nd Asian
Semantic Web Conference, ISWC + ASWC. Lecture Notes in Computer Science,
vol. 4825, pp. 438–451 (2007)

13. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Submitted for publication to Journal of Web Semantics. (2003)

14. SWRL: Http://www.w3.org/Submission/SWRL/
15. Tsarkov, D., Horrocks, I.: Fact++ description logic reasoner: System description.

In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006). Lecture
Notes in Artificial Intelligence, vol. 4130, pp. 292–297. Springer (2006)

16. Zhang, R., Artale, A., Giunchiglia, F., Crispo, B.: Using description logics in re-
lation based access control. In: Proceedings of the DL Home 22nd International
Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30, 2009 (2009)

65

