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Abstract. In this paper, two intuitive and highly efficient solutions are
proposed for global planning and local avoidance. We introduce guide
and repel vectors to study global planning, which generates a steady and
smooth navigation field through a simple and efficient bilinear interpo-
lation method. In addition, this paper proposes a novel velocity-based
approach to simulate the local avoidance of agents based on least-effort
principle. During the local avoidance phase, humans slightly adjust their
motions, so that the energy required to perform a step becomes minimal.
The two solutions are integrated into one system, which finally simulates
the natural-looking navigation and interaction behavior of agents.
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1 Introduction

As virtual reality technology develops, crowd simulation technology is paid in-
creasing attention. According to different modeling granularities, existing crowd
models can be generally classified into two categories, namely, macroscopic and
microscopic approaches. The former models a crowd as continuous flow of fluid
[1]. This technology is mainly useful in large and dense crowds but basically
neglects the features of individuals. The latter models a crowd as a collective
of homogeneous/heterogeneous entities with interactions among them, and the
representative approaches include entity-based and agent-based. Individuals are
modeled as a set of homogenous entities in the entity-based approach. A typ-
ical example of this approach is Helbing’s social force model (SFM) [2]. The
agent-based approach models each individual in a crowd as an intelligent and
autonomous agent [3], in which each agent perceives its own state and reacts
to dynamic entities in its neighborhood. The microscopic approach models are
flexible, such that adding physical, social, and psychological factors can simu-
late various interactive behavior. As a result, these models are the most popular
ones. However, their computing cost is high. Jiang et al.[4] presented a semantic
model for representing the complex environment, where the semantic informa-
tion is described with a geometric level, a semantic level and an application level.
The model promotes the interactions between pedestrians and the environment.



Kraayenbrink et al.[5] proposed semantic crowds that allowed one to re-use the
same population for virtual environment.

Main Contribution: Based on previous research, two intuitive and highly
efficient solutions are proposed in this paper for global planning and collision
avoidance.

We introduce guide and repel vectors to study global planning, which gener-
ates a steady and smooth navigation field through a simple and efficient bilinear
interpolation method. In addition, we propose a novel velocity-based approach
to simulating the collision avoidance of agents through the observation of human
behavior in avoiding dynamic obstacles in real life.

2 Related Work

In this section, we briefly discuss prior literature on global planning and local
avoidance, which are the two key issues in crowd modeling technology.

Global Planning: To navigate a complex environment, a high-level path plan-
ning technology is needed. The most popular crowd navigation technologies in-
clude graph search and potential fields. Graph-based algorithms are widely used
in global planning [6]. Pettre et al. [7] proposed a graph structure that decom-
poses a space into multilayered terrains to support fast graph search for multiple
characters. Bandi et al. [8] extended A* algorithm to a 3D space and reproduced
many interesting navigation behaviors. Roadmaps [9] and Voronoi diagrams [10]
are recently introduced to crowd navigation. Potential fields are extensively s-
tudied in robot motion planning [11]. Dapper et al. [12] introduced harmonic
function to generate potential fields; thus, they would not fall into the local
minimum and could simulate various navigation behaviors by adjusting the pa-
rameters in the function. Moreover, many researchers have directly attempted to
govern navigation by computing velocity fields based on environment description
[13], designing velocity fields manually [14], or capturing the velocity fields from
videos and user inputs [15]. Our global planning algorithm is inspired by [13].
We introduce two types of vectors, namely, repel and guide vectors. An efficient
bilinear interpolation method is used to obtain smooth navigation fields.

Local Avoidance: Collision should be avoided locally by adjusting movements
when other agents become sufficiently close. Many local avoidance approaches
have been proposed, including particle force interaction [16], geometric [17], and
synthetic-vision models [18]. Many researchers have introduced velocity-based
methods for collision avoidance recently. Paris and Pettre et al. [19] proposed
a predictive approach and resolved potential collisions successfully. Karamouzas
and Overmars [20] proposed a velocity-based approach by analyzing experimen-
tal data and extended this approach to small groups [21]. Koh and Zhou [22]
introduced a collision avoidance framework called relative frame. According to
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the duality property of the relative frame and other constraints, they selected a
collision-free velocity for an agent. Our local avoidance algorithm is inspired by
the work of Koh and Zhou. We use a modified relative frame to predict the po-
tential collision and select an optimal velocity for an agent. However, unlike Koh
and Zhou, we adopt the least-effort principle and eventually obtain a realistic
and natural-looking result.

3 Global Path Planning

3.1 Environment Decomposition and Organization

To compute a global path to the goal for each agent, we decompose the envi-
ronment into grids, which have different size and are represented by rectangles.
When static obstacles are dense, our method will subdivide the environment
until each mixed grid is almost occupied by obstacles; when static obstacles are
sparse, our decomposition method roughly divides the environment into several
grids, then merges the empty grids, and forms a large empty area.

We use a four-connected graph to organize the empty grids. The connective
graph is defined to be the graph that has a vertex for each grid and an edge
between two vertices only if the corresponding grids share a segment on their
boundaries. A path over this graph is computed, such that following the path
from any vertex leads to the vertex corresponding to the grid containing the
goal state. The resulting directed graph defines a successor for every grid, except
the goal grid. The successor of a grid is the next grid on the path to the goal
grid. Each grid with a successor is termed as an intermediate grid, and the
intermediate grid has only one successor. Specially, the goal grid has no successor.
See Figure 1 for an illustration.

Fig. 1. Environment decomposed into grids and the corresponding connectivity and
directed graphs.

3.2 Repel and Guide Vectors

We assume that each grid has four adjacent grids (because the graph is four-
connected). A grid must be set as the successor of the grid. The shared boundary
is called exit face, and the others are called repel faces. See Figure 2 for an
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illustration. To obtain a proper transition from the current grid to successor,
we introduce two types of vector fields, i.e., those corresponding to grids in the
decomposition, which we call guide vector fields, and those corresponding to
faces, which we call repel vector fields. A guide vector field guides an agent
through the grid to the exit face, which leads to the successor grid. Repel vector
fields prevent an improper grid transition, i.e., a transition from the current grid
to a grid that is not the successor is prohibited. For the repel vector on repel
faces, its direction is orthogonal to the face and points inward. For the repel
vector on the exit face, its direction is orthogonal to the exit face and points
outward. The guide vector fields always point toward the exit face. In the case
of the goal grid, all repel and guide vector fields point inward to the goal state.

Fig. 2. Illustration for repel face, exit face, repel vector, and guide vector.

The different sizes between adjacent grids pose a difficulty in choosing the
appropriate repel or guide vector fields. Zhang et al. [23] proposed a method to
resolve this problem.

3.3 Vector Interpolation

To obtain a smooth transition from the current grid to successor for an agent, an
efficient and simple bilinear interpolation method is used to compute the final
repel vector Vrepel (Figure 3).We assume that the position of agent(xi,yi ) is
in grid C={(x1, y1) , (x2, y2)}, and its successor is S={(x3, y3) , (x4, y4)}, where
{(x1, y1) , (x2, y2)} and {(x3, y3) , (x4, y4)} represent the upper left and lower
right vertex coordinates of C and S, respectively. The repel vector set of grid C
is F={f0,f1,f2,f3}.

Vrepel =
x2 − xi
x2 − x1

∗ f0 +
xi − x1
x2 − x1

∗ f2 +
y2 − yi
y2 − y1

∗ f1 +
yi − y1
y2 − y1

∗ f3 (1)
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Fig. 3. Computation of the final repel vector Vrepel.

Considering that the grid size might differ, two cases are considered for f2.
Figure 4 shows that when the current position of agent (xi,yi ) locates below
the green-dotted line, f2=fvirtual, when (xi,yi ) locates above the green-dotted
line, f2=f21. fvirtual represents the repel vector on the virtual face, and f21

represents the repel vector on the exit face.

f2 =

{
f21 yi > y3 ∧ yi < y4

fvirtual yi ≥ y4 ∧ yi ≤ y2
(2)

Fig. 4. Selection of f2 in two cases.

Assuming that the guide vector is Vguide, we calculate the linear interpola-
tion between Vrepel and Vguide, and obtain the navigation vector at (xi,yi ),
denoted as Vnav.

Vnav = α ∗ Vrepel + β ∗ Vguide (3)

We suppose that α = 0.5 and β = 0.5. We can calculate the navigation vector
of each spot in the configuration space using Equation (3). Disregarding other
agents, each agent can move step by step along the direction of Vnav to the goal
state. Figure 5(a) shows an example for the navigation fields, and Figure 5(b)
shows the path of an agent moving from the initial point to the goal state. No
steep turn exists in the corners, and the whole path is smooth, which vividly
simulates the human behavior when turning in our real life.
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Fig. 5. (a) Example for the navigation fields. The black rectangle denotes obstacle,
and the red point denotes the goal state. (b) Path for an agent from the initial position
to the goal state.

4 Local Collision Avoidance

Two main challenges occur in local collision avoidance, namely, collision predic-
tion and collision avoidance. In this section, we describe our collision avoidance
model.

4.1 Problem Formulation

In our problem setting, we are given a virtual environment where n agents
PN={P1, . . . , Pn} have to navigate toward their specified goal without collid-
ing with the environment and with one another. For simplicity, we assume that
each agent moves on a plane and is modeled as a disc with radius ri, and its
personal space is modeled as a disc with radius ρi. At a fixed time t, the agent
Pi is at the position xi(t), defined by the disc center, and moves with velocity
vi(t). This velocity is limited by a maximum speed umaxi , i.e., ‖vi(t)‖ ≤ umaxi .
For notational convenience, we will not explicitly indicate the time dependence.

In every simulation step, the agent Pi has a desired velocity vdes
i (t), whose

orientation is Vnav, which have been computed in Section 3, and magnitude is
udesi , which is closely related to the crowd density ρ according to Fang et al. [24].

vdes
i = udesi ∗ Vnav

‖Vnav‖
(4)

udesi =





umaxi ρ ≤ ρmin
umini + ρ−ρmin

ρmax−ρmin
∗ (umaxi − umini ) ρmin < ρ < ρmax

ū ρ ≥ ρmax
(5)

In the above equations, ρmin and ρmax are the minimum and maximum crowd
density thresholds, respectively. u is the average speed of all agents, which are
in the vision range of Pi ’s vision range.
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4.2 Collision Prediction

An agent configuration is defined by its position and velocity. Koh and Zhou
proposed a relative frame model for collision prediction. Source agent is denoted
as the agent that avoids a target agent. Figure 6 shows the relative frame between
a source agent and a target agent, where vr is the relative velocity between the
source and target agents; θs and θg are the orientation of the source and target
agents, respectively; θr is the relative orientation between the source and target
agents. Rg=rg+ρs, it means that the target agent should not invade the personal
space of the source agent.

Fig. 6. Relative frame.

The collision zone is defined as a region of space where the source agent should
prevent collision with the target agent, i.e., collision is predicted in future if

θminr ≤ θr ≤ θmaxr (6)

and if the two agents do not change their speed and orientation.
When a collision has been predicted, we then compute the time to collision

(ttc); if ttc is less than a certain anticipation time t, the target agent is insert-
ed into a set of agents that are on the collision course with the source agent.
In real-life, an individual tries to avoid a limited number of other pedestrians,
usually those that are on the collision course with him in the coming short time.
Similarly, the source agent tries to evade N agents with which will collide first.
In our implementation, N is less than 4.

4.3 Collision Avoidance

The least-effort principle originates from the field of psychology and states that
given different possibilities of actions, people select the one that requires the
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least effort [25]. Based on least-effort theory, many systems for crowd simulation
have been proposed [26], [27]. However, all these approaches aim to control the
macroscopic (global) behavior of virtual humans, whereas our focus is on the
local interactions of individuals. Based on the least-effort principle, we therefore
hypothesize that an individual, upon interacting with other individual, tries to
resolve potential collisions immediately by slightly adapting his motion. The
individual will adjust his trajectory in advance, trying to reduce the interactions
with the other walker. We describe our local avoidance algorithm below.

We first retrieve a set of candidate relative orientation Or, such that the
orientation of relative velocity can be selected to resolve the collision with the
agents who are on the collision course. According to condition (6), the collision
can be avoided if the source agent selects a new relative velocity vnew

r , that
satisfies the condition

¬(θminr ≤ θnewr ≤ θmaxr ) (7)

To avoid unrealistic orientation deviate, we bound the max angle deviation θmaxi

to π
2 . We can compute Or by combining condition (7) and θmaxi .
We then retrieve the set of candidate relative speed Ur. When Or is deter-

mined, the max relative speed umaxr =
∥∥vdesi

∥∥+‖vj‖ and the min relative speed

uminr =
∣∣∥∥vdesi

∥∥− ‖vj‖
∣∣.

Having retrieving Or and Ur, we select an optimal pair P=(ur,θr), where
ur ∈ Ur ∧ θr ∈ Or, so that the expenditure energy for the source agent is
minimum. See Figure 7(a) for an illustration.

Fig. 7. (a)Selection of an optimal relative velocity for the source agent.(b)(c)Two cases
for imminent collision:case(b)One agent enters into the personal space of other but they
are not overlapping yet.case(c)Two agents have overlapped

vnew
i = vnew

r + vj (8)

∆ui =
∣∣‖vnew

i ‖ −
∥∥vdes

i

∥∥∣∣ (9)

∆θi = arccos
vnew
i · vdes

i

‖vnew
i ‖ ∗

∥∥vdes
i

∥∥ (10)
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In the above equations, ∆ui is the value for speed changed, and ∆i is the angle
deviation of the source agent. The cost function is

f(ur, θr) = α ∗ ∆ui
umax

+ β ∗ ∆θi
θmax

(11)

where umax=1.5m/s is the maximal value for speed changed, and θmax=π
2 is the

maximum angle deviation. The constants α and β define the weights of specific
cost terms and can vary among the agents to simulate a wide variety of avoidance
behavior.

Computing the minimum value of Equation (11) is time-consuming. Thus,
we restrict the domain Or to a discrete set of orientation samples (the default
size of the discretization step is set to 0.01π). Similarly, we discretize the domain
Ur into a set of adjacent speed samples (the default distance between adjacent
samples is set to 0.05). Assuming that the discretized set of Or is Or and that
of Ur is Ur , then the set of admissible relative velocity is

FAVr = {urθr | ur ∈ Ur ∧ θr ∈ Or} (12)

The discretized cost function is

vnewr = argmin
V cand∈FAVr{

α ∗
∣∣∥∥vcand + vj

∥∥−
∥∥vdesi

∥∥∣∣
umax

+ β ∗ arccos
(vcand + vj) · vdesi

‖vcand + vj‖ ∗
∥∥vdesi

∥∥

}
(13)

Having retrieving vnewr , the optimal new velocity for the source agent is easy to
compute. We then update the source agent position into

xnew
i = xi + vnew

i ∗∆t (14)

4.4 Resolve Imminent Collision

We divide imminent collision into two cases (Figure 7(b)(c)). In case (b), we
introduce the concept of relative tangential velocity, which is equivalent to ap-
plying a tangential force to separate the two agents. In case (c), we introduce
the concept of repel velocity, which is equivalent to applying a repulsive force to
separate the two agents immediately.

4.5 Avoiding Static Obstacles

An agent Ai also needs to avoid colliding with the static obstacles of the envi-
ronment. In our simulations, such obstacles are modeled as axis aligned boxes.
Collisions are resolved by following an approach similar to the one described
above.

We first retrieve the nearest obstacles of the agent Ai that are inside the visual
field of the agent. We then compute the maximum and minimum orientations
among the vectors lined from the current position of Ai ’s to each vertex of the
convex polygon obstacle. The maximum and minimum orientations are θmaxr and
θminr , respectively, which have been discussed above. Finally, we use a least-effort
criterion to select an optimal velocity for the agent Ai.
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5 Experimental Results

We test our approach against a wide range of scenarios. These scenarios range
from the simple interactions between pairs of agents to more challenging and
large test cases as follows:

� Squeeze: Two agents have to avoid a head-on collision while walking in an
opposite direction (Figure 8(a)).

� Overtake: An agent moves down a hallway and encounters a slower agent in
front (Figure 8(b)).

� Square: Four agents are placed on the vertex of a square and have to walk
toward their diagonal position (Figure 8(c)).

� Complex environment: Three hundred agents walk through an environment
filled with many obstacles and have to evacuate from the exit (Figure 8(d)).

Fig. 8. Scenarios: (a)-(c) interactions in simple environments; (d) three hundred agents
evacuate from an obstacle-filled environment.

6 Conclusion

In this paper, we present a novel integrated framework for navigation and in-
teraction behavior. A creative global path planning algorithm and a bilinear
interpolation method were used to compute the navigation fields. A least-effort
criterion was also employed in the local avoidance to achieve realistic local move-
ments.
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