
A Minimal Triple Space Computing Architecture

Christoph Bussler

Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway

Galway, Ireland

Chris.Bussler@DERI.org

Abstract. The visionary approach of Triple Space Computing was recently in-
troduced based on the insight that Web Services do not follow the Web para-
digm of ‘persistently publish and read’ [Fensel, 2004]. Instead, Web Services
currently require a synchronous connection to transmit data transparently by-
passing and ignoring the power of the Web paradigm. Triple Space Computing
proposes to publish communication data analogous to the publication of Web
pages: persistently for anybody to read who has access to it at any point in
time. This has several benefits. The provider of data can publish it at any point
in time (time autonomy), independent of its internal storage (location auton-
omy), independent of the knowledge about potential readers (reference auton-
omy) and independent of its internal data schema (schema autonomy). This ar-
ticle introduces a minimal Internet-scalable Triple Space Computing architec-
ture based on Semantic Web technology that implements these four types of
autonomy in the simplest way possible with as minimal functionality as feasi-
ble to be useful with no or almost no impact to publishers and reader of com-
munication data.

1 Introduction to Triple Space Computing

The visionary approach of Triple Space Computing (TSC) was recently introduced
based on the insight that Web Services do not follow the Web paradigm of ‘persis-
tently publish and read’ [Fensel, 2004]. Anybody can define a Web page persistently
and publish it. Both, the publication and the reading can be done independently of
each other, i.e., asynchronously. Fensel proposes to follow exactly this paradigm for
the communication of data between software systems across the Internet: publish the
data persistently and make it available for reading it1. The location for storing and
accessing data is called triple space, and, as it will be later introduced, it is a virtual
storage location.

1 Note on terminology: sometimes authors use the term ‘publish’ for providing com-
munication data and ‘consume’ for accessing it. The term ‘consume’, however, has
the connotation of destroying the read data. However, like in the Web pages case, a
read does not destroy as such; it only creates another copy for the reader.

Instead of following the ‘persistently publish and read’ paradigm, traditional Web
Services based on the Web Service Definition Language (WSDL2, [Christensen et al.,
2001]) and the Simple Access Object Protocol (SAOP3, [Mitra, 2003]) require a syn-
chronous Hypertext-Transfer-Protocol (HTTP4, [Fielding et al., 1999]) connection to
transmit data transparently bypassing the power of the Web paradigm. This means
that traditional Web Services require the sender and receiver of data to have a tight
same-time synchronous connection, to agree on the data format, to know each other
and share a common representation. Besides violating the Web paradigm of ‘persis-
tently publish and read’, this also prevents general mechanisms like Web caching and
unique referencing of data through Uniform Resource Identifiers (URI5, [Berners-Lee
et al., 2005]).

Triple Space Computing establishes the mechanism to publish communication data
according to the Web paradigm of ‘persistently publish and read’ and in this way
TSC brings machine-to-machine Web Service communication to the Web in its real
sense: ‘Web’ Services. This has several benefits. The provider of data can publish it
at any point in time (time autonomy), independent of it internal storage (location
autonomy), independent of the knowledge about potential readers (reference auton-
omy) and independent of it internal data schema (schema autonomy):
− Time autonomy. Time autonomy means that there are no time dependencies be-

tween the data provider and reader. Each can at its own discretion access the triple
space and write or read data.

− Location autonomy. The triple space as a storage location is independent from
any storage space in the provider or reader of data. Complete independence is
achieved by ensuring that triples are passed to and from the triple space by value
and in the format required by the triple space.

− Reference autonomy. Provider and reader of data might know about each other,
but do not have to know each other for purposes of communication through the tri-
ple space. In the simplest case, the reading and writing of data is anonymous.
Therefore, TSC does not enforce reference but allows reference autonomy.

− Data schema autonomy. TSC provides its own data schema (it is going to be
based on triples according to RDF [Manola et al., 2004]) and the data written and
retrieved from a triple space will follow the TSC data model. This makes the pro-
vider and reader independent of their internal data schema they have and that
might be very different.

TSC are based on a combination of proven technology. As it will be discussed later in
more detail in this article, TSC will be based on the HTTP protocol, the Resource
Description Framework (RDF6, [Manola et al., 2004]) technology and commercially
available storage components like databases or file systems. In that regard, exactly the
same technology is used as in case of (Semantic) Web pages.

2 http://www.w3.org/TR/wsdl
3 http://www.w3.org/TR/soap/
4 http://www.ietf.org/rfc/rfc2616.txt
5 http://www.ietf.org/rfc/rfc3986.txt
6 http://www.w3.org/RDF/

The goal of the paper is to define a minimal Internet-scalable Triple Space Com-
puting architecture based on Semantic Web technology that implements the four
types of autonomy (time, location, reference, data schema) in the simplest way possi-
ble to be useful with no or minimal impact to publishers and consumers of communi-
cation data. The emphasis is on ‘minimal’ and ‘simple’ for purpose in order to estab-
lish the minimal functionality required implementing the four types of autonomy.

Section 2 introduces the architecture concepts for TSC. Section 3 details the vari-
ous architecture components necessary as well as their interactions from a dynamic
perspective. Section 4 lists many implementation suggestions in order to utilize exist-
ing technology and knowledge to the extent possible. Section 5 discusses briefly
related work and Section 6 summarizes.

2 Architecture Concepts

The architecture concepts are introduced first before the components of the architec-
ture are discussed. This allows the discussion of the major elements without having a
particular modularization and implementation in mind.

2.1 Storage Object

The object that is written to a triple space and read from it (possible numerous times)
is a RDF triple as defined in [Manola et al., 2004]. A triple has three parts to it, a
subject, an object and a predicate. Triples are uniquely identified through URIs
[Berners-Lee et al., 2005]. This means that each triple in any triple space is uniquely
marked and can be distinguished from all the other triples by its unique URI.

Between the URI of a triple and the URI of the triple space it is located in is no di-
rect relationship in form of any URI encoding. That is, the URI of the triple space is
not encoded in the URI identifying the triple itself. This means that it is not possible
to determine triples in a triple space by the URI construction (or ‘guessing’). In order
to determine all the triples that are located in the triple space, a reader has to retrieve
them all. In order to do this, however, the reader has to already know all triples. The
reason for this is that this is the minimal functionality.

Triples can refer to each other in order to express more complex data structures in
order to describe more complex information. In its simplest form, the triple space
does not recognize this fact. All triples are individual objects and any relationship
between those is ignored. For a reader, however, this is not a problem. Once a reader
reads a triple, the reader then can interpret the contents of the triple. If it recognizes
that a triple refers to another one, the reader can then read this one, too. This way the
graph of triples can be reconstructed by the reader and the minimal architecture does
not get into the way of achieving a perfect recall.

2.2 Storage Location and Location Virtualization

A triple space is a virtual space. A triple space is identified through a unique URL.
Triples are written and read with this URL as triple storage location. A triple space as
such is not associated in a particular way with an implementation called triple space
server. An implementation, of course, has to provide a physical storage location like a
database or file system directory or directory itself. However, one implementation can
‘host’ many triple spaces. A triple space has to be part of one implementation, but one
implementation can host many triple spaces. The relationship is one-to-many between
a triple space server and (virtual) triple spaces.

For example, www.deri.org/incoming_resumees might point to a triple space
that prospective applications use to submit their résumés.
www.deri.org/phone_numbers might point to a triple space that contains all
phone numbers of all members of DERI. Both are virtual triple spaces in the sense
that they are storing and managing ‘their’ triples. From an implementation and de-
ployment viewpoint both might be hosted by the same implementation (e.g. if DERI
would only have one triple space server). However, it might also be that both are
hosted by different triple space servers. From a user perspective this is completely
transparent as triple spaces are virtual entities and no reference to a specific server is
necessary when invoking operations on a triple space to write or to read triples.

2.3 Storage Operations

Triples are written into a triple space by value. All three elements of a triple have to
be specified and the concept of object references (data passing by reference) does not
apply. Hence the write operation (in informal syntax) is very straight forward:

− write (triple)

The precise syntax is defined in the triple space transfer protocol, see Section 0.
Reading a triple is equally simple. A triple is read from a given triple space identi-

fied by a URL by invoking the read operation with the identifying triple URI as pa-
rameter. Hence the read operation in informal syntax is:

− read (URI) returns triple

The read operation is non-destroying, i.e., a copy of the identified triple is returned
and the triple still remains in the triple space (analogous to Web pages that are not
destroyed through the first reader). Also, the returned triple is not a replica, meaning,
that if the triple in the triple space changes, any retrieved copy of it is unaffected by
that modification.

2.4 Storage Semantics

After a triple space is installed it is empty. No triple is contained in the triple space.

− Write. The write operation on a triple space can encounter two states of the triple
space. In one state no triple exists with the same URI. In this case the triple is
added to the triple space. In the other state a triple with the identical URI already
exists. In this case the existing triple will be overwritten with the one identified in
the write operation. The original values will be lost. This semantics ensures that
the write operation always succeeds.

− Read. The read operation can encounter also two states. In one state a triple for the
given URI exists and in this case a copy of the triple will be returned. The read is
non-destroying and the triple can be read again any number of times. In the second
case no triple exist for the given URI. In this case an error code is returned indicat-
ing that no triple exists in the triple space with the given URI. The error code is
distinct from an empty triple where all three values are empty. So the correct defi-
nition of the read operation is:
− read (URI) returns triple | error_code

− Concurrent Writes. A triple space can have any number of triple writers. They
can try to write different triples or even the same triples (i.e., triples with the same
URI). In any case, the triple space has to ensure that no lost updates occur, mean-
ing, that writers are serialized. Only one triple writer can write a triple at the same
time. If appropriate underlying technologies are used, this semantics is very easy to
implement, e.g., through transactions. Since only URIs are the distinguishing fea-
tures of triples from a TSC viewpoint, triples with different URIs can be written
concurrently, if the underlying technology allows it. However, this is an imple-
mentation detail, not a conceptual concern.

− Concurrent Reads. Since the reading of triples is non-destroying, concurrent
reading of triples with the same URI or different URIs is possible. Any number of
readers can read triples concurrently at any point in time. Of course, this is only
possible if the underlying technology allows this implementation. If the underlying
technology serializes read operations, then concurrent reads only exist conceptu-
ally, but not in fact.

− Concurrent Write and Read Operation Interleaving. Finally, triple spaces can
be access by writers and readers concurrently, too, at least they can attempt it. In
this case it must be ensured that readers cannot retrieve ‘half written’ triples, i.e.,
the granularity of the storage operations must be the reading or writing of a whole
triple. If the granularity is finer then a complete triple, then it might be that a
reader can read the intermediate state of a write or an update (the case where a tri-
ple is replaced by one with new values). In this case the triple server must ensure
that triple storage operations are serialized according to the reader-writer problem.

2.5 Summary

In summary, the conceptual model of the minimal TSC architecture is small and con-
cise. This promises an efficient and simple architecture as well as an outstanding
performing implementation. Both are show in the next two sections.

3 Architecture Components and Component Interaction

Based on above architecture concepts the overall system architecture, its components
and interactions are introduced next as well as an overall boundary delineation.

3.1 System Elements and Boundary

From a bird’s eye view, three main systems exist that operate together in Triple Space
Computing. One main system is TSC clients. A writer is a TSC client and so is a
reader. In some cases, readers and writers are distinct, in others they might be the
same. For representational purposes we do not distinguish them. In addition to this,
another main system is a triple space server that can host any number of triple spaces.
TSC clients communicate with the triple spaces (via the triple space server) by the
Triple Space Transfer Protocol, TSTP, see Section 0. The following Figure 1 shows
the situation graphically.

Triple Space Server

Triple Space
Client (Reader

or Writer)

Triple
Space

Triple
Space

Triple
Space

Internet

Triple Space
Client (Reader

or Writer)

Triple Space
Client (Reader

or Writer)

Triple Space
Client (Reader

or Writer)

TSTP

Figure 1: TSC System Elements and Boundaries

To further clarify the overall system layout, there can be several triple space servers
on the Internet hosting hundreds of triple spaces7. Some clients might be connected to
only one triple space, others to several triple spaces. Clients can be concurrently con-
nected to several triple spaces, or in sequence, like clients of Web pages.

3.2 Triple Space Clients

A triple space client writes triples, reads triples or does both either at the same time or
sequentially. Clients are therefore not distinguishable from the viewpoint of a triple
space. Every client in general can read and write triples. The only way for a client to

7 From a scaling perspective, every node in the Internet could have one (or more!)
triple space servers installed!

access a triple space is through the TSTP (Triple Space Transfer Protocol). This pro-
tocol implements the read and the write operation on a triple space including all the
necessary parameters.

3.3 Triple Space

A triple space is a virtual concept implemented by triple space servers. A triple space
server implementation can implement this virtualization as it likes. Each triple space
within a triple space server has to be distinguished so that written triples end up in the
particular triple space the writer indicated when invoking the write operation.

A triple space server implementation, however, has some freedom to implement
the virtualization. For example, one implementation might decide to implement the
storage on the file system and it decides to put every triple in a separate file and cre-
ate a directory for every triple space. Another implementation might decide to have a
file for each triple space. Yet another implementation might decide to use a profes-
sional database system and implements a triple space as a relational database table.

In essence, a mapping has to happen from the read and write operation to the cor-
rect storage location in the persistent storage mechanism, be it files, databases or
other storage mechanisms.

3.4 Triple Space Server

A triple space server hosts as many triple spaces as the owning organization decides.
TSC clients do not know about triple space servers but only the virtual triple spaces.
Consequently, management operations have to be available on a triple space server to
create, delete and empty triple spaces:
− create_triple_space (URL)

returns success | triple_space_already_exists
− delete_triple_space (URL)

returns success | triple_space_does_not_exist
− empty_triple_space (URL)

returns success | triple_space_does_not_exist

Convenience functions like listing existing triple spaces might be valuable. Also, it
might be helpful to be able to prevent all access from a particular triple space in case
problems are encountered or while storage space is added to the system environment.
This might be achieved through an operation that puts a triple space into offline, i.e.,
making it inaccessible for clients.

3.5 Triple Space Transfer Protocol (TSTP)

The triple space transfer protocol is used between TSC clients and triple space servers
to initiate the operations of writing and reading triples. A possible syntax for the two
operations is

− tstp://URL/triple
− tstp://URL/URI

where ‘triple’ is assumed to have a URI as unique identifier as well as three values,
subject, predicate and object. The syntax element ‘tstp’ is the protocol indicator. The
first operation is the write operation where the URL of the triple space in question is
provided followed by the triple to be written. The second operation is the read opera-
tion that provides the URL of the triple space and the URI of the triple to be read.

A possible implementation of this protocol is to define it in detail (preferably
through a standards process, e.g. through W3C8) and expect all web server and appli-
cation server vendors to implement it. However, an easier approach and alternative
implementation is to map the TSTP protocol to the HTTP protocol. In this case there
is no native implementation of it; however, it has the benefit of using a proven and
Internet-scalable technology. This approach is suggested in Section 0.

3.6 Summary

In summary, the minimal architecture of TSC is small and simple. There are only a
few components that have a quite simple interaction pattern structure. This allows
making the components interact quite efficiently in an Internet-scaling implementa-
tion.

4 Implementation Suggestions

For the minimal TSC architecture to work properly an implementation for all the
architecture concepts has to be provided. In the following some possibilities are dis-
cussed that an implementation might consider. Alternative approaches are possible,
too. However, the suggestions were given with the idea of a minimal system in mind.

4.1 TSC Client

In the very extreme case, no implementation is provided at all for TSC clients. As
already indicated, TSTP is piggybacked on the HTTP protocol with a syntax as de-
fined in Section 0 (or a similar one). Therefore, any client that can invoke the HTTP
protocol in principle can invoke the TSTP protocol, too.

However, for convenience, it might be good to have a Java class implemented that
exposes the specific write and read operation of the TSTP protocol. In this case the
software engineer who implements the client can use the Java class whenever TSTP
invocations have to be performed. The Java class internally maps the parameter to the
HTTP protocol as shown below and initiates the HTTP calls internally. Through this
approach the software engineer does not have to worry about the TSTP to HTTP
mapping at all and does not have to implement the correct HTTP syntax itself.

8 www.w3c.org

4.2 TSC Server

The TSC server in general follows most likely a layered architecture. In a first ap-
proximation it has four components:
− Storage component. The storage component stores the triples. As storage compo-

nent many alternatives are possible, including databases, file systems, RDF data-
bases, persistent queues, etc.

− HTTP communication component. This component is the component that re-
ceives the HTTP calls that implement the TSTP protocol. Each invocation is either
a write or a read. Each invocation is forwarded to the TSTP operation component.

− TSTP operation component. This component implements the functionality of the
writing and reading of triples. It receives the write and read command from the
HTTP communication component. In turn it invokes the appropriate TSC server
operation and returns the result. While doing so, it ensures consistency, e.g., that
the HTTP syntax is correct. It also does error handling. If e.g. a triple space is not
existent, the TSC server returns a corresponding error message. In turn it composes
an error code to be returned to the client as result of the HTTP invocation.

− TSC server operations. The triple space server finally implements the write and
read operations for triples and does all the appropriate error handling. Furthermore,
it implements the server operations for creating, deleting and emptying triple
spaces.

Figure 2 shows the various components. As it is a layered architecture, code in upper
layers call operations in lower layers. As can be seen, there are only a few compo-
nents necessary and their invocation relationships are quite simple.

4.3 TSTP

The triple space transfer protocol (TSTP) is the protocol TSC clients use in order to
write or to read triples from triple spaces. The implementation suggestion is to layer
the TSTP protocol ‘on top of’ HTTP. This means in practical terms that a tstp proto-
col directive (like tstp://www.deri.org/phone_numbers/URI=102408 request-
ing triple 102408) is translated to HTTP. The translation is simple and follows the
following mapping:
− tstp://URL/triple is translated into

http://URL/prot=tstp&uri=URI&s=<subject>&o=<object>&p=<predic
ate>. The URL is the same in both, however, in the HTTP translation one parame-
ter (prot) states that this is a ‘tstp’ protocol invocation, one parameter (uri) con-
tains the URI of the triple, and three parameters contain the values (s, o and p).

− tstp://URL/URI is translated into http://URL/prot=tstp&uri=URI. Here
again prot indicates the protocol and since this is the read operation only the URI
of the sought triple is provided.

Triple Space Server

Triple Space
Client (Reader

or Writer)

HTTP Communication

Internet

Triple Space
Client (Reader

or Writer)

Triple Space
Client (Reader

or Writer)

Triple Space
Client (Reader

or Writer)

TSTP

TSTP Communication

Triple Server Operations

Storage Component

Figure 2: TSC Implementation Architecture

This translation from the TSTP protocol to the HTTP protocol is simple and can be
done very fast as it is only a string rewrite, no external lookup of information is nec-
essary at all.

4.4 Summary

In summary, this section has shown that a Internet-scale implementation of the TSC
architecture is possible and will in fact work on Internet scale. From a comparison
viewpoint the TSTP protocol and the HTTP protocol are scaling equally well as the
TSTP protocol is mapped to the HTTP protocol. Furthermore, if professional storage
software is used, the reading and writing of triples will be as fast as technology al-
lows it to happen today.

5 Related Work

Related work in the space can be distinguished in base technology useful for imple-
menting triple spaces and approaches with the same overall goal. Linda [Gelernter et
al., 1985] is to some extent an early form of triple spaces. Linda follows the idea that
processes can communicate by writing and reading from a shared storage location.
Linda provides such a shared location as well as access operation for writing and
reading data. The data model is tuples. Tuples can be written and read. Tuples do not

have an identifier like a URI, hence access to tuples is based on an associative ap-
proach. In order to access a tuple one or several fields have to be characterized by
predicates and if a tuple can be found that has values matching the predicates, the
tuple is returned.

Linda has a simple model, however, not based on Semantic Web technology. In
addition, it is not based into the Web context, meaning that there is not the equivalent
of the TSTP protocol at all. As a consequence, it is not Internet-scaleable. The con-
cept of virtual triple spaces does not have an equivalent in Linda, either.

Semantic tuple spaces as described in [Khushraj et al., 2004] follow the idea to
marry two technologies: semantic technology and tuple space technology. The ap-
proach is to use non-semantic technology (in this case JavaSpaces9) and require that
one of the fields contains a semantically defined data item using OWL [McGuiness et
al., 2004]. Fundamentally, a non-semantic implementation of tuple spaces was aug-
mented with Semantic Web technology.

Aside from the fact that some additional features are implemented that go beyond
those described here (and hence the proposed system is not minimal), other problems
arise with this approach. No Web-scale access protocol like TSTP is defined and
provided. No discussion takes place regarding the lost update problem. Virtualization
of tuple spaces does not take place, and more fundamentally, the underlying data
model is a mix of non-semantic and semantic technology (compared to clean seman-
tic triples in the proposed minimal architecture). All in all, semantic tuple spaces
point into the right direction, but do not have the potential for an Internet-scale sys-
tem that is fully supporting Semantic Web technology.

RDF databases are on possible storage technology for the triple space architecture.
RDF databases expose the operations necessary in order to retrieve and to store tri-
ples. Compared to the minimal triple space architecture they do not have a Web-wide
access protocol like TSTP and are therefore not Web-wide accessible. Some RDF
databases are Jena10, Kowari11, Redland12, SESAME13, or YARS14. Mainstream data-
bases like Oracle plan to release RDF support very soon15. In addition, RDF databases
do not implement the concept of virtual triple spaces; consequently they do not have
the corresponding management functions. However, they are to be seriously consid-
ered as an implementation technology for the minimal triple space architecture.

In terms of additional features RDF databases might provide part of the required
functionality already, or make it easy to implement the additional features. This has to
be examined in detail when additional features going beyond the minimal architecture
are designed and implemented. Databases that do not support RDF are not discussed
as related work. Certainly it is possible to store RDF triples in a relational database,
however, in this case databases would ‘only’ be an implementation technology.

9 http://www.sun.com/software/jini/specs/js2_0.pdf
10 http://jena.sourceforge.net/index.html
11 http://www.kowari.org/
12 http://librdf.org/
13 http://www.openrdf.org/index.jsp
14 http://sw.deri.org/2004/06/yars/yars.html
15 http://www.w3.org/2005/Talks/0308-semweb-em/?n=18

Persistent queues are an asynchronous communication technology that also, de-
pending on the particular implementation, can be persistent as well as secure. Queues
in general implement FIFO access policies in the sense that one client appends (en-
queues) a message to a queue and other clients dequeue messages from a queue. Ex-
ample queuing systems are discussed in [Gray et al., 1993]. Examples of commercial
implementations are AQ16 and MQ-Series17.

Aside from the particular access behavior, queues do not provide a simple Web ac-
cess protocol like TSTP. In addition, the dequeue operation is destroying in the sense
that if a message is dequeued, it disappears from the queue and cannot be read again.
Also, the concept of a virtual triple space that is different from the triple server im-
plementation does not exist. Like in the case of databases, a queuing system might be
a very good implementation technology.

Interesting enough, FTP has a lightweight protocol for writing and reading files.
The reading of a file is non-destroying, and FTP directories are Web compliant in the
sense that once written they can be read any number of times. FTP is almost imple-
menting a very rudimentary form of triple spaces. However, the storage object of FTP
is files in general. Therefore, a FTP server cannot really check the format of data
written within files. This means that a writer might write triples or anything else it
wants. In addition, FTP does not have the concept of virtual triple spaces. In general,
however, FTP could be an underlying technology instead of database technology. A
lot of functionality would have to be added to it, but it could avoid the use of ‘heavy’
database technology.

6 Summary

The minimal triple space architecture as outlined in this article attempts to provide an
asynchronous communication mechanism for machine-to-machine communication
that supports the four types of autonomy: time, space, reference, and data schema.
This new approach follows the Web-style of publishing information: persistent pub-
lish and read. A writer can persistently publish data and readers can read the data as
often as they want, analogous to web pages. It was shown that it is possible to design
an architecture that allows Internet-scale implementation of this new approach and an
example from the Business-to-Business domain was given that demonstrated the
tremendous benefits.

Acknowledgements

The work is funded by the European Commission under the projects DIP, Knowledge
Web, Ontoweb, SEKT; by Science Foundation Ireland under the DERI-Lion project.

16 http://www.oracle.com/technology/products/aq/index.html
17 http://www.ibm.com/software/integration/wmq/

References

[Berners-Lee et al., 2005] T. Berners-Lee, R. Fielding, L. Masinter: Uniform Resource Identi-
fier (URI): Generic Syntax. RFC 3986, Internet Engineering Task Force (IETF), January
2005

[Boley et al., 2004] H. Boley, M. Dean, B. Grosof, M. Sintek, B. Spencer, S. Tabet, G. Wag-
ner: FOL RuleML: The First-Order Logic Web Language. Version History, 2004-11-02:
Version 0.9, http://www.ruleml.org/fol/

[Bussler, 2003] C. Bussler: B2B Integration. Springer-Verlag, 2003
[Cabrera et al., 2004a] L. Cabrera, G. Copeland, M. Feingold, T. Freund, J. Johnson, C. Kaler,

J. Klein, D. Langworthy, A. Nadalin, D. Orchard, I. Robinson, J. Shewchuk, T. Storey: Web
Services Coordination (WS-Coordination), November 2004.
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf

[Cabrera et al., 2004b] L. Cabrera, G. Copeland, M. Feingold, T. Freund, J. Johnson, C. Kaler,
J. Klein, D. Langworthy, A. Nadalin, D. Orchard, I. Robinson, J. Shewchuk, T. Storey, S.
Thatte: Web Services Atomic Transaction (WS-AtomicTransaction), November 2004 .
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf

[Cabrera et al., 2004c] L. Cabrera, G. Copeland, T. Freund, J. Johnson, J. Klein, D. Langwor-
thy, F. Leymann, D. Orchard, I. Robinson, T. Storey, S. Thatte: Web Services Business Ac-
tivity Framework (WS-BusinessActivity), November 2004.
ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf

[Christensen et al., 2001] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana: Web
Services Description Language (WSDL) 1.1. W3C Note 15 March 2001,
http://www.w3.org/TR/wsdl, March 2001
[Date, 2003] C. Date: An Introduction to Database Systems. Addison Wesley,

2003
[de Bruijn et al., 2005] J. de Bruijn, H. Lausen, R. Kummenacher, A. Polleres, L. Predoiu, M.

Kifer, D. Fensel: D16.1v0.2 The Web Service Modeling Language WSML. WSML Final
Draft 20 March 2005, http://www.wsmo.org/TR/d16/d16.1/v0.2/20050320/

[Fensel, 2004] D. Fensel: Triple-based Computing. DERI Research Report 2004-05-31, May
2004, http://www.deri.org/TR/2004-05-31, May 2004

[Fielding et al., 1999] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, Internet Engineering
Task Force (IETF), June 1999

[Gelerneter et al., 1985] D Gelernter, N. Carriero, S. Chang: Parallel Programming in Linda.
Proceedings of the International Conference on Parallel Processing, 1985

[Gray et al., 1993] J. Gray, A. Reuter: Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Series in Data Management Systems, 1993

[Horrocks et al., 2004] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M.
Dean: SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Mem-
ber Submission 21 May 2004. http://www.w3.org/Submission/2004/SUBM-SWRL-
20040521/

[Khushraj et al., 2004] D. Khushraj, O. Lassila, T. Finin: sTuples: Semantic Tuple Spaces.
Proceedings of the First Annual International Conference on Mobile and Ubiquitous Sys-
tems: Networking and Services (MobiQuitous’04), Boston, MA, USA, August 2004

[Manola et al., 2004] F. Manola, E. Miller (eds.): RDF Primer. W3C Recommendation 10
February 2004. http://www.w3.org/TR/rdf-primer/, February 2004

[McGuiness et al., 2004] D. McGuineess, F. van Harmelen: OWL Web Ontology Language –
Overview. W3C Recommendation 10 February 2004. http://www.w3.org/TR/owl-features/

[Mitra, 2003] N. Mitra (ed.): SOAP Version 1.2 Part 0: Primer. W3C Recommendation 24 June
2003, http://www.w3.org/TR/soap12-part0/, June 2003

[Pemberton et al., 2000] S. Pemberton, D. Austin, J. Axelsson, T. Çelik, D. Dominiak,
H. Elenbaas, B. Epperson, M. Ishikawa, S. Matsui, S. McCarron, A. Navarro, S. Peruvem-
ba, R. Relyea, S. Schnitzenbaumer, P. Stark: XHTML™ 1.0 The Extensible HyperText
Markup Language (Second Edition), A Reformulation of HTML 4 in XML 1.0. W3C Rec-
ommendation 26 January 2000, revised 1 August 2002, http://www.w3.org/TR/xhtml1,
January, 2000

[Rescorla et al., 1999] E. Rescorla, A. Schiffman, The Secure HyperText Transfer Protocol.
RFC 2660, Internet Engineering Task Force (IETF), August 1999

