WSMO Studio — an Integrated Service
Environment for WSMO

Marin Dimitrov, Alex Simov, Vassil Momtchev, Damyan Ognyanov

OntoText Lab. / SIRMA
135 Tsarigradsko Shose Blvd., Sofia 1784, Bulgaria
{firstname.lastname}@ontotext.com

Abstract. The Web Services Modelling Framework (WSMF) and the
Web Services Modelling Ontology (WSMO) provide a unique, highly
innovative perspective onto the Semantic Web and Web Services tech-
nologies. This paper introduces the WSMO Studio — a prototype that
supports and elaborates this innovative perspective, making the technol-
ogy easy to use and transparent for the end user. Our previous work on
SWWS Studio has provided us with important experience and feedback,
which we will reuse in our present work on WSMO Studio in order to
provide a high quality integrated service environment for the Semantic
Web Services domain.

1 Introduction

Robust, mature and easy-to-use tools play crucial role for the easy adoption of
any new technology. In fact the overall value of a technological innovation can
be severely undermined by the lack of proper tools that support it.

The Web Services Modelling Framework (WSMF, [10]) and the Web Ser-
vices Modelling Ontology! (WSMO, [16]) provide a unique, highly innovative
perspective onto the Semantic Web and Web Services technologies. We present
a prototype that supports and elaborates that perspective, making the technol-
ogy easy to use and transparent for the end user. In particular, we present the
WSMO Studio® — an open source Integrated Service Environment (ISE) for the
Semantic Web Services domain, developed within the scope of the EU-funded
DIP project [1].

WSMO Studio is the successor of SWWS Studio [7], which has already been
successfully used within several research projects. Our previous work on SWWS
Studio provided us with important experience about the requirements of the
users in the Semantic Web Services domain. WSMO Studio is an effort to provide
an integrated service environment that better suits the needs of the users and
overcomes the limitations of its predecessor.

This paper is organised as follows: section 2 presents the functional and non-
functional requirements for an Integrated Service Environment for the Semantic

! http://www.wsmo.org
2 http://www.wsmostudio.org

http://www.wsmo.org
http://www.wsmostudio.org

Web Services domain, section 3 presents the goals of the WSMO Studio and
section 4 presents details on the architecture, components and functionality of
the first prototype of the Studio.

2

Requirements

End-user Semantic Web Service tools should assist potential users for ontology
creation, service description, discovery and composition. Based on our previous
experience with building such tools we may outline some specific functional
requirements for such client Graphical User Interface (GUI) tools:

Means for effective interaction with ontologies. The UI should provide func-
tionality for creating, versioning, browsing ontologies (including very large
ontologies).

Means for effective interaction with repositories — publishing and browsing
of ontologies, goal descriptions, service descriptions, mediators, etc.

Means for describing the capabilities of services, formulating goals and spec-
ifying mediators. The User Interface should allow even users with no good
knowledge of logic to generate such descriptions (the tools should provide
the underlying translation between logical formalisms if necessary).
End-user interface for service discovery (e.g. finding services that achieve a
specified goal). Such a GUT will assist the user for discovery of services that
can later be used for manual service composition.

Means for manual service composition and workflow specification.

2.1 Functional requirements

In the context of WSMO, the high-level requirements may be re-formulated and
detailed to cover various aspects of the SWS lifecycle:

Working with ontologies (including creating / modifying ontologies for SWS,
mediation between ontologies, translation between different formalisms, etc.)
Creating SWS descriptions in a WSMO centric way: goals, mediators, web
services

Describing service orchestrations and choreographies [18][17]

Import and export of the SWS descriptions in various formats as specified
in [6] (in the future other formats may emerge as well)

Interaction with SWS repositories (such as [12]) and ontology datastores (for
example Sesame?)

Interaction with SWS runtime environments, such as WSMX [5][21]
Working with existing Web Service standards that may be indirectly relevant
to the semantic description of a service (such as WS-MetadataExchange [3],
WS-Policy [2], UDDI [19] and WSDL [20])

Note that this list presents the major functional requirements at present but

it is far from static - as the Semantic Web Services domain evolves, it is likely
that additional requirements will emerge as well.

3 http://www.openrdf .org/

http://www.openrdf.org/

2.2 Non-functional requirements

The main goal of integrated environments such as WSMO Studio is to make
users more productive*. Tool productivity can usually be increased in two ways:

— by adding more features related to a specific task (e.g. ‘vertical’ extension), for
example better ontology editors, ontology viewers capable of visualising huge
ontologies, service composers supporting more powerful workflow primitives,
etc.

— or, by providing features covering more tasks (e.g. ‘horizontal’ extension),
for example providing functionality for new tasks / perspectives, integration
with already existing tools, etc.

As noted in [15], Integrated Development Environment (IDE) users rarely
focus on only one aspect or task when they work. Indeed users usually play
different roles and perform different related tasks in their everyday work, so
the environment should provide functionality covering various perspectives and
tasks.

In the scope of the Semantic Web Services, there are several roles such as:

ontology engineers performing tasks such as creating / modifying / version-

ing / storing ontologies

— service annotators performing the actual semantic annotation of web ser-
vices, e.g. translating a standard WSDL service, described in terms of ports,
operations, inputs and outputs, into a WSMO service, described in terms
of capabilities, pre/post conditions, assumptions, effects and mediators (all
expressed in terms of the proper logical formalism)

— service users querying for services that can be integrated into their business
process descriptions

— service administrators responsible for managing service repositories, datas-

tores and execution environments

An integrated environment for Semantic Web Services should provide suffi-
cient functionality relevant to each of these perspectives. At the same time the
functionality should be provided an integrated way, since it is unlikely that a
particular user working in the domain of SWS focuses only on a single task, e.g.
the end result should be a cohesive and flexible Integrated Service Environment
(ISE, [4)

Another important non-functional requirement can be identified with respect
to the extensibility of a tool. As stated in [15]:

... open-ended extensibility is essential in the commercial IDE arena be-
cause no IDE vendor could possibly provide a sufficient set of useful tools
to satisfy all customer needs. Which third party tool will be bundled as
an add-in for a particular IDE is determined by market forces.

4 Note that different types of users may have different expectations (both functional
and non-functional) from a tool

This statement, based on commercial IDE experience, can equally well be
applied for ISE tools for the Semantic Web Services domain. Lack of extensibility
is one of the main drawbacks of current SWS tools such as SWWS Studio [7]
and IRS [13] at present.

Based on the above observations, we may define the following non-functional
requirements for an Integrated Service Environment for the SWS domain:

— Role-oriented development — the ISE should allow for the end user to cus-
tomise its functionality in a way that maximises its productivity for a specific
goal. For example, specific functionality may be added (removed) if it is rel-
evant (irrelevant) to a specific user task or perspective. If a sufficient level of
flexibility is provided then the ISE may satisfy the needs of a broader target
audience (from SWS domain experts to more naive users).

— Extensibility — since it is difficult to envision and specify a stable set of
requirements for an emerging domain as SWS, it is crucial that the tools built
for the domain are highly extensible. This way, when the domain evolves in
new directions, the tools will be able to follow this evolution and provide
the relevant functionality for the respective users (the extensions may be
provided not only from the original group or community that build the tool
but also from 3"? party contributors).

— Open standards — It is desirable that tools are designed and built in accor-
dance with open standards and based on open and extensible architecture,
so that the cost of adopting and extending the tools by 3"? parties is low.

— Flexible licensing — an open source licensing of a product improves its adop-
tion rate and increases both its quality and active community base (which
contributes to the product). Nonetheless, important differences exist between
various open source licences in terms of copyright, compatibility with pro-
prietary licences. For an open ISE, which relies on 3"¢ party contributions
and extensions, it is important that the licence does not prevent such con-
tributions.

— Usability — it is desirable that the tools provide the best Ul experience for
the end user. The UI should provide a convenient and easy-to-use abstrac-
tion of the domain being modelled in a way that maximises the end user
productivity.

3 WSMO Studio Goals

The goal of the WSMO Studio effort is to provide a prototype that supports
and elaborates that WSMO perspective onto Semantic Web Services technol-
ogy, making it easy to use and transparent for the end user. In particular, we
will provide an Integrated Service Environment for the Semantic Web Services
domain, that satisfies the requirements outlined in the previous section.

In our opinion it is important that the functionality relevant to the SWS
domain should be presented in a form that maximises its provided value, in other
words both the functional and non-functional requirements should be handled by
tool providers since focusing only on one of the aspects (for example by providing

functionality in a non-extensible, proprietary way) is unlikely to provide the
desired results in the long term.

The functionality of WSMO Studio will be provided by means of:

Design of a framework for an integrated service environment compatible with
the WSMO approach of describing SWS. The architecture will be based on
the Eclipse® architecture [15][14]

Development of a set of components (plug-ins) that add specific functionality
to the service environment

Integration of already existing components into the service environment (for
example existing components for WSDL)

Contributions of plug-ins to the Studio by 3"¢ parties

The outlined non-functional requirements will be taken into consideration

when designing and developing WSMO Studio:

4

Role-oriented development — WSMO Studio is based on the Eclipse plat-
form and its component (plug-in) based model, which is highly flexible and
customisable — plug-ins may be added, removed and customised from the
end user in a declarative manner, without any new development effort. The
same base functionality (e.g. set of plug-ins) may be extensively customised
to cover the perspective of a specific end-user group.

Extensibility — the Eclipse component model presents a declarative specifica-
tion of ways to extend the platform (called extension points). New plug-ins
may extend existing plug-ins and new plug-ins may be seamlessly integrated
into the platform at any time.

Open standards — WSMO Studio will be based on industry proven open stan-
dards and initiatives such as Eclipse, as well as emerging standard proposals
as WSMO.

Flexible licensing — our recommendation is that an open source licence,
specifically LGPL [11], is used for the architecture and the common run-
time and while the plug-in contributors are free to release their contribu-
tions under a licence most suitable for them. According to this scenario, an
end user deployment may be comprised of both open source and proprietary
components (distributed under a licence chosen by the respective author)
Usability — the Eclipse platform has a highly configurable and portable UlI,
which offers a native and high performance user interface for a variety of
window systems for Windows, Linux, OSX and QNX. The Eclipse 3.0 release
has targeted especially responsive and scalable user interface. The Eclipse
platform has defined a set of user interface guidelines that aim at providing
the best GUI experience for the end user [9].

An Eclipse Based Integrated Service Environment

The WSMO Studio architecture is comprised of the following layers:

® http://www.eclipse.org

http://www.eclipse.org

— Common runtime — a layer providing common functionality across all com-
ponents of the WSMO Studio. Such functionality includes: creating WSMO
models, export and import from various formats (as defined in [6]) and ba-
sic serialisation and datastore support. The runtime layer is based on the
wsmo4j library® [8] and its extensions. 3"¢ parties may extend this layer to
provide specific functionality required by some of the Ul components from
the next layers (for example functionality for exporting / importing from a
new format, a new serialisation mechanism or additional datastore support)

— Components (plug-ins) — various UI components for working with ontolo-
gies, WSMO descriptions and goal, service and ontology repositories. The
first version of the prototype will provide three such components (described
below) but 37¢ parties may add new components (for example, a GUI for
WSMO orchestration and choreography descriptions)

— FEaxtensions — various extensions and customisations of existing components
may be provided as well, for example, a new axiom editor that may replace
the default axiom editor part of the ontology component

The first version of the prototype will provide three specific components:

— Ontology editor providing functionality for ontology repository browsing and
ontology editing (creating and modifying descriptions of ontology compo-
nents: concepts, instances, relations and axioms). The ontology editor in
WSMO Studio is not intended to serve as a replacement of full-featured on-
tology editors such as Protégé”. Its purpose is to provide only the minimal
ontology related functionality that is often required when creating WSMO
service descriptions and it may be replaced with a more featured ontology
editor by the respective user.

— WSMO editor providing functionality for creating descriptions of goals, me-
diators and web services in accordance with the Web Services Modelling
Ontology [16]. The main sub-components forming the WSMO editor are: a
mediator editor, a goal editor and a service editor

— Repository browser providing a centralised view of the ontology datastores
and service / goal repositories (that the end-user may use when annotating
services), repository querying (since navigation is not always sufficient for
locating the elements of interest) and import / export of elements into /
from the repository

Each component corresponds to one of the perspectives® defined in WSMO
Studio.

Perspectives are very useful for achieving role-oriented development with the
WSMO Studio by presenting only the functionality specific to a specific task

5 http://wsmo4j.sourceforge.net

" http://protege.stanford.edu/

8 A perspective in Eclipse is a container for logically and functionally related views and
editors. It is recommended that a perspective provides all the functionality related to
a specific task, so that the user won’t have to switch between different perspectives
to accomplish his task / goal

http://wsmo4j.sourceforge.net
http://protege.stanford.edu/

(role) and abstracting from features irrelevant to the user’s goal. Such a role-
oriented customisation of the tool provides maximum usability to the end-user
and lowers the overall tool complexity.

Perspective Target users Functionality
Ontology | Ontology engineers | Create, modify and manage ontologies
WSMO Service annotators Create WSMO descriptions
for existing web services
Repository Service users, Browse, query and manage a repository
service annotators, of services, goals and ontologies

service administrators

Table 1. WSMO Studio perspectives

The perspectives that are defined? at present in WSMO Studio are presented

in Table 1

5

Conclusion

This paper presents a work in progress for an Integrated Service Environment for
the Semantic Web Service domain, called WSMO Studio. A detailed list of the
functional and non-functional requirements for the tool was provided, as well
as the rationale for these requirements. The concrete means to achieve these
requirements were outlined in the scope of the WSMO Studio prototype. Future
work will be focused on extending the functionality of the Studio to cover more
aspects of the Semantic Web Services domain.

References

1.

2.

9 3T‘d

DIP - Data, Information, and Process Integration with Semantic Web Services,
IST project FP6-507483. http://dip.semanticweb.org.

S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker,
M. Hondo, C. Kaler, D. Langworthy, A. Malhotra, A. Nadalin, N. Na-
garatham, M. Notthingham, H. Prafullchandra, C. von Riegen, J. Schlimmer,
C. Sharp, and J. Shewchuk. Web services policy framework, September 2004.
Available at http://msdn.microsoft.com/library /default.asp?url=/library/en-
us/dnglobspec/html/ws-policy.asp.

K. Ballinger, D. Box, F. Curbera, S. Davanum, S. Graham, C. Liu,
F. Leymann, B. Lovering, A. Nadalin, M. Notthingham, D. Orchard,
C. von Riegen, J. Schlimmer, I. Sedukhinand J. Shewchuk, B. Smith,
G. Truty, S. Weerawarana, and P. Yendluri. Web services metadata ex-
change, September 2004. Available at http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-metadataexchange.pdf.

party contributions may define new, contribution specific perspectives as well

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Benfield and P. Fingar. Managing web services. In-
ternet World Magazine, May 2002. Available at
http://www.internetworld.com/magazine.php?inc=050102/05.01.02tech1.html.

E. Cimpian, T. Vitvar, and M. Zaremba. D13.0: Overview and scope
of WSMX. WSMX working draft, DERI, February 2005. Available at
http://www.wsmo.org/TR/d13/d13.0/v0.2/.

J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and
D. Fensel. D16.1: The Web Service Modeling Language WSML. WSML final draft,
DERI, March 2005. Available at http://www.wsmo.org/TR/d16/d16.1/v0.2/.

M. Dimitrov, Z. Marinova, and P. Radkov. SWWS Studio — a WSMO compli-
ant editor. In C. Bussler, D. Fensel, H. Lausen, and E. Oren, editors, WSMO
Implementation Workshop, volume 113 of CEUR, Frankfurt, Germany, September
2004.

M. Dimitrov, D. Ognyanov, and A. Simov. wsmo4j programmers
guide. Technical report, OntoText Lab., November 2004. Available at
http://wsmodj.sourceforge.net.

N. Edgar, K. Haaland, J. Li, and K. Peter. Eclipse user interface guide-
lines, February 2004. Available at http://www.eclipse.org/articles/Article-Ul-
Guidelines/Contents.html.

D. Fensel, C. Bussler, Y. Ding, and B. Omelayenko. The Web Service Modeling
Framework (WSMF). Electronic Commerce Research and Applications, 1(2), 2002.
Free Software Foundation. GNU Lesser General Public License, version 2.1, Feb-
ruary 1999. Available at http://www.opensource.org/licenses/lgpl-license.php.

R. Herzog, H. Lausen, D. Roman, M. Stollberg, and P. Zugmann. DI10:
WSMO registry. WSMO working draft, DERI, April 2004. Available at
http://www.wsmo.org,/2004/d10/v0.1/.

E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A framework and
infrastructure for semantic web services. In The Semantic Web, volume 2870 of
LNCS. Springer-Verlag, 2003.

Object Technology International Inc. Eclipse platform technical overview, 2003.
Available at http://www.eclipse.org.

J. Des Rivieres and J. Wiegand. Eclipse: A platform for integrating development
tools. IBM Systems Journal, 43(2), 2004.

D. Roman, H. Lausen, U. Keller, J. de Bruijn, C. Bussler, J. Domingue, D. Fensel,
M. Kifer, J. Kopecky, R. Lara, E. Oren, A. Polleres, and M. Stollberg. Web Service
Modeling Ontology, v1.2. WSMO working draft, DERI, February 2005. Available
at http://www.wsmo.org/TR/d2/v1.2/.

D. Roman and J. Scicluna. D15: Orchestration in WSMO. WSMO working draft,
DERI, January 2005. Available at http://www.wsmo.org/2005/d15/v0.1/.

D. Roman, J. Scicluna, C. Feier, M. Stollberg, and D. Fensel. D14: Ontology-based
choreography and orchestration of WSMO services. WSMO working draft, DERI,
March 2005. Available at http://www.wsmo.org/TR/d14/v0.2/.

UDDI. UDDI version 3.0. Technical report, UDDI Working Group, July 2004.
Available at http://www.uddi.org.

W3C. Web services description language (WSDL) version 2.0, part 1:
Core language. W3C working draft, W3C, March 2004. Available at
http://www.w3.org/ TR /wsdl20.

M. Zaremba and M. Moran. D13.4: WSMX architecture. WSMX working draft,
DERI, April 2005. Available at http://www.wsmo.org/2005/d13/d13.4/v0.2/.

	WSMO Studio -- an Integrated Service Environment for WSMO
	Marin Dimitrov, Alex Simov, Vassil Momtchev, Damyan Ognyanov

