
Efficient Model Querying with VMQL

Vlad Acretoaie and Harald Störrle

Department of Applied Mathematics and Computer Science,
Technical University of Denmark

rvac@dtu.dk, hsto@dtu.dk

Abstract. Context: Despite model querying being an important prac-
tical problem, existing solutions lack either usability, expressiveness, or
generality. The Visual Model Query Language (VMQL) is a query by-
example solution created to satisfy these requirements simultaneously.
Objective: In the present paper we study whether VMQL queries can
be executed in an efficient way, such that VMQL is suitable for ad-hoc
model querying in practical settings involving large models.
Method: We study VMQL query execution performance on sets of models
ranging over a broad spectrum of sizes and degrees of complexity. The
models are based on large and realistic case studies.
Results: We observe that our approach exhibits competitive performance,
while providing superior usability and generality.

1 Introduction

Interactive model querying is an important task in most modeling scenarios.
However, manually browsing the model for query purposes is only practical for
trivially small models. Consequently, several model querying approaches have
been proposed.

Query By Full-Text Search is very easy to use. All major modeling tools
support this feature, with varying degrees of refinement (e. g., wildcards, regular
expressions, filters, logical connectors). However, it offers only limited expres-
siveness, and often yields a large number of false positive results. Furthermore,
it cannot be used to search for structural or meta-level information in a model.

Query By Navigation provides search results by traversing a model via
links between model elements. This includes APIs for programming queries ex-
plicitly, and executing queries expressed in the Object Constraint Language
(OCL [9]) or a similar formalism. Navigational approaches expose the meta-
level structure of models to users, which both accounts for their versatility and
the high demands on the expertise of the user formulating queries.

Query By-Example allows expressing queries as small, possibly annotated,
model fragments that are matched against a source model. Wherever a sufficient
degree of similarity is found, a binding between the two models can be estab-
lished, which corresponds to one query result. One of the exponents of this
approach is the Visual Model Query Language (VMQL [13]).

In previous work we have shown that VMQL queries are easier to understand
and formulate than their OCL counterparts, even when OCL is enhanced with

a query API partially hiding meta-model complexity [13]. However, VMQL has
so far not been demonstrated to be Turing-complete, so it is less expressive than
OCL in a theoretical sense. Originally defined for UML, VMQL has since been
extended to also allow querying BPMN [10] models, as detailed in [14]. Beyond
queries, VMQL can also be used to specify model constraints [12].

VMQL addresses the ad-hoc querying application scenario, where a user (of-
ten a domain expert) explores a model interactively. Ad-hoc model querying
depends on (a) an expressive query language of high usability, and (b) query
processing that is fast enough to satisfy an interactive operation.

However, query by-example approaches generally do not scale well, since both
source and query models are treated as graphs. Executing a query amounts to
mapping the query model graph Q to the source model graph S, and returning
bindings b : Q → S between the elements of the query and source models. A
valid binding must bind all query elements, i. e., every b is total, so there are up

to B = |S||Q|
bindings. Enumerating all the bindings is only an option for small

values of S and Q. In the case of ad-hoc queries, |Q| << |S| and |Q| is not very
large (typically in the range 5..20 model elements). S, on the other hand, can
be very large: models with |S| ≈ 103...105 elements are common. Thus, a naive
approach cannot deliver the performance required for ad-hoc querying.

The remainder of this paper is structured as follows. Section 2 briefly presents
VMQL, Section 3 describes the algorithms underlying the execution of VMQL
queries and provides implementation details, Section 4 presents an evaluation
of VMQL query execution performance, Section 5 highlights related work, and
Section 6 concludes the paper and outlines future work.

2 Presenting VMQL By-Example

Our running example represents a process model for handling insurance ben-
efit claims. The source model is the UML Activity Diagram “Coverage Quote
Processing” in Figure 1, while the query model is the UML Activity Diagram
“Query A” in the same figure. The red dashed lines highlight a valid binding. In
this case, this is the only binding. Since “Query A” does not use any annotations
or variables, it is a base query. Additional queries are shown in Figure 2.

Query B introduces VMQL variables: strings starting with the $ character
which typically store the value of a source model meta-attribute. The query finds
all Actions which can raise an exception to be handled by the “manual coverage
quote processing” Action. It returns two bindings, with the $FailingAction

variable instantiated to the names of the matching Actions: “compute quotable
coverage offering” and “verify customer account”, respectively.

Query C introduces VMQL constraints represented as Comments stereotyped
by <<vmql>>. The steps constraint indicates that matches may include paths
of indefinite length containing only Flows of the same type as the Flow to which
the constraint is anchored. The name constraint implies a particular name for a
model element (in this case, any string starting with “check”). Thus, the query

Query:AD Query A

AD Coverage Quote Processing

set up standard
letter No 42

manual coverage
quote processing

send plan coverage
quote to customer

manual coverage
quote processing

receive plan coverage
quote request

verify
customer account

check
general coverage

check
coverage limit

compute quotable
coverage offering

notify local
claims manager

[error]

[error]

check
general coverage

check
coverage limit

Binding

Fig. 1. Answering a query amounts to finding valid mappings from query model ele-
ments (left) to source model elements (right).

Action is bound to the source model Actions “check general coverage” and
“check coverage limit”, respectively.

Query D is a more general version of Query A, using wildcards. Executing
query D will result in the same binding as Query A. Queries A through D only
illustrate the most basic constructs of VMQL; a complete list is available in [13].

3 Algorithms and Implementation

VMQL queries are executed by computing a set B = {b1, b2, ..., bn} of bindings
between the elements of a query model and those of a source model. A binding
bi = {(q id1, s id1), (q id2, s id2), ..., (q idm, s idm)} is a set of m pairs, each
consisting of the ID of a query model element and that of the matching source
model element, where m is the number of elements of the query model.

Query model matching is performed in two stages. First, source model ele-
ments that do not match any query model element are quickly discarded. This

Query Bactivity

$FailingAction

manual coverage
quote processing

 [error]

Query Aactivity

check coverage
limit

check general
coverage

Query Cactivity

«vmql»
name=check*

«vmql»
steps=*

«vmql»
steps=*

compute *

check *

activity Query D

Fig. 2. Some sample VMQL queries: a base query, a query including a variable, a query
including a wildcard expression, and a query including paths of undefined length and
a wildcard expression (clockwise from top left)

is achieved by only considering element types and meta-attributes with fixed
values, while ignoring meta-attributes that represent references to neighbouring
model elements.

In the second stage, Algorithm 1 also takes into account references between
query model elements. It terminates upon the convergence of two binding lists:
old bindings and new bindings. At each iteration, a new version of the bindings is
computed by considering each query/source model element pair and verifying its
consistency with the rest of the bindings through the VERIFY LINKS function,
which checks if model element references in the query model are reflected by the
source model. Additional functions are required for applying VMQL constraints
to the results of Algorithm 1. Since constraints are applied locally to binding
elements, their processing time is linear in the size of the query model.

VMQL is implemented by the MQ-2 tool [1], a plug-in for the MagicDraw
modeling environment [8]. MQ-2 may be downloaded1 or tested online through
SHARE [15]. The query execution engine is implemented in SWI-Prolog [17].
Models are stored as Prolog hash maps of model elements, so loading a model
amounts to consulting a Prolog knowledge base. Each model element takes the
form me(type-id, [tag-value, ...]), where type is a model element’s meta-
class, id is an arbitrary unique identifier, tag is an atom representing one of the
element’s properties, and value is the respective value for this property.

1 http://www2.compute.dtu.dk/~hsto/tools/tools.html

Algorithm 1 REFINE BINDINGS

1: Inputs:
2: bindings - a list of bindings
3: Outputs:
4: r bindings - a refined list of bindings
5: begin
6: old bindings← bindings
7: new bindings← bindings
8: repeat
9: old bindings← new bindings

10: new bindings← ∅
11: for all (q id, s ids) ∈ old bindings do
12: new s ids← ∅
13: for all s id ∈ s ids do
14: if VERIFY LINKS(old bindings, q id, s id) then
15: new s ids← new s ids ∪ {s id}
16: end if
17: end for
18: new bindings← new bindings ∪ {(q id, new s ids)}
19: end for
20: until old bindings = new bindings
21: return new bindings
22: end

4 Evaluation

4.1 Methods and Materials

To evaluate the performance of our approach, we investigate different sizes of
source and query models, where model size is measured as the number of ele-
ments included in a model. The model samples originate in students’ course work
in graduate and undergraduate courses at the authors’ host institution. They
consist of UML Activity Diagrams representing analysis-level process models
created by teams of 4–6 people over several months. We split the models into
three batches, each consisting of 7 source models, 14 successful query models
(i.e. queries producing bindings), and 14 unsuccessful query models (i.e. queries
not producing bindings). Source model sizes range between 50 and 1000 model
elements, while query sizes range between 1 and 50 elements. Each query exe-
cution is replicated 20 times in the interest of accuracy. All queries and their
observed execution times are available online2. The experiments are executed on
a Windows 7 Enterprise machine with 8 GB DDR3 memory and an Intel Core
i7-3630QM CPU. The 64-bit version of SWI-Prolog 6.6.1 is used, with the limits
of the local, global, and trail stacks set to their default values of 256 MB each.

2 http://www.compute.dtu.dk/~rvac/experiments/vmql_performance

Table 1. Execution times of successful queries measured in milliseconds; model size is
measured as the number of contained model elements.

Src. Query size (no. of model elements)

size 1 2 3 4 5 6 7 8 9 10 20 30 40 50

50 .3 .9 1.4 1.5 2.2 2.7 3.5 4.3 5.4 5.1 16.9 33.1 59.3 104.2

100 .3 .7 2.0 2.3 3.0 3.8 5.1 6.5 8.0 7.9 29.3 47.8 82.4 159.1

250 .3 1.6 5.3 5.9 10.4 8.9 13.1 17.6 28.9 23.8 86.3 129.0 197.6 320.6

500 .6 3.0 15.4 13.2 16.1 19.0 30.9 48.8 57.9 67.3 231.9 336.3 500.8 736.1

750 .9 5.2 21.9 24.1 28.8 33.8 63.8 82.2 117.0 130.3 464.2 670.0 999.2 1389.4

1000 1.2 8.0 34.1 37.3 44.1 51.4 91.1 135.6 182.6 227.6 756.6 1074.3 1644.3 2246.8

Table 2. The influence of VMQL constraints on query execution time; model size is
measured as the number of contained model elements.

Query Query size Query contents Execution time (ms)

A 4 base query 2.4

B 7 VMQL variable 6.5

C 6 path constraint, wildcard 21.4

D 4 wildcard 2.0

4.2 Observations

Execution times for all combinations of source and successful query models are
listed in Table 1. As Figures 3a and 3b show, increasing either the source or the
query model size yields longer execution times. In both cases, it appears that
execution time increases at a low polynomial rate. The highest observed times
are approximately 2s, while the execution times for most realistic ad-hoc queries
(i.e. those with less than 20 elements) are below 1s even for large source models.
For source models with less than 250 elements, query execution is instantaneous
from a user’s perspective.

Unsuccessful queries are executed faster than successful ones (see Figure 4).
Also, the execution time of unsuccessful queries is less dependant on source
model size. This is due to the “fail early” approach of our algorithms: easily
verifiable properties are considered first in order to prune the search space.

Table 2 shows the observations for executing the more complex queries in-
troduced in Section 2. The base query (Query A) and the query containing a
wildcard constraint (Query D) have the lowest execution times. Query B has a
slightly higher execution time, likely due to the extra variable instantiation step.
As expected, the path constraint in Query C makes it the most time consuming
in our sample. Paths of indefinite length require computing transitive closures,
which is problematic for most model querying approaches (see [2, 18]).

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

Ti
m

e
 (

m
s)

Source size (model elements)

Query size = 5

Query size = 10

Query size = 20

Query size = 30

Query size = 40

Query size = 50

(a) Execution times by source size for various query sizes

0

500

1000

1500

2000

2500

0 10 20 30 40 50

Ti
m

e
 (

m
s)

Query size (model elements)

Source size = 750

Source size = 50

Source size = 100

Source size = 250

Source size = 500

Source size = 1000

(b) Execution times by query size for various source sizes

Fig. 3. The influence of source and query size on query execution time

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000

Ti
m

e
 (

m
s)

Source size (model elements)

Successful queries

Unsuccessful queries

Fig. 4. Execution times for successful and unsuccessful queries

Table 3. Query execution times reported in the literature for various model querying
approaches; model size is measured as the number of contained model elements.

Approach Applicability Source size Query size Time (ms)

VMQL (this) Model querying 50..1000 1..50 0.3..2,247

EMF-IncQuery [5] Model querying 6× 105 ∼ 15 20..30

BP-QL [4] Model querying ∼ 30 ∼ 10 2,000..4,000

IncQuery-D [6] Repository querying 105..5× 107 8 10..40

Hawk [3] Repository querying 7× 104..5× 106 - 172..15× 103

MorsaQL [11] Repository querying 7× 104..5× 106 - 13..180

BPMN-Q [2] Repository querying 42418 3..13 190..284,000

FNet [18] Repository querying 12300+ 2..55 10..920

YNet [7] Repository querying 15× 106 5..202 30..80

4.3 Threats to Validity

The largest threat to validity of our evaluation is the nature of the models it
is based on: they originate in academical course work. However, the models are
realistic in the sense that their structure, size, and complexity resemble those of
models that we have encountered in industry. The same caveat applies to the
queries, as we cannot assert that the sample used is representative of practical
applications. Furthermore, there is no research on what realistic queries are. We
attempt to mitigate this threat by considering a variety of query sizes and types.

4.4 Comparison and Discussion

Models an order of magnitude larger than the ones we have considered are not
uncommon in practice. Based on Figure 3b, we estimate that a VMQL query
consisting of 20 model elements will be executed on a model containing 104

elements in ∼ 10 seconds. Similarly, based on Figure 3b, we deduce that queries
containing more than 50 elements lead to execution times in the order of seconds
on moderately large models. Therefore, scenarios such as large-scale online model
differencing for model version control are outside the scope of our solution.

Table 3 summarizes performance experiments reported for model and pro-
cess querying approaches. The performance of VMQL is comparable to existing
ad-hoc model querying solutions, but is surpassed by model repository querying
approaches which employ offline element indexing, a process requiring up to sev-
eral hours to complete [7]. However, Table 3 cannot form the basis of an accurate
comparison, since the experiments were performed under different conditions.

As mentioned in Section 1, query by-example solutions are more difficult
to scale than navigational approaches (e. g. OCL) due to the large number of
source model elements to be considered at the start of the matching process.
To address this issue, the VMQL matching algorithm prunes the search space

based on element types and fixed-valued meta-attributes. Local-search based
graph pattern matching improves this heuristic by taking into account common
structures identified in a set of typical models or in the source model itself [16].

Due to the generality of the matching algorithm, the performance figures
reported for VMQL are independent of modeling language and diagram type.

5 Related Work

Model querying is an important topic in Model-Based Software Engineering
(MBSE), both in itself and as a part of other operations (e. g. model transfor-
mation). In this area, the topic of fast ad-hoc querying has been addressed by
EMF-IncQuery [5], an approach based on incremental graph pattern matching.

In Business Process Modeling (BPM), model querying plays several roles,
including compliance verification and process template discovery. BP-QL [4] is a
matching-based business process model querying language. Execution times for
BP-QL queries are in the order of seconds, increasing polynomially with source
model size and exponentially with query model size.

The related problem of efficiently querying model repositories has been ad-
dressed by both the MBSE and BPM communities. Approaches originating in
MBSE (IncQuery-D [6], Hawk [3], and MorsaQL [11]) derive their performance
from offline indexing and the adoption of efficient storage layers such as dedicated
graph databases. Meanwhile, BPM-based solutions (BPMN-Q [2], FNet [18], and
YNet [7]) place a higher emphasis on algorithmic efficiency, while also taking ad-
vantage of offline indexing techniques. In all cases, the indexing process is time
consuming, reported at 405 seconds for the SAP R/3 Reference Model in the case
of BPMN-Q, and at 25 hours for a repository containing 6× 105 models in the
case of YNet. This aspect implies that solutions relying on model pre-processing
may not be suitable for the task of ad-hoc querying.

6 Conclusions

In this paper we have shown that the performance of VMQL is adequate for
the task of interactive, ad-hoc model querying. On the other hand, VMQL is
outperformed by approaches designed for model repository querying. However,
such approaches require substantial model pre-processing, which makes them
less suitable for the ad-hoc model querying scenario addressed by VMQL.

We have previously shown that, compared to other model query languages,
VMQL offers superior usability and generality [13, 12], and supports a broad
application scope [14]. The present performance evaluation adds to the body of
evidence placing VMQL as a competitive model query language.

As future work, we intend to study the scalability of our implementation
to ultra-large sized models, as well as the impact of VMQL annotations on
performance. We also plan to extend our approach to address model warehouse
querying. This will likely demand a redesign of the matching algorithm to take
advantage of caching techniques and other types of pre-processing.

References

1. Vlad Acretoaie and Harald Störrle. MQ-2: A Tool for Prolog-based Model Query-
ing. In Proc. co-located Events 8th Eur. Conf. on Modelling Foundations and
Applications (ECMFA’12), pages 328–331.

2. Ahmed Awad and Sharif Sakr. On efficient processing of BPMN-Q queries. Comp.
Ind., 63(9):867–881, 2012.

3. Konstantinos Barmpis and Dimitris S. Kolovos. Towards Scalable Querying of
Large-Scale Models. In Proc. 10th Eur. Conf. on Modelling Foundations and Ap-
plications (ECMFA’14), volume 8569 of LNCS, pages 35–50. Springer, 2014.

4. Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. Querying business
processes with BP-QL. Inf. Syst., 33(6):477–507, September 2008.

5. Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh,
Zoltán Balogh, and András Ökrös. Incremental Evaluation of Model Queries over
EMF Models. In Proc. 13th Intl. Conf. Model-Driven Engineering Languages and
Systems (MODELS’10), volume 6394 of LNCS, pages 76–90. Springer, 2010.

6. Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. IncQuery-D: In-
cremental Graph Search in the Cloud. In Proc. Ws. Scalability in Model Driven
Engineering (BigMDE’13), pages 4:1–4:4, New York, NY, USA, 2013. ACM.

7. Tao Jin, Jianmin Wang, Marcello La Rosa, Arthur ter Hofstede, and Lijie Wen.
Efficient querying of large process model repositories. Comp. Ind., 64(1):41–49,
2013.

8. NoMagic INC. MagicDraw UML 17.0.3, 2014. http://www.nomagic.com/

products/magicdraw.
9. Object Management Group (OMG). Object Constraint Language (OCL), Version

2.3.1, 2012.
10. Object Management Group (OMG). Business Process Model and Notation

(BPMN), Version 2.0.2, 2013.
11. Javier Espinazo Pagán and Jesús Garćıa Molina. Querying large models efficiently.

Inf. Softw. Tech., 56(6):586–622, 2014.
12. Harald Störrle. Expressing Model Constraints Visually with VMQL. In Proc.

IEEE Symp. Visual Languages and Human-Centric Computing (VL/HCC’11),
pages 195–202. IEEE Computer Society, 2011.

13. Harald Störrle. VMQL: A Visual Language for Ad-hoc Model Querying. J. Visual
Languages and Computing, 22(1), February 2011.

14. Harald Störrle and Vlad Acretoaie. Querying Business Process Models with
VMQL. In Proc. 5th ACM SIGCHI Ann. Intl. Ws. Behaviour Modelling – Foun-
dations and Applications (BMFA’13). ACM, 2013.

15. Pieter Van Gorp and Steffen Mazanek. SHARE: a web portal for creating and
sharing executable research papers. Procedia Comp. Sci., 4:589–597, 2011.

16. Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr. An algo-
rithm for generating model-sensitive search plans for pattern matching on EMF
models. Softw. Syst. Model., pages 1–25, 2013.

17. Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog.
Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.

18. Zhiqiang Yan, Remco Dijkman, and Paul Grefen. FNet: An Index for Advanced
Business Process Querying. In Proc. 10th Intl. Conf. Business Process Management
(BPM’12), volume 7481 of LNCS, pages 246–261. Springer Verlag, 2012.

