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Abstract. Runtime representations of requirements have recently gained
interested to deal with uncertainty in the environment and the term re-
quirements at runtime has been established. Runtime representations of
requirements support reasoning about the requirements at runtime and
adapting the configuration of a system according to changes in the envi-
ronment. Such systems often called self-adaptive systems. Core part of
respective approaches in the field is a requirements monitor. That is, an
instance which is able to observe the system’s environment and to decide
whether a requirement is broken, based on assertions.
The problem addressed in this paper is how to generate the application-
specific parts of a requirements monitor. Such a monitor consists of some
goal model for decisions at runtime, assertions connected to the goal
model, and parameters on which assertions are defined. We present in
this paper a model-driven approach to enhance requirements documents
by goal models, assertions, and parameters in a way which is (1) under-
standable to requirements engineers and (2) a su�cient basis for generat-
ing the requirements monitor. The contribution is an integrated view on
requirements for self-adaptive systems and a concept for code generation.

Keywords: Self-adaptive systems, requirements at runtime, require-
ments monitor

1 Introduction

Today’s software-intensive systems are faced with anticipated and unanticipated
variations in their operating context. Runtime representations of requirements
have recently gained interested to deal with changing end-user requirements,
operating context conditions, and resource availability [11].

Reasoning in the presence of uncertainty is a classic field of Artificial Intel-
ligence (AI) research and some RE approaches make use of AI techniques for
instance of Fuzzy logic [16]. Yet, the majority of RE approaches seek to extended
established RE techniques (e.g., KAOS) to provide a system with a representa-
tion of its own requirements [17].
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To our experience, the term adaptivity in relation to requirements needs
explanation. First, the development time and runtime view of adaptivity should
be separated. Considering runtime first, a system typically fulfills a set of goals.
These goals are related to functions of the system. One approach to adaptivity is
to enable a system to learn new functions from analyzing its usage, for instance
by employing machine learning techniques [7], [13].

Another approach is to see changes in the requirements, context, and re-
sources as forming a new problem to be solved [11] with a given solution. Fol-
lowing this idea, the relation between goal and function is augmented by an
assertion. Such an assertion describes a Boolean condition that evaluates to
true if a function fulfills a goal. For example, a sensor needs to deliver valid
values. If an assertion breaks, the function has to be adapted, e.g., by changing
parameters or switching to a di↵erent function. Thus, we view adaptation as
monitoring assertions and selecting the best possible modification of functions
under a given set of assertions each evaluating to true or false. The notion of a
best possible modification has to be defined by a requirements engineer a priori.

Requirements monitoring has been researched for while. Core part of the
approaches is a requirements monitor, which observes the environment, decides
whether a requirement is broken, and computes a new system configuration
based on runtime requirements (see Section 5).

Problem. We propose in this paper an approach for generating a requirements
monitor, because a monitor contains application-specific parts that must be im-
plemented for each new system, e.g. assertions. Thus, such a generator eases the
development of self-adaptive systems.

As Figure 1 shows, in our approach a requirements monitor consists of a
rule engine, which observes a set of assertions, and an impact analyzer, which
analyzes the e↵ect of a broken rule with the help of the runtime requirements
(e.g., goal model). Finally, the requirements monitor releases a new configuration
of the system with fits best to the changed situation. Probes are added to the
application to monitor variables, which are of interest to the assertions. We add
a goal model, assertions, and variables to the development time representation,
in order to be able to generate a runtime requirements monitor.

Probes, assertions, and the goal model in the runtime representation are spe-
cific to the respective application and thus must be produced by the generator.
The application itself results from typical software development activities and
is, thus not subject of this work.

Contribution. First, we propose a metamodel which defines the additional
requirements artifacts which allow to generate a requirements monitor. Second,
we outline a generator for a requirements monitor. The benefit is an integrated
view of the di↵erent views on the requirements for self-adaptive systems and a
significant decrease of e↵ort in building an adaptive system.

Structure. The remainder of this paper is organized as follows. Section 2
outlines the background of our research. Section 3 discusses the metamodel and
Section 4 describes the generator. Section 5 reviews the related work. Section 6
concludes with a summary and an overview on our future work.
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Fig. 1. Generation of a Requirements Monitor based on Development Time Artifacts

2 Background

The focus of our work is in particular on embedded systems, which impose heavy
constraints on software. As these systems are mass-produced, the capabilities of
the hardware are optimized to the purpose of the respective system. That is,
the power of the CPU and the memory size are limited. Constraints on energy
consumption prohibit more powerful hardware, since many embedded systems
run on batteries.

2.1 Self-adaptive Systems

Many embedded systems act autonomously, that is they make decisions without
the confirmation of a human operator. The software cannot be easily maintained
or tuned to changing conditions manually. Therefore, there is a need for adaptiv-
ity. However, adaptivity conflicts with other design goals such real-time behavior,
safety considerations, and the resource constraints mentioned above.

A self-adaptive system has the ability to dynamically and autonomously re-
configure its behavior in order to respond to changing environmental conditions
[2]. We consider a self-adaptive system as consisting of two parts: the applica-
tion and a requirements monitor (see Figure 1). Between the application and the
monitor a feedback loop is established. The feedback loop consists of the steps
collect, analyze, decide, and act, as described by Cheng et al. [3]. The applica-
tion implements the development time requirements. The requirements monitor
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contains a requirements model, which is a machine-processable representation
of the system’s requirements. The requirements model is the basis for comput-
ing new configurations at runtime in case of environmental changes. Often, a
goal-oriented model is used for this purpose (see Related Work in Section 5).

2.2 DOREF

For the development time representation, a semi-formal requirements language
is required for the generator in order to parse the requirements. DOREF (“do
requirements first”) is an education and research framework for requirements
engineering [8], it o↵ers such a domain-specific language (DSL) for requirements
and modeling. Pretty-printed requirements documents (HTML, PDF) can be
generated and parts of the language can be executed for analysis purposes. The
idea of DOREF is to let requirements engineers focus at the content and the
semantics of requirements documents rather than layout.

Fig. 2. DOREF metamodel

159



The language is

– comprehensive - it addresses products and processes in RE
– method-agnostic - it does not infer a particular RE approach
– extensible by modules - using modules, the framework can be tailored to a

particular RE approach (e.g., i*).

All concepts of the language are organized in a single tree. Figure 2 shows
the general structure of the tree. The root node is called World, it is a system,
which composed of subsystems. A System is related to a project and a Project
results in a set of documents from a product perspective. A Document contains
TextualElements like requirements and Models. Activities are used to describe
the RE process.

We extend DOREF to cover variables, optional requirements, and i* goal
models [18] in order to generate a requirements monitor. These extensions are
discussed below. As a running example throughout the paper, we use a vacuum
cleaner case study that was originally introduced in [2] and [1].

3 Metamodel

In this section we describe the metamodel of our approach, which is a refinement
of the development time artifacts shown in Figure 1. The metamodel (cf. Figure
3), shows on the upper side the textual requirements of DOREF, on the lower
side a subset of concepts of an i* goal model, and how assertions are connected
to the i* model and the textual requirements.

Fig. 3. Metamodel for Development Time Requirements
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The goal is to generate the requirements monitor shown in Figure 1. It con-
sists of two components: (1) a rule engine and (2) an impact analyzer. In the
following, we explain briefly the interaction of the components (for details see
[6]).

The rule engine monitors assertions. Assertions are Boolean conditions de-
scribing assumptions about the environment, which usually should be fulfilled.
If an assertion fails, a requirement may be violated and the impact analyzer is
invoked. The impact analyzer assesses which parts of the goal model are a↵ected
and whether a change in the model is really necessary. If a change is necessary, a
new configuration is computed and the system switches to that new configuration
eventually.

In the following subsections we describe the parts of the metamodel and their
role in generating a requirements monitor.

3.1 Semi-formal Textual Requirements

As mentioned before, the textual requirements are written in DOREF (see Sec-
tion 2.2), Listing 1.1 shows an example. Figure 4 shows the generated PDF
requirements document. We extended the requirement with an optional prop-
erty, which indicates whether a function that is related to a requirement is active
under consideration of the environment and the current configuration of the sys-
tem. The requirements Clean at night (SRS-29) and Clean when empty (SRS-30)
have an optional property. The function associated to Clean at night (SRS-29)
is not activated in the current configuration.

Listing 1.1. Textual Requirements with DOREF

1 Req("Clean at night",
2 "The robot shall clean the apartment at night.",
3 {’Optional’: "False",
4 ’Conflict’: ["/*/Clean when empty"]})
5 Req("Clean when empty",
6 "The robot shall clean the apartment when nobody is inside",
7 {’Optional’: "True",
8 ’Conflict’: ["/*/Clean at night"]})
9 Req("Power",

10 "The suction power must not exceed ${suction_power}.",
11 {’Priority’: 1,
12 ’ConceptRefs’: ["/*/Concept/*/Suction Power"]})
13 Req("Silence",
14 "The operation of the vacuum cleaner should be as silent as

possible.",
15 {’Priority’: 2})

Textual requirements are semi-formalized by means of parameters, input and
output variables. These variables are marked with the annotation ${name} (see
Listing 1.1 line 10) in the textual requirements. Every variable has an unique ID,
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Fig. 4. Textual Requirements with DOREF

a type and a default value. The requirement Power (SRS-31) has a parameter
maxSuction.

An Input variable describes an environmental quantity, which is monitored
by the system. An Output variable describes an environmental quantity, which is
controlled by the system. A Parameter is used to tune a function, e.g., to adapt
a particular threshold.

The information for the parameters and variables are identified during re-
quirements elicitation with stakeholders, they result from variable characteristics
in the domain of the system. One simple example in the automotive domain is a
windshield wiper. It has parameters for calibrating a rain sensor and the speed
of the wiper.

On the upper side of Figure 3 the Requirements class is shown. Figure 4 shows
that it contains a unique ID, a Name and a short Summary. A requirement can
have di↵erent Properties. For example Type, E↵ort or a reference like Concep-
tRefs (see Listing 1.1 line 12). For the requirements monitor we add an Optional
property. The property indicates if the function associated to the requirement is
active or not.

3.2 Goal Model

We use the goal-orientated modeling language i* [18] to model the requirements
at runtime and to calculate a new configuration for a system.
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A simple implementation of i* is provided by the openOME1 tool. We use its
meta model, which is defined based on the Eclipse Modeling Framework2 (EMF).
For a better view on our metamodel (see Figure 3) we only show those parts of
this model, which are related to the extension, but not the full i* metamodel.

The relevant parts are the Intention/ i*-Elements, the Softgoal and the Con-
tributionLink. Every Intention (Goal, Task, Resource and Softgoal) can be re-
lated to a requirement. This relationship is build over References in the proper-
ties, for example RelatedTo in Listing 1.2 line 8.

Fig. 5. i* model of the vacuum cleaner

Figure 5 shows an i* model of the previously mentioned vacuum cleaner case
study. Listing 1.2 is a textual representation of this i* model using DOREF. The
task Clean at night is related to the requirement Clean at night, see line 8.

1 https://se.cs.toronto.edu/trac/ome/
2 http://www.eclipse.org/modeling/emf/
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Listing 1.2. i* model of the vacuum cleaner in DOREF

1 Actor("vacuum cleaner")
2 cd("./-")
3 Goal("Clean Apartment",
4 {’Description’: "The apartment should be cleaned by the robot.",
5 ’Priority’: 1,})
6 Goal("Comfortable living atmosphere",
7 {’Priority’: 2})
8 Task("Clean at night", {"RelatedTo": "/*/Customer Requirements/*/

Clean at night"})
9

10 Task("Clean when empty", {"RelatedTo": "/*/Customer Requirements
/*/Clean when empty"})

11 SoftGoal("Avoid tripping hazard")
12 SoftGoal("Minimize energy cost")
13 SoftGoal("Minimize noise level")
14

15 MeanEndLink(node("/*/vacuum cleaner/*/Clean at night"),
16 node("/*/vacuum cleaner/*/Clean Apartment"))
17 MeanEndLink(node("/*/vacuum cleaner/*/Clean when empty"),
18 node("/*/vacuum cleaner/*/Clean Apartment"))
19 MeanEndLink(node("/*/vacuum cleaner/*/Clean when empty"),
20 node("/*/vacuum cleaner/*/Comfortable living atmosphere"))
21

22 ContributionLink(node("/*/vacuum cleaner/*/Clean at night"),
23 node("/*/vacuum cleaner/*/Avoid tripping hazard"), "HELP")
24 ContributionLink(node("/*/vacuum cleaner/*/Clean at night"),
25 node("/*/vacuum cleaner/*/Minimize energy cost"), "HURT")
26 ContributionLink(node("/*/vacuum cleaner/*/Clean at night"),
27 node("/*/vacuum cleaner/*/Minimize noise level"), "HELP")
28 ...

For the following subsection discuss how an assertion is connected to a Soft-
goal or a ContributionLink.

3.3 Assertions

A softgoal is an element whose satisfaction is depending on components or events
inside the system and its environment. A contribution link has a type (for ex-
ample make, help, etc.) which is also depending on the situation of the system
and its environment. To determine the satisfaction or the type of a link, the re-
quirements engineer states assertions about the required situation of the system
and its environment.

An assertion can be seen as a kind of a test case to prove if a requirement
can be fulfilled at runtime. Thus, a requirements engineer derives an assertion
from a requirement.
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Listing 1.3. Assertion with DOREF

1 SGAssertion("/*/Minimize noise level",
2 ["maxSuction", "suction"],
3 "suction < maxSuction",
4 "Satisfied", "Denied")

Because a requirements engineer needs to describe assertions, we added a
textual description for the assertions to DOREF, see Listing 1.3. Figure 6 shows
an assertion which is related to a softgoal with the ID SOFTGOAL-54 and two
variables suction andmaxSuction (Listing 1.3 line 2). The parametermaxSuction
can be also found in Figure 4.

Fig. 6. Textual assertion

The structure and relationship between an intention and the assertions are
shown in Figure 3. We define two kinds of assertions, one to handle the softgoal
satisfaction and one for the contribution link type.

An example SoftgoalAssertion is shown in Listing 1.3 and Figure 6. The
ID SRS-33 is generated by the framework. The rule is a Boolean condition
defined over the related Variables, which is evaluated by the rule engine inside the
requirements monitor. The Boolean condition employs Java Boolean expressions.
That is, it evaluates to false or true and uses Boolean operators, like ==, &,
!, etc. If an assertion is broken, the related softgoal satisfaction changes from
the Default Value to the New Value. In example above, it would change from
Satisfied to Denied.

3.4 Consistency Between the Models

As shown in Figures 4 and 6 and Listing 1.1, 1.2 and 1.3 there is a direct connec-
tion between the requirements model and the i* model by means of assertions.
This allows to define consistency checks on requirements models. We have iden-
tified four consistency rules:

– Every task must be related to a requirement.
– Every requirement, which is related to a task, must have an optional prop-

erty.
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– For every requirement with variables inside the textual description, at least
one assertion must be defined.

– For every root softgoal (i.e., the softgoal only has incoming contribution
links) or for one of the incoming contribution links an assertion must be
defined.

Rule 1 and 2 are checking the relationship between tasks and requirements.
Every goal can be achieved over di↵erent alternatives. These alternatives are
described by tasks, which reflect possibly conflicting functional requirements. So
these requirements can only be fulfilled if the task is satisfied. This requirements
need the optional property to show if they are fulfilled. Rule 3 ensures that
the rule engine checks all defined variables. As mentioned in Section 3.3 the
satisfaction of a softgoal depends on the environment and state of the system.
Rule 4 ensures that every softgoal can be defined.

4 Generating Requirements Monitor

This section describes the generation of the requirements monitor using the pre-
sented metamodel (see Figure 3). Our first step was to identify components,
which are application-specific, and thus need to be generated. The impact an-
alyzer is the only component which does not require generation. The analyzer
gets its inputs from the goal model and every information for changing and
computing the model from the rule engine and the integrated assertions. The
evaluation process does not depend on the application. The other components
are application-specific and will be described in the remainder of this section.

4.1 Runtime Goal Model

The goal model is the runtime representation of the requirements and describes
the alternative realization strategies of the system. This component must be
generated. As described in Section 3.2, we use an i* model for representation
of the requirements. This model is developed by a requirements engineer us-
ing DOREF. Inside the requirements monitor the Eclipse Modeling Framework
(EMF) is used to access the i* model. The underlying source code for accessing
the model is generated by EMF. The information for creating an i* model can
be exported from DOREF and imported by the requirements monitor.

4.2 Rules

The monitor component owns a rule engine, which checks the assertions. To
implement the rule engine we use Roolie3, a framework that supports defining,
changing and checking rules at runtime. The required information for generating
the application-specific parts of the rule engine is inside our metamodel.

3 http://roolie.sourceforge.net/
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The Rule inside the assertion is used for the Boolean condition of the rule
inside the rule engine, see Listing 1.4. The rules use rule arguments RuleArgs
(see line 1) to check the condition. A rule also have the following information of
a connected i*-Element : ID, satisfaction, or type of contribution link. If a rule
breaks, the required information about the i*-Element is sent to the impact
analyzer, which computes all satisfactions of the i*-Elements inside the model.

Listing 1.4. Implementation of a Rule with Roolie

1 int maxSuction = ruleArgs.getMaxSuction();
2 boolean passes = currentSuction < maxSuction;

The assertions are related to variables. The variables are stored as rule ar-
guments (RuleArgs) inside the rule engine. If a variable in the system changes,
the monitor set the related RuleArg with a new value. The rule engine checks
every connected assertion. The variable ID is used for the RuleArg, see Listing
1.5. The default value is used as initial value of the RuleArg.

Listing 1.5. Implementation of RuleArgs with Roolie

1 public enum ArgField {
2 MaxSuction, Suction;
3 };
4 public void setMaxSuction(int MaxSuction) {
5 setInt(ArgField.MaxSuction, MaxSuction);
6 }
7 public int getMaxSuction() {
8 return getInt(ArgField.MaxSuction);
9 }

10 public void setSuction(int Suction) {
11 setInt(ArgField.Suction, Suction);
12 }
13 public int getSuction() {
14 return getInt(ArgField.Suction);
15 }

4.3 Parameter Observer

For checking the assertions the monitor has to communicate with the application
and set the current value of the variables/ RuleArgs inside the rule engine. The
monitor can register at an interface of the application to receive the parameter
information. If a connection is established the application sends messages with
new Parameter values ( Suction::40).

The monitor has to receive and analyze this messages and set the RuleArgs.
Listing 1.6 shows the result of the generation process.

167



Listing 1.6. Monitor

1 String[] splitMsg =
2 ((String) msg).split("::");
3 if(msg[0].equals("suction"))
4 {
5 ruleEngine.getRuleArgs().setSuction(Integer.parseInt(msg[1]));
6 ruleEngine.testSuction();
7 }

The message is split and the parameter ID is used to set the right RuleArg.

5 Related Work

Requirements engineering for self-adaptive systems has gained a lot of interest
as a recently published survey has shown [17]. The authors found that most
approaches use goal-oriented modeling techniques.

The environment is usually attached to a goal model using domain assump-
tions [11, 10, 14, 2, 5], claims [15], or assertions [4]. Assertions are monitored
by a monitor system such as Flea [4], ReqMon [10, 12], or SalMon [10, 9]. To our
knowledge none of the before-mentioned approaches explicitly address the ques-
tion of how to generate the part of a requirements monitor, which are specific
to the adaptive system under consideration.

Because we work in the area of embedded systems we have to handle resource
constraints as mentioned in Chapter 2. The approaches in [10],[11], [12], and [15]
are focused on service-oriented systems instead of embedded systems.

6 Conclusion

This paper proposes a way of augmenting a requirements specification with ad-
ditional information so that a requirements monitor can be generated. A concept
for such a generator is outlined. The result is geared towards our approach of rep-
resenting a self-adaptive system described in [6], but can be transferred also to
other approaches, which make use of assertions, domain assumptions, or claims.

This is an important step towards our goal of providing feedback to require-
ments engineers and users about changes made to the requirements during run-
time. The key is to be able to build adaptive systems without significant over-
head during development time. Especially embedded systems are interesting, as
a human operator is often not available to give a confirmation to a system’s
decision. Thus the system must decide autonomously. Moreover, model-driven
development is already widely used in practice.

We suggested in this paper a concept for making adaptivity explicit in devel-
opment time artifacts. Nevertheless, discrete adaptivity can also be programmed
directly into an application. The benefits of an explicit documentation of adap-
tivity are similar to the benefits of an explicit documentation of variability in
case of software product lines: understanding and communication are improved.
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Our future work addresses the communication of the changes to the users
and the formalization and monitoring of further aspects of requirements. Re-
garding embedded real-time systems in particular, execution times, violations of
deadlines, etc. are of interest. This information can also be collected at runtime
and feed back to engineers.
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