
Aspect-oriented User Interface Design for
Android Applications1

Jǐŕı Šebek, Karel Richta

Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague, Karlovo nám. 13,
121 35 Praha 2, Czech Republic
{sebekji1,richta}@fel.cvut.cz

Aspect-oriented User Interface Design for Android

Applications
1

Jiří Šebek, Karel Richta

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University in Prague, Karlovo nám. 13,

121 35 Praha 2, Czech Republic

{sebekji1,richta}@fel.cvut.cz

Abstract. This paper deals with the design of an effective Android framework

that will allow a developer to create Android applications easily in a short time

with the help of aspect-oriented approach. Our solution enables to deal with

separated aspects like security, layout, input validation, data binding and

presentation independently. Our presented framework is compared to conven-

tional development approach of mobile applications and also is compared to the

framework Aspect Faces that is also uses aspect-oriented approach, but is de-

signed for Java EE applications. Each aspect of framework was tested and it

was proven that our framework is effective in the following areas. It does not

slow down the developed application according to the same application created

with XML, it makes the code to be more readable, and it makes development

faster, and reduces the number of code lines that developer has to write down.

Keywords aspect-oriented approach, aspect-driven design, entity inspection

based approach, run-time aspect model, reduced maintenance and development

efforts

1 Introduction

The main aim of this paper is to present a design of a new Android framework that

will allow a developer to create Android applications with minimal effort, in a short

time, and with the help of an aspect-oriented approach.

In the conventional approach, we are mixing a code of all miscellaneous aspects

together in one big code. The aspect-oriented approach in a software development

means that we are focusing on separated aspect. These aspects are: security, layout,

1 This work has been partially supported by the Grant Agency of CTU No.

SGS15/210/OHK3/3T/13 and partially also by the AVAST Foundation

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 121–130, CEUR-WS.org/Vol-1343.

122 Jǐŕı Šebek, Karel Richta

input validation, data binding and presentation. As a result, the developer using as-

pect-oriented approach can write less amount of code, which is moreover reusable.

We also avoid a spaghetti code (code that has tangled structure), and a redundancy of

code, and other bad habits in the programming.

2 Background

Within all operation systems (OS) for a mobile device, the Android is the most ex-

panded as shown in Figure 1. Because of that, applications targeted for Android are

very desirable. As you can see from Figure 1, the ratio of applications targeted for the

Android OS for mobile device is steadily growing up. This is the reason why develop-

ers cannot omit the Android in their analysis.

Fig 1. Distribution of all OS for mobiles (adopted from [11])

2.1 Conventional Approach

In conventional development approach of Android applications, every screen has two

parts. The first part is Java class that extends Activity class and where you can place

Aspect-oriented User Interface Design for Android Applications 123

your logic and you have to connect your Java class to view. That view is a second part

of the screen description and can be done in XML or generated by a program. Usually,

XML choice is better because you can separate, at least, layout from remaining code.

The readability depends on the developer and sometimes it’s hard to maintain result-

ing code.

2.2 Aspect-Oriented Approach

Aspect-oriented programming (AOP) approach is a paradigm whose main goal is in-

creasing modularity. Usually the code of applications can be separated into logical

sections. These logical sections are called aspects. AOP supports separating develop-

ment of any aspects option, resulting in a better code. In OOP designs, we use classes

to describe only instances and their attributes. That is the representation for data only.

Therefore, the best way to do things in aspect way approach is to add these additional

pieces of information to the same representation (class). This is called Rich Entity

Aspect/Audit Design (READ) [2,3]. Above any instance, attribute or method you can

place annotation containing additional information. By this procedure, we can add all

required aspects.

3 Related Works

Approach in the articles [2,3] is not the only way how to generate User Interfaces (UI)

from the model. The topic of UI generated from domain objects is mentioned in [6,7].

The framework is called Meta-widget and it is based on Model driven development

(MDD). The user just creates objects and puts them to Meta-widget’s framework. The

UI is generated according to the model. Meta-widget supports a lot of technologies

from Android, Google Web Toolkit (GWT), HTML 5 (POH5), JavaScript to JSF and

JSP. Meta-widget works in three basic steps. First, Meta-widget comes with a UI

component native to your existing front-end. Second, Meta-widget inspects, either

statically or in the run-time, your existing back-end architecture. Third, Meta-widget

creates native UI subcomponents matched to the back-end. In articles [2,3], the other

aspects were added based on annotations. Meta-widget adds this information based on

existing back-end of any applications.

Model driven development (MDD) is based on the idea that the model should be

primary centralized place for all information. This model is then compiled or trans-

formed by another way into the deployed application code. The benefits are reduction

of information in application and concentration of the structure of information into

one place. The disadvantages can be adaptation and evolution management [8]. This

approach does not go well with OOP, because we need to maintain the interconnection

between the models with the back-end of the application. There exist another tools,

how to describe an additional information. These tools are called in the MDD the

Domain-Specific Languages (DSL). Sometimes, they are informally called mini-

languages, because they describe the additional information inside the other language.

There are a wide variety of DSL. Domain-specific languages can be a visual dia-

124 Jǐŕı Šebek, Karel Richta

gramming language, programmatic abstractions, declarative language (OCL) or even

whole languages like XSLT. As we can see, some of them evolve into the program-

ming tools that are frequently used (XSLT).

Generative programming (GP) is a specific type of a programming that generates

the source code from domain-specific code. The goal is to improve productivity of

developer, make the way between application code and domain model, support reuse,

adaptation, and simplify management of components [12].

Meta-programming (MP) is a technique, which allows the developer to modify the

structure and the behavior of the applications at the run-time. The reflection is one of

the options how to implement the MP [5]. The developers can inspect the classes, the

fields, the methods at the compile time and they do not even have to know their names

at the compile time. The MP allows developers to adapt the application to the differ-

ent situations. The bottleneck of this solution is the performance. The applications are

significantly slower with the MP and are harder to test or debug then the applications

without the MP. To deal with this problem the developer can use some cache.

4 Design of Aspect-Oriented Framework

Fig. 2. Analytic model of classes

The analytic model of classes is a diagram which captures a general static view of the

application. The purpose of this is to illustrate types of objects, variables and their

relationships. Figure 2 shows class diagram of our framework. It does not contain all

of the files (classes) because there would be much more objects and the diagram

would not be easy to read, but it contains all packages and main functionality.

Aspect-oriented User Interface Design for Android Applications 125

Fig. 3. Sequence diagram of the framework

The sequence diagram is used for a visualization of interactions between processes

(objects). It also displays the right order of these interactions. It is a behavioral type of

a diagram. Therefore, it is the best choice for showing how the framework works. The

diagram includes parallel vertical lines called lifelines and horizontal arrows that rep-

resent the messages exchanged between them in the right order as they appear. In fig-

ure 3, there is shown basic sequence diagram of our framework. It shows what hap-

pens from the start of the application using the framework.

The mandatory action is the creation of a new Presentation object. Then, the main

activity calls methods buildCache(), and setDataPresentationFromCache() of this

object. BuildCache() method creates new cache from given instances. UI can be creat-

ed much faster from cache, which includes information in hashmaps. The time to re-

trieve this information is then constant. It makes final application much faster, for ex-

ample in the case of a fragment style application, where user is often sliding between

screens that he/she already visited. When cache is already created, it is not created

126 Jǐŕı Šebek, Karel Richta

again. SetDataPresentationFromCache() method creates whole UI from cache. It

means layout, data presentation and data binding. The other options of the framework

are voluntary, like on the diagram. If the developer wants to validate default data in

created instances, he/she just creates the InputValidation object and call

inputValidate(). The framework will care about the rest via created rich entity (normal

instance with attributes and with annotations). In this diagram, it is also captured when

the user changes the value of element it will call the listener which will call the

inputValidate(). If the user sends the form with data, it will also call inputValidate().

Fig. 4. Usage of the framework

4.1 Usage of the Framework

In the Figure 4, it is shown how our framework works all together. The basic element

is entity (Java object) enriched by other information in form of annotations. Then we

have to call the framework and also give over arrayList of instances. Everything is

generic; framework does not need to know exact type of object which was inserted

into arrayList. The last part in the figure 4 shows the result after launching the appli-

cation.

Aspect-oriented User Interface Design for Android Applications 127

5 Comparison of Aspect-Oriented Approach and Conventional

Approach for Android Platform

In the conventional approach, the presentation layer was implemented in XML, the

data binding in Java, input validation in Java, layout in XML and security in Java. The

project, which was created in conventional way, was developed to implement one

form that is the same as the first one in the example of aspect-oriented approach with

four attributes (created with our framework). All aspects was coded in common way

and not stored in annotations like in the aspect-oriented approach. If we want to do

another form, we will have to write the similar amount of code. This code is redundant

and is making application hard to maintain. The big difference against AOP is in secu-

rity, where in aspect-oriented approach we just do not create particular element. Here,

we create all elements and then we are changing visibility if the user has particular

user role. The advantages of the aspect-oriented approach are shown in Table 1.

Table 1. Comparison of AOP and conventional approach

Feature AOP Conventional approach

Reuse yes no

Run-time approach Yes no

Reduce code Yes no

Better to maintain Yes no

Separated each aspects Yes no

Readable code Yes No (depends on developer)

Time to launch the form

(average)

119,5ms 193,1ms

Standard deviation (std) 5,35ms 14,7ms

Lines of code (LOC) 29 495

Here, we can see that AOP is definitely better in reuse, reduction of the code, mainte-

nance of the code, separation of aspects, and readability of code. The reuse in conven-

tional approach means copy, paste and edit. That is not a good approach. From Table

1, we can also see the difference in lines of code (LOC). The AOP has 4 lines of Java

code and 25 lines of Java class code. The conventional approach has 16 LOC of Java

class, 377 lines of Java code and 102 lines of XML code. LOC where counted by reg-

ular expression in search function in eclipse IDE. LOC is counted from the view of

developer so the body of the framework is not counted. As we know, this is example

that has only 4 attributes. If this number rises for example to eight, the LOC for con-

ventional approach will also rise by similar amount of lines. On the other hand, AOP

will increase only by about ten LOC (four lines plus some annotation).

The time to launch the form is also an interesting item, because as you can see in

Table 1, AOP is faster than conventional approach. The reason of this is the creation

of view by XML which is slower than the view created by a program. This time is

calculated when the form is first launched. When user is returning to this activity it is

even faster for AOP because it is using a cache with the constant asymptotic com-

128 Jǐŕı Šebek, Karel Richta

plexity of access to data. The average time to launch any form was calculated from the

list of ten data that was taken as you can see in Table 2.

Table 2. Table of launching times

Test number Launch time with

AOP (ms)

Launch time with Conventional

approach (ms)

1 128 196

2 114 171

3 121 210

4 117 222

5 110 183

6 126 175

7 119 201

8 121 188

9 115 196

10 124 189

6 Comparison of Aspect-Oriented Programming (AOP) for

Android Platform and Java EE

The aspect-oriented framework, called Aspect Faces for Java EE [2,3], was created on

a similar idea as for Java EE, but they are not implemented in a same way as presented

framework for Android. The framework for Java EE [2,3] is called by the tag in a

view part as we can see the usage in Listing 1. Mostly it is placed in JSP page or in

some xhtml page. In Listing 1, there is an example how to create two forms.

Listing 1. Usage of Aspect Faces in Java EE

<!-- Form1 generated via Aspect Faces -->

<af:ui instance="#{bean.entity1}" edit="true"/>

<!-- Form2 generated via Aspect Faces -->

<af:ui instance="#{bean.entity2}" edit="true"/>

Instead of this approach, the framework for Android is called in Java activity class

that user creates. The reason for this is simple. In Android application structure, the

Java classes are mandatory unlike in Java EE where if you just want the UI you do not

have to create Java bean or some logic behind. Furthermore, the XML files that repre-

sent the UI are optional, because you can create UI by a program. If you create a but-

ton to another screen in Android application, you are not connecting the button to call

another view, but first, you call the Java activity class and in this class, we can choose

how to create UI. In Listing 2, there is the basic example how to create form by our

framework in Android.

Aspect-oriented User Interface Design for Android Applications 129

Listing 2. Usage of framework in Android

Presentation p = new

Presentation(this,listOfInstances);

p.buildCache(arraylistOfInstances, afContext);

View v = p.setDataPresentationFromCache();

setContentView(v);

Both frameworks are using meta-models to save information about instances that are

rendered in forms and also both of them are also working in the run-time. One big

difference is in the future potential of the development. A native application has the

advantage against web application, that it is compatible with the devices hardware

such as motion sensors, environmental sensors, position sensors, and camera. The

motion sensors include accelerometers, gravity sensors, gyroscopes and rotational

vector sensors. The environmental sensors include barometers, photometers and ther-

mometers. The position sensors include orientation sensors and magnetometers. The

web applications are limited in this way. Aspect Faces on Java EE can get a position

from GeoIP, but nothing more. This information from sensors can be used by frame-

work and can react to that information.

7 Conclusion and Future Work

This paper results from diploma thesis [9] and contains background of aspect-oriented

approach, and describes the design of the new framework for an Android application

development. We compare our framework with the conventional approach to Android

application development, and to Java EE framework called Aspect Faces. Our frame-

work seems to be fast, clear, easy scalable, readable, reusable, improves the mainte-

nance and it was tested. The results of tests show us, that our framework enables faster

development than standard conventional approach to Android application develop-

ment. It is true that, when we comparing programming approach with the approach

using XML, XML has the disadvantage in the speed of launching.

In the future work we will focus on extending the framework context with the

hardware devices such as motion sensors, environmental sensors, position sensors, and

camera. The application can then easily react to change devices position etc. Also the

framework will be tested not only against XML approach, but also against another

programmatic approach. Another aim of future work will be to test our framework not

only by the launching time, but also by time, when screens are just changing. The ex-

pectation is, of course, that our framework will be much faster due to the cache sys-

tem.

130 Jǐŕı Šebek, Karel Richta

References

1. Czarnecki, K. and Eisenecker, U. W.: Generative programming: methods, tools, and appli-

cations. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)

2. Černý, T., Donahoo, M. J., and Song, E.: Towards effective adaptive user interfaces de-

sign. In Proceedings of the 2013 Research in Adaptive and Convergent Systems (RACS

’13). ACM, New York, NY, USA, 373-380. DOI=10.1145/2513228.2513278,

http://doi.acm.org/10.1145/2513228.2513278 (2013)

3. Černý, T., Čemus, K., Donahoo, M. J., and Song, E.: Aspect-driven, Data-reflective and

Context-aware User Interfaces Design. In: Applied Computing Review, Vol. 13, Issue 4,

ACM, New York, NY, USA, 53-65. ISSN 559-6915,

http://www.sigapp.org/acr/Issues/V13.4/ACR-13-4-2013.pdf (2013)

4. Černý, T. and Song, E.: UML-based enhanced rich form generation. In: Proceedings of the

2011 ACM Symposium on Research in Applied Computation (RACS ’11). ACM, New

York, NY, USA, 192-199. DOI=10.1145/2103380.2103420,

http://doi.acm.org/10.1145/2103380.2103420 (2011)

5. Forman, I. R. and Forman, N.: Java Reflection in Action (In Action series). Manning Pub-

lications Co., Greenwich, CT, USA (2004)

6. Kennard, R. and Leaney, J.: Towards general purpose architecture for UI generation.

Journal of Systems and Software, 83(10) http: / / metawidget . sourceforge . net / media /

downloads / Towards a General Purpose Architecture for UI Generation.pdf (2010) 1896-

1906

7. Kennard, R. and Robert, S.: Application of software mining to automatic user interface

generation. In SoMeT’08. http: / / metawidget . sourceforge . net / media / downloads /

Application of Software Mining to Automatic User Interface Generation.pdf (2008) 244 -

254

8. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F. and Solberg. A.: Models@run.time to

support dynamic adaptation. Computer, 42(10) (Oct. 2009) 44-51

9. Šebek, J.: Aspect-oriented user interface design for Android applications, diploma thesis.

Department of Computer Science, CTU FEE, Prague (2014)

Internet resources

10. Android Activity Lifecycle. Android Activity Lifecycle [online]. 12/22/2011, [cit. 2014-

04-28]. http: / / www . mikestratton . net / 2011 / 12 / android-activity-lifecycle (2011)

11. Android vs iOS. Android vs iOS [online]. November 11 2013 3:22 PM [cit. 2014-04-28].

http: / / www . ibtimes . com / android-vs-ios-whats-most-popular-mobileoperating-

system-your-country-1464892 (2013)

12. Introduction To Android Mobile Operating System. Android Development, Tutorials

[online]. August 1, 2011 [cit. 2014-04-29]. http://www.blogsaays.com/tutorial-part1-

introduction-android-mobile-operating-system (2011)

13. Jak vypadá Android uvnitř. Android developers [online]. 31. December 2011 [cit. 2014-

04-28]. http://www.androidmarket.cz/android/jak-vypada-android-uvnitr-anebco-je-rom-

kernel-bootloader-a-dalsi (2011)

