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1 Introduction

Vector-space models of semantics (VSMs) derive
word representations by keeping track of the co-
occurrence patterns of each word when found in
large linguistic corpora. By exploiting the fact that
similar words tend to appear in similar contexts
(Harris, 1954), such models have been very suc-
cessful in tasks of semantic relatedness (Landauer
and Dumais, 1997; Rohde et al., 2006). A com-
mon criticism addressed towards such models is
that those co-occurrence patterns do not explicitly
encode specific semantic features unlike more tra-
ditional models of semantic memory (Collins and
Quillian, 1969; Rogers and McClelland, 2004).
Recently, however, corpus studies (Bresnan and
Hay, 2008; Hill et al., 2013b) have shown that
some ‘core’ conceptual distinctions such as ani-
macy and concreteness are reflected in the distri-
butional patterns of words and can be captured by
such models (Hill et al., 2013a).

In the present paper we argue that distributional
characteristics of words are particularly important
when considering concept availability under im-
plicit language learning conditions. Studies on im-
plicit learning of form-meaning connections have
highlighted that during the learning process a re-
stricted set of conceptual distinctions are available
such as those involving animacy and concreteness.
For example, in studies by Williams (2005) (W)
and Leung and Williams (2014) (L&W) the partic-
ipants were introduced to four novel determiner-
like words: gi, ro, ul, and ne. They were explic-
itly told that they functioned like the article ‘the’
but that gi and ro were used with near objects
and ro and ne with far objects. What they were
not told was that gi and ul were used with living
things and ro and ne with non-living things. Par-
ticipants were exposed to grammatical determiner-
noun combinations in a training task and after-
wards given novel determiner-noun combinations

to test for generalisation of the hidden regular-
ity. W and L&W report such a generalisation ef-
fect even in participants who remained unaware
of the relevance of animacy to article usage – se-
mantic implicit learning. Paciorek and Williams
(2015) (P&W) report similar effects for a sys-
tem in which novel verbs (rather than determiners)
collocate with either abstract or concrete nouns.
However, certain semantic constraints on seman-
tic implicit learning have been obtained. In P&W
generalisation was weaker when tested with items
that were of relatively low semantic similarity to
the exemplars received in training. In L&W Chi-
nese participants showed implicit generalisation
of a system in which determiner usage was gov-
erned by whether the noun referred to a long or
flat object (corresponding to the Chinese classifier
system) whereas there was no such implicit gen-
eralisation in native English speakers. Based on
this evidence we argue that the implicit learnabil-
ity of semantic regularities depends on the degree
to which the relevant concept is reflected in lan-
guage use. By forming semantic representations
of words based on their distributional character-
istics we may be able to predict what would be
learnable under implicit learning conditions.

2 Simulation

We obtained semantic representations using the
skip-gram architecture (Mikolov et al., 2013)
provided by the word2vec package,1 trained
with hierarchical softmax on the British National
Corpus or on a Chinese Wikipedia dump file of
comparable size. The parameters used were as fol-
lows: window size: B5A5, vector dimensionality:
300, subsampling threshold: t = e−3 only for the
English corpus.

The skip-gram model encapsulates the idea
of distributional semantics introduced above by

1https://code.google.com/p/word2vec/
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Figure 1: Generalisation gradients obtained from
the Williams (2005) dataset. The gradients were
obtained by averaging the output activations for
the grammatical and the ungrammatical pairs, re-
spectively. The network hyperparameters used
were: learning rate: η = 0.01, weight decay:
γ = 0.01, size of hidden layer: h ∈ R100. For this
and all the reported simulations the dashed verti-
cal lines mark the epoch in which the training error
approached zero. See text for more information on
the experiment.

learning which contexts are more probable for a
given word. Concretely, it uses a neural network
architecture, where each word from a large cor-
pus is presented in the input layer and its context
(i.e. several words around it) in the output layer.
The goal of the network is to learn a configuration
of weights such that when a word is presented in
the input layer the nodes in the output that become
more activated correspond to those words in the
vocabulary, which had appeared more frequently
as its context.

As argued above, the resulting representations
will carry, by means of their distributional pat-
terns, semantic information such as concreteness
or animacy. Consistent with the above hypothe-
ses, we predict that given a set of words in the
training phase, the degree to which one can gen-
eralise to novel nouns will depend on how much
the relevant concepts are reflected in the former
words. If, for example, the words used during the
training session do not encode animacy based on
their co-occurrence statistics, albeit denoting an-
imate nouns, then generalising to other animate
nouns would be more difficult.

In order to examine this prediction, we fed the
resulting semantic representations to a non-linear
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Figure 2: Results of our simulation along with
the behavioural results of Paciorek and Williams
(2015), exp. 1. The hyperparameters used were
the same as in the simulation of Williams (2005).

classifier (a feedforward neural network) the task
of which was to learn to associate noun represen-
tations to determiners or verbs, depending on the
study in question. During the training phase, the
neural network received as input the semantic vec-
tors of the nouns and the corresponding determin-
ers/verbs (coded as 1-in-N binary vectors, where
N is the number of novel non-words)2 in the out-
put vector. Using backpropagation with stochas-
tic gradient descent as the learning algorithm, the
goal of the network was to learn to discriminate
between grammatical and ungrammatical noun –
determiner/verb combinations. We hypothesise
that this could be possible if either specific fea-
tures of the input representation or a combination
of them contained the relevant concepts. Consid-
ering the distributed nature of our semantic repre-
sentations, we explore the latter option by adding
a tanh hidden layer, the purpose of which was to
extract non-linear combinations of features of the

2All the studies reported use four novel non-words.
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Figure 3: Results of our simulation along with
the behavioural results of Paciorek and Williams
(2015), exp. 4. The hyperparameters used were
the same as in the simulation of Williams (2005).

input vector. We then recorded the generalisation
ability through time (epochs) of our classifier by
simply asking what would be the probability of
encountering a known determiner k with a novel
word ~w by taking the softmax function:

p(y = k|~w) = exp (netk)∑
k′∈K exp (netk′)

. (1)

3 Results and Discussion

Figures 1-4 show the results of the simulations
across four different datasets which reflect differ-
ent semantic manipulations. The simulations show
the generalisation gradients obtained by applying
eq. (1) to every word in the generalisation set and
then keeping track of the activation of the different
determiners (W, L&W) or verbs (P&W) through
time. For example, in W where the semantic dis-
tinction was between animate and inanimate con-
cepts ‘gi lion’ would be considered a grammatical
sequence while ‘ro lion’ an ungrammatical one.
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Figure 4: Results from Leung and Williams
(2014), exp. 3. See text for more info on the mea-
sures used. The gradients for the ungrammatical
combinations are (1− grammatical). The value of
the weight decay was set to γ = 0.05 while the
rest of the hyperparameters used were the same as
in the simulation of Williams (2005).

If the model has been successful in learning that
‘gi’ should be activated more given animate con-
cepts then the probability P (y = gi|~wlion) would
be higher than P (y = ro|~wlion). Fig. 1 shows the
performance of the classifier on the testing set of
W where, in the behavioural data, selection of the
grammatical item was significantly above chance
in a two alternative forced choice task for the un-
aware group. The slopes of the gradients clearly
show that on such a task the model would favour
grammatical combinations as well.

Figures 2-3 plot the results of two experiments
from P&W which focused on the abstract/concrete
distinction. P&W used a false memory task in the
generalisation phase, measuring learning by com-
paring the endorsement rates between novel gram-
matical and novel ungrammatical verb-noun pairs.
It was reasoned that if the participants had some
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knowledge of the system they would endorse more
novel grammatical sequences. Expt 1 (Fig. 2) used
generalisation items that were higher in seman-
tic similarity to trained items than was the case in
Expt 4 (Fig. 3). The behavioural results from the
unaware groups (bottom rows) show that this ma-
nipulation resulted in larger grammaticality effects
on familiarity judgements in Expt 1 than Expt 4,
and also higher endorsements for concrete items
in general in Expt 1. Our simulation was able to
capture both of these effects.

L&W Expt 3 examined the learnability of a sys-
tem based on a long/flat distinction, which is re-
flected in the distributional patterns of Chinese but
not of English. In Chinese, nouns denoting long
objects have to be preceded by a specific classi-
fier while flat object nouns by another. L&W’s
training phase consisted of showing to participants
combinations of thin/flat objects with novel deter-
miners, asking them to judge whether the noun
was thin or flat. After a period of exposure, partic-
ipants were introduced to novel determiner – noun
combinations, which either followed the grammat-
ical system (control trials) or did not (violation tri-
als). Participants had significantly lower reaction
times (Fig. 4, bottom row) when presented with a
novel grammatical sequence than an ungrammat-
ical sequence, an effect not observed in the RTs
of the English participants. The corresponding re-
sults of our simulations plotted in Fig. 4 show that
indeed the regularity was learnable when the se-
mantic model had only experienced a Chinese text,
but not when it experienced the English corpus.

While more direct evidence is needed to support
our initial hypothesis, our results seem to point
to the direction that semantic information encoded
by the distributional characteristics of words when
found in large corpora can be important in deter-
mining what could be implicitly learnable.
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