
A System Description of P^4:
Possible Punctuation Points Parser

Thomas Boehnlein and Jennifer Seitzer

Department of Computer Science

University of Dayton, 300 College Park, Dayton, OH 45469

Abstract

We present a Natural Language Understanding (NLU)
implementation that automatically inserts punctuation
marks into a sequence of words to create a group of one or
more syntactically correct sentences. The software,
Possible Punctuation Points Parser (P^4) provides the
ability for the user to input a string of words to process,
performs the punctuation possibilities, and then provides
several visualizations to illustrate how the software arrived
at its final solution. P^4 uses a chart parsing algorithm
combined with a search algorithm that creates data
visualization structures. A potential application of this
software is to serve as a formidable starting point for
automatic punctuation mark insertion during voice-to-text
conversion found on many mobile platforms.

Introduction
Natural language understanding (NLU) manipulates and
internally represents natural language to perform
algorithmic linguistic operations for the purpose of
understanding. This NLU system is a work in progress
and a result of the first author’s Master’s software project
that automatically punctuates a string of words into
syntactically correct sentences. Semantic analysis and
representation are not addressed here. Nor have any
probabilistic methods based on usage history been utilized
in the system. Instead, a syntactic approach is used by
organizing and identifying the words and their syntactic
relationships to one another by using a chart parsing
algorithm [1]. Much work has been done in chart parsing
[1][2]. Work has also been done in prediction of
punctuation in NLU [3][4]. This is a proof of concept of
applying the chart parsing algorithm to automatic
punctuation, now to be applied to voice-to-text systems.

The current interfaces typically provided by voice-to-text
systems awkwardly require the user to explicitly state
individual punctuation marks during the process of voice-
to-text conversion. This method is used most notably by
Apple’s iOS [5]. Explicitly stating punctuation marks is
unnatural because people generally do not interact with
each other verbally in that way. Instead, they rely on
conversational, visual, and intuitive cues. Speech patterns
indicate when a sentence ends or if a question is being

asked without the need of specifically stating any
punctuation marks. However, punctuation marks are
necessary for efficient processing of the text as these visual
and auditory cues that occur in conversations are
completely removed for the reader of a mobile voice-to-
text transcription. The lack of automatic punctuation
insertion in mobile systems presents a usability gap for
either the speaker being forced to speak each punctuation
mark or the reader having to do without the punctuation
marks. The hope for this work is to contribute to the
improvement of mobile voice-to-text systems by
processing the data after the transcription is performed then
inserting new punctuation information. The system
presented here, P^4, is an operable small-scale
implementation that is a step toward achieving this goal.

Overall Architecture of P^4
The main facets of this work include:
 the definition and implementation of an efficient parsing

system
 the implementation of a novel search algorithm that

allows for efficient processing of a large search space of
possible punctuation mark insertions

 the implementation of an interface to help visualize the
process of both parsing and searching while inserting
possible punctuation marks

Overview of Parsing System
The parser is a chart parser that employs a type of dynamic
programming. Chart parsers have the benefit of reusing
sub-parses to avoid backtracking [1]. This is accomplished
by doing both a top-down and a bottom-up parse in
parallel. Both time and space complexity is polynomial
which is important given the multitude of parses performed
while navigating the punctuation mark search space. The
parsing output is then analyzed to find the best parses that
are complete (since partial parses are part of the output of
the chart parser). A selection method is then used to rank
the parses and choose the best. The grammar used by the
parser is read into the system from a text file and converted
into appropriate data structures for later use. The user is
able to see all of the rules for guidance of valid input into
P^4 and can modify the rules as needed.

Overview of Searching System
The number of permutations of possible punctuation
schemes grows at an exponential rate of O(mn) where m is
the number of punctuation points available (plus
whitespace) and n is the number of words in the list. For
the word list “good morning mom how are you” using four
(plus one) possible punctuation marks 15625 permutations
of punctuation possibilities exist. If the list grows to
fifteen words, over 30 billion punctuation permutations
exist.
In general conversation, one typically uses a much larger
vocabulary than six words and requires more than four
punctuation marks. Thus, trying to exhaustively generate
all possible combinations quickly becomes prohibitive, and
an efficient search algorithm that prunes much of the
search space is necessary. Fundamentally, the search
algorithm does this by ignoring the parts of the search
graph that do not form valid sentences which is
ascertainable by using simple graph accessibility
techniques described later.

Overview of Visualization System
Visualization methods are included in P^4 to gain insight
into system operation, to assess the efficiency of the
algorithms, and to diagnose failure points. NodeXL,
created by the Social Media Research Foundation, was
used for all of the visualization controls [6]. The library is
highly optimized for visualizing complex graphs that may
need to be organized using a variety of different node
layout algorithms. This is important since the punctuation
mark search space is extremely large. In this system, plots
visualize the navigation of the search space and how the
final result was parsed.

Overview of Main Operating Loop
The interaction of the three sub-systems described above is
shown in Figure 1. After the user enters the ordered
collection of words to be punctuated, the Search Engine

and Parse System cyclically interact to create and validate
numerous punctuation-possibilities. When the search
system ultimately chooses the best one (“the result”), both
systems send data to the visualization system for the output
of the result and the meta-information of how that result
was achieved.

Implementation of P^4
In this section, implementation details of P^4 are explained
by describing the constituent classes, data structures, and
algorithms of the three sub-systems: the parser, the search
engine, and the visualization tool.

Parsing System Implementation
It is the responsibility of the parsing system to analyze the
individual strings (punctuation possibilities) that are
generated by the search engine of P^4. It is a chart parser
[1] made up of the classes ParseEdge, ParseGrammar and
ParseParser. A chart parser differs from a traditional left-
to-right recursive descent parser by avoiding backtracking
[2]. That is, it expands all possible production paths
initially and stores them in the data structure called a chart
along with meta-information of how the chart was created.

A chart can be considered a subgraph of the parse space
made up of instances of the data structure called an edge.
That is, a chart is a collection of edges. In particular, the
chart is made up of a vertex before the first word, in-
between each word and after the last word. This results in
n+1 vertices for every collection of n words. These are
used to define the beginning and ending points of each
edge. Intuitively, edges are used to define how a
subsection of the sentence was parsed. An example of a
chart for the sentence “The boy ate candy.” is shown in
Figure 2.

Figure 1 - Data Flow Diagram of Possible Punctuation Points Parser

 Figure 2 Chart Vertices and Edges

“The boy” would be a valid edge in the sentence which
begins at V0 and ends at V2.
In addition to storing the starting point, ending point and
the edge goal, the edge also stores two lists: the Haves and
the Needs. The Haves list represents what the parser has
identified so far. Going back to the “The boy” edge, the
goal of the edge is a sentence. The Haves list has a noun
phrase. But in order to be a sentence, which is the goal,
the edge also needs a verb phrase. So the Needs list
includes a verb phrase. If the edge cannot find a verb
phrase in the remaining sentence, it is called an
incomplete edge. Otherwise, the edge is called a complete
edge. Complete edges always have an empty Needs list.
The edges are implemented by the class ParseEdge.

The ParseParser class operates on a list of edges for each
vertex. Edges that end at a particular vertex are stored in
the same list. The ParseParser class organizes the edges
like this to facilitate simultaneous top-down and bottom-up
parsing using its three main functions: Predictor, Scanner,
and Extender. These functions create the edges and new
edges as the parse proceeds.

The first function, Predictor, uses a top-down approach. It
creates new edges from the needs of the current edge. “The
boy” edge needs a verb phrase. Thus, Predictor creates a
new edge that starts at the vertex right after the word “boy”
in the sentence and has a goal of a verb phrase. Each new
edge contains the right hand side (RHS) of one of the
available rules in the grammar that has verb phrase on the
left hand side (LHS) of a rule. An example of the new edge
creation process using the predictor function is shown in
Figure 3.

 Figure 3 – Execution of Prediction Function

The next function, Scanner, uses a bottom up approach.
Scanner looks at each edge in a chart to see if the
remaining words can be used to move the first object from
the Needs list to the Haves list. If it can be moved, then a
new edge is created with the new word(s) and added to the
appropriate edge list. An example of the new edge creation
process using the scanner function is shown in Figure 4.

 Figure 4 - Execution of Scanner Function

The final function, Extender, also operates in a bottom-up
manner. It takes an edge X and looks at all other edges in
an edge list that ends where X begins. If the goal of X
matches with the first item in the Needs list of one of the
searched edges, a new edge is created by combining the
two edges. The new edge starts at the searched edge and
ends at the end of edge X. Lastly, the matching object from
the Needs list is moved to the end of the Haves list. An
example of the new edge creation process using the
extender function is shown in Figure 5.

 Figure 5 - Execution of Extender Function

Searching System Implementation
The Searching System creates all feasible punctuation
possibilities. It uses five punctuation marks: period,
comma, semicolon, and question mark, plus whitespace
when no punctuation mark is chosen. The rules that govern
the insertion of punctuation marks are found in the class
ParseGrammar.

Because of the combinatorial complexity of considering all
possible punctuation schemes, ParseSearcher only
generates the sections of the search space that have the
possibility of containing a valid parse. The decision to stop
looking for more punctuation insertion points is made by
ascertaining the nonexistence of an edge in the chart that
begins at the first vertex and ends at the last vertex and has
a sentence, sentence phrase, partial sentence, connected
sentence, or sentence with an ending punctuation, as the
last item in the Haves list.

During each new iteration, P^4 takes advantage of the fact
that a chart parser can reuse past partial parses. Thus, as it
goes down another level in the search space, it passes
along the previous parse, copying all of the edges from the
previous parse into the current parse. Thus, during this new
parse, the parser only has to create the new edges added by
the new word or punctuation mark. This dramatically
increases the efficiency of the search system.

The final task of the search system is deciding which
collection of one or more valid sentences that has been
generated is the best one. In some cases, it is impossible to
pick the best parse without knowing the context of what
was said. In such cases, one would need the timing
information to decide if a pause meant a comma or a
period. For example, “good morning, mom. how are you?”
is as equally valid as “good morning. mom, how are you?”
P^4 makes no attempt to resolve this ambiguity. To choose
the final result, P^4 selects the parse that created the most
sentences with the least amount of punctuation while still
remaining valid as a best parse. This is done by rewarding
the parse with a large increase in rating per sentence found
and subtracting a small amount for each punctuation point
found.

As an example, consider the following ordered sequence of
words: “good morning mom how are you I am okay are
you okay I got a telescope for my birthday the telescope is
good and I like it”. This word sequence generates 7.4E18
possible punctuation permutations if created using a brute
force approach. P^4 required only 200 parses while
searching by quickly eliminating branches that would not
result in a solution, and found a correct solution of “good
morning, mom. how are you? I am okay. are you okay? I
got a telescope for my birthday. the telescope is good and I

like it.” Moreover, in testing, P^4 only took 0.135 seconds
to find the final solution on a modern notebook computer.

Visualization System
The final sub-system of P^4, the visualization system,
shows the results of the previously discussed parse and
search sub-systems. It is responsible for creating the
visualizations and tabular results that are shown in the user
interface of P^4. This includes the Edge Table, Search Plot,
and Parse Plot. The actual drawing of the charts is handled
by NodeXL.

The Edge Table lists all edges generated by the parser’s
parse chart during an execution. The top of the table
contains a list of the parsed words and the vertices that the
edges used. Then each edge is written to the table. An
example of edges as presented in the Edge Table are shown
in Figure 6. Each edge entry shows the span of indices that
the edge covers, the goal of the edge, the edge’s Haves
objects, the edge’s Needs objects, and the words that the
edge covers. The edge’s goal appears first and is separated
from the rest of the parts by “-->”. The Haves and Needs
objects are separated by “@”. Finally, the words covered
by the edge are separated by “-->” if the edge is complete.
These edges show how the grammar was explored to figure
out how to parse the collection of words and punctuation
marks. In addition to showing how the parse search space
was explored, they are also critical to creating the final
parsing chart which will be discussed last.

The Search Plot depicts the paths traveled while searching
for possible punctuation points. It is created by first
inserting a root node into the tree which is represented as a
cyan square at the top of the tree. A new node is added for
each decision point that is made while searching for the
punctuation point placements. Each decision node is
colored black. All possible decision outcomes are given a
node: comma (red), period (purple), question mark (blue),
semicolon (green) and no punctuation mark (white) as
shown in Figure 7. This creates an n-ary tree where there
are n possible search decision choices. The black circle
represents this decision point in the tree and allows the
shape of the tree to remain visually pleasing.

(0, 5) S_END --> S Pun_End --> good
morning , mom .
(5, 6) Question --> Interrogative @ VP NP

 Figure 6 - Example of a Complete and Incomplete

 Figure 7 - Example Search Plot

The Parse Plot is built from the complete edges found in
the parser’s parse chart. Not all complete edges in the
parser are part of the final chosen parse. In order to
determine which edges belong and which edges do not, the
table of complete edges must be recursively searched and
matched using a bottom up approach relative to the Edge
Table as illustrated in Figure 8.

 Figure 8 - Creating Parse Plot from Edge Table

The algorithm finds the correct ROOT edge first by
starting at the bottom of the table then recursively expands
up the table. The objects in the Haves list are matched in a
right-to-left manner to the goal of subsequent edges in the
table. As edge goals are matched to objects in the Haves
list, the goal is flagged as used and cannot be used by other
Haves objects as a potential match. In addition, the Haves
object is also flagged once it has a match so it can no
longer be expanded. If a match cannot be found, it must
be a leaf node of the parse tree. The words and

punctuation marks found in the final solution are placed in
the leaf node in a right-to-left manner. Once all Have
objects derived from the ROOT edge have been completely
matched, the parse tree is complete and can be displayed to
the user interface. An example of the Parse Plot is shown in
Figure 9.

 Figure 9 - Example of Parse Plot

Sample Runs and Results
In this section, a sample run of P^4 is described. The Input
to Parse text box is located at the top of the window. It is
where the user will input the series of words that P^4 will
use. The sample run text is shown in the Input to Parse text
box in Figure 10.

 Figure 10 - Input to Parse Text Box

Since the current grammar is limited in scope, the user
must know the rules of the grammar in order to create a
series of words that can be processed by P^4. To find out
the terminal and non-terminal rules of the grammar, the
user can press the Show Grammar button located above
Input to Parse. Sections of the grammar window are shown
in Figures 11 and 12. These rules can be modified by the
user since they are stored in a simple text file.

 Figure 11 – Part of Terminals from Grammar Window

 Figure 12 – Part of Non-Terminals from Grammar Window

Below the Input to Parse text box is the Optimal Solution
text box. The best possible fully punctuated parse that P^4
could find will be written here after the search is complete
as shown in Figure 13.

Figure 13 - Optimal Solution Text Box

Running the sample input with P^4 generates the three
main visualization outputs: Edge Table, Search Plot and
Parse Plot. The Edge Table control features a table of
edges and two checkboxes. The top of the table displays
the final solution with numbered nodes. In this case, there
are ten nodes and nine edges to represent the parse chart
after punctuation marks were inserted. Figure 14 shows the
top of the Edge Table for the sample input.

 Figure 14 - Top of Edge Table from Sample Run

The checkboxes determine whether incomplete or
complete edges are shown. Figure 15 displays a portion of
the Edge Table from running the sample input.

 Figure 15 - Portion of Edge Table from Sample Run

In the highlighted example, the middle edge has a goal of
S_END. It has completed that goal with Question and
Pun_Ques. The phrase “how are you?” is located between
the indices of 5 and 9 as seen at the top of the Edge Table.
Next, the Search Plot displays how P^4 efficiently
navigated the search space of possible punctuation
permutations. The plot is shown in Figure 16.

 Figure 16 - Search Plot from Sample Run

To the right of the Search Plot is a text box showing the
amount of time it took for the search to conclude. It allows
the user to track the increase of time as the parses become
more complex when adding additional words. The time it
took to search and parse for “good morning mom how are
you” is shown in Figure 17.

 Figure 17 - Search Time from Sample Run

The final output is the Parse Plot. This plot, shown in
Figure 18, displays how the sample input was parsed after
it was punctuated by P^4. It is made up of a parse tree
where each node is the LHS of a grammar rule except for
the leaf nodes which are terminals. Punctuation marks are
represented by the word in all capital letters since the actual
punctuation marks may be hard to see due to their small
size. The organization of the graph does not take into
account the order of the words in the sentences. It only
ensures that they are on the right ply. Currently, the
software cannot specify the left-to-right order in which the

graphs are drawn. The tree starts at the root and then is
split into sentence phrases which are made up of one or
more sentences. The sentence phrases are then defined as
sentences with ending punctuation. Those are then defined
as their respective type of sentence and punctuation mark.
Phrases such as verb phrase are defined next which is then
followed by parts of speech for each of the words. Finally,
the words and punctuation marks are inserted to complete
the parse tree.

 Figure 18 - Parse Plot from Sample Run

As shown in the results from the sample run, P^4 provides
a relatively straightforward interface with a goal of
creating syntactically correct sentence(s) by adding
punctuation marks to a sequence of words supplied by the
user.

Conclusions
This work presented a system, Possible Punctuation Points
Parser (P^4) that efficiently inserts punctuation marks into
a string of words to form a syntactically correct sequence
of one or more sentences. It does this by using a chart
parser that simultaneously performs a bottom-up/top-down
parse with an optimized search algorithm that maximizes
pruning of the search space. In order to make the results as
easy as possible to be analyzed by the user, P^4 provides
several data visualizations to show the output from the
chart parser, how the punctuation space was searched, and
finally, how the final solution was generated by the
grammar. The main contribution of this work is that it
provides a proof of concept that shows that punctuation
marks can be automatically inserted into voice-to-text
transcriptions produced by mobile devices rather than
requiring the user to explicitly state the necessary
punctuation marks.

Future Work
Currently, the most pressing limitation is the grammar’s
small size which limits input, thus rendering the system’s
ability to handle only toy problems. The grammar needs to
be expanded to allow for a wider range of use cases. In
addition, as more rules and terminals are added, this will
impact the parsing time as chart parsers create exhaustive
solutions by examining every rule. This may lead to
considering combining probabilistic methods with the chart
parser.

Additionally, the ranking algorithm in selection of the final
result can potentially be improved by incorporating syntax
usage patterns found in the American English language.
The final improvement of the parsing itself would be to add
error handling to the parsing system by either exiting
gracefully with a partial parse or looking at other methods
to predict the missing information when a correct parse is
not possible with the supplied grammar. Concerning the
interface, the plots could be made more robust in terms of
organization and presentation of the nodes found in the
trees generated by P^4. This includes the ability to add
additional information about the parses that occurred at
each node through changes in visual characteristics such as
color, size and location. Finally, individual partial parses
need to be examined in depth. This could be accomplished
with additional pop-up windows made available by simply
selecting one of the nodes in the Search Plot.

References
[1] Arnold, D. “Chart Parsing”, Dept. of Language & Linguistics,
University of Essex.
[2] Russell & Norwig. AI A Modern Approach. 2013.
[3] Huang, J., and Zweig, G. “Maximum entropy model
for punctuation annotation from speech”. In Proc. of
ICSLP, pp. 917-920, 2002.
[4] Kim, J., and Woodland, P. “The use of prosody in
a combined system for punctuation generation and
speech recognition”. In Proc. of Eurospeech, 2001.
[5] “iPhone User Guide For iOS 6.1 Software”, p. 25, 2013.
[6] NodeXL: Network Overview Discovery and Exploration for
Excel 2007/2010. Social Media Research Foundation. Retrieved
March 13, 2013 from http://www.smrfoundation.org/nodexl.

http://www.smrfoundation.org/nodexl.

