
StructProc8b:

A Language for Scientific Reasoning

Joseph Phillips, Donald Bartoli, Michael Cohen

Applied Philosophy of Science
4330 S. Michigan Ave.

Chicago, IL 60653, USA
 jphillips@scienceomatic.com, penguinkin@gmail.com, mike@scienceomatic.com

Abstract
Scientific knowledge representation and reasoning presents
unique challenges which the computer language
community under-appreciates. We present early work on a
scientific reasoning environment and knowledge base
designed to simultaneously support a community of
scientists, to handle scientific knowledge like floating
point distributions, meta-data and meta-knowledge, and to
treat explanations as natural objects. We present the
results of preliminary experiments on the speed with which
it handles meta-data.

1. Introduction

Science is different things at different scales.
Macroscopically, science is a multi-generational,
transnational, multicultural human undertaking that seeks
to obtain ever more observations of the Universe. It seeks
to explain these observations in as metaphysically-neutral
a manner as deemed warranted. At medium scales,
science is what a community of scientists does. Scientific
communities share interest in a common field and hold
broad yet mutable principles of how to accept and reject
observations and explanations. More specific still,
science is the day-to-day actions of the scientist going
about their business: observing, calculating, theorizing,
collaborating, reading, and writing.

As hopefully non-controversial as the previous
paragraph was, it is easy to overlook, for that is not how
science is studied. Indeed, the fragmentation of
disciplines which study science (history, philosophy,
sociology) echoes the fragmentation of science itself into
fields, sub-fields, and Kuhnian “paradigms” within sub-
fields (Kuhn 1962).

Unfortunately, attempts at applying computing to
science have been not only similarly fragmented, but also
piecemeal. Large computing projects have been
undertaken in science, the Human Genome Project
(Frenkel 1991) and SETI@home (Korpela et al. 2001)
being two ready examples, but they generally show
immense computing power being applied to important,
yet narrow problems.

A computing system designed to address the full sweep
of science, by field and by scale, requires the following
characteristics:
 Support for the truly large scale collaboration (e.g.

support for a large portion of the world's scientists)
 Built-in support for handling scientific meta-data and

meta-knowledge
 Built-in support for creating and manipulating

explanations as first class objects in their own right
 Sophisticated support for numbers, especially

distributions of floating points
 Allowance for detecting and limiting degrees of

contradiction, and mechanisms for keeping it limited
 Allowance for building and supporting simulations

(loops not being disfavored over recursion)
 Extendable support for incorporating both existing and

new special-purpose computing packages

We are building the Scienceomatic 8b (SOM8b) as an
environment for science: scientific reasoning, scientific
representation, scientific visualization, etc. It is being
designed to utilize existing, more specialized, programs to
do reasoning, analysis, graphing and other computational
tasks.

One of the main tools of SOM8b is its representational
language: StructProc8b (SP8b). SP8b is designed to
address all of the issues listed above. In this paper, we
discuss its abilities to deal with explanations as objects
and its ability to support a community of allied scientists.
We concentrate on its ability to handle meta-data in a
timely manner after discussing science and other
approaches to representing scientific knowledge.

2. On Science and Meta-data

Science is a broad, dynamic and multifaceted endeavor.
This section concentrates on three aspects, instead of
attempting an in-depth survey.

First, at medium and large scales, science is a social
enterprise: multi-generational, collaborative, and even
tribal. New scientists are generally indoctrinated into their

discipline by apprenticeships under more established
scientists. Scientists of a given discipline often meet at
conferences to share ideas and discuss their work.

Furthermore, scientists are expected to publish their
work, except when outweighed by competitive concerns
such as national security or trade secrecy. As scientific
knowledge traverses the arc of documentation and
publication – from lab notebook, to group meeting talk, to
conference paper, to journal article, to textbook – the
knowledge is cleansed, neatened and packaged. Tables of
supporting data are sampled, summarized or altogether
omitted. Data-points that do not fit well, and the
rationalizations for why they do not belong, are removed.
Counter arguments to conclusions are presented in outline
form, if they are given at all.

Ideally, however, later compilations reference earlier
sources so that the sufficiently curious and diligent can
follow the links from the textbook back to the original lab
notebook.

Second, scientific data and algorithms often have
several unique characteristics. Scientists often deal with
distributions of numbers, rather than individual floating
point values. Scientific algorithms, especially
numerically-intensive and simulation algorithms, heavily
use variables and iterations.

Further, scientists place importance on meta-data and
meta-knowledge associated with scientific values. Some
data relates to the single numbers, like dimensions and
units. Other data and knowledge are about organized
collections of numbers. For example, when statistics are
computed, it is expected that the sample size (N) will be
given. Other data and knowledge still relate to multiple
collections of data, multiple sets of experiments or a
series of calculations. These include the answers to
questions like “Who did them?”, “Which institution
facilitated their research?” and “Who paid for the
research?”

Third, explanations are themselves scientific objects. In
many ways, this situation extends mathematics'
relationship with proofs. A proof is a mathematical object
which is graded by at least two criteria: (1) “Are all the
premises reasonable and are all the steps valid?” and (2)
“Is the whole structure elegant?”.

Purely deductive scientific reasoning steps, like some
equation manipulations1, share the same criteria.
However, science is rarely purely deductive. The validity
of non-deductive premises and steps are often gauged by
fidelity to established protocol. In the experimental
sciences, this means learning acceptable lab or field
technique. As exciting research often pushes boundaries,
new protocols have to be scrutinized relative to meta-
protocols.

1 An example of a non-deductive equation manipulation step comes
from physics. The 2-body quantity known of the reduced mass of a
system of two masses m1 and m2 is (m1*m2)/(m1+m2). For m1 >> m2

it is common to approximate this just as m2.

What counts as an explanation is specific to both the
discipline and the Kuhnian paradigm of a scientific field.
In some fields, diagrams are an essential part of
explanations. Particular diagrams are highly idiosyncratic
to particular disciplines (Giere 1999). Thought
experiments are much the same. Further, what counts as
an explanation depends on what one allows to count as
reasonable alternatives (van Fraassen 1980). For
example, in most sciences, constructing an explanation of
why some natural phenomena exists in terms of its use to
us (e.g. humanity) is not allowed. However, it is allowed
in biology, in the narrow sense of advancing the adaptive
fitness of the organism or species (Mayr 1988).

3. Prior Work

Computing has been applied to science and related
technological problems since the invention of computers.
However, then as now, the emphasis has been on solving
specific scientific problems.

More recently people have been interested in scientific
reasoning systems. In 2004, teams from SRI, Cycorp,
Ontoprise Team and the Knowledge Based Systems
Group at the University of Texas at Austin competed in
building systems that could answer Advanced Placement
chemistry questions (Friedland et al. 2004). One of these
groups kept on going to build a system for biology too
(Gunning et al. 2010). Their systems generally are able to
handle pure college freshman-level science questions, but
are brittle in that they are less able to reason about their
own internal knowledge state.

Such systems advance the art of scientific knowledge
representation, but as best we can tell, purposefully lack
advanced abilities to handle conflicting data and
knowledge. The fundamental assumption they seem to
share is that science is a more-or-less static body of
knowledge. Once entered correctly, the system is usable.

For us, however, science is an on-going collaborative
process. Different people can hold different opinions at
the same time. One person can hold different opinions at
different times. We emphasize the history of changes of
thought.

Bayesian network based systems are an alternative to
logic and frame-based systems such as Cyc and the others
mentioned above, and our own SP8b. We discuss why we
think our frame-based system is better suited to open-
ended scientific knowledge representation in section 6.

4. The Scienceomatic 8b and StructProc8b

The Scienceomatic 8b (SOM8b) is an environment for
scientific reasoning designed to support a variety of
general and specialized scientific programs, including
theorem provers. We hope to grow it into an “operating
system of scientific reasoning”: an allocator of computing

resources to various programs to solve given problems2.
StructProc8b (SP8b) is a frame-based language for

representing scientific knowledge. It is strongly-typed and
classes are instances which may be created dynamically.
SP8b has some inherent reasoning abilities, and will be a
Turing-complete language in which reasoning algorithms
may be written. However, currently its main use is to store
knowledge for the SOM8b environment.

Idea
{*
 isA­>assertZ(Idea); // (1)
 instanceOf­>assertZ(Idea);

 ideasIsImmutableA­> // (2a)
 subAssertZ(false); // (2b)
 ideasIsSingletonA­>
 subAssertZ(false);
 isIdeaANonspecifiedSetMemberA­>
 subAssertZ(false);
*};

Figure 1. Explicit construction.

Figure 1 illustrates SP8b's explicit construction of
Idea. (Idea is the root set of which everything else is
an instance, akin to Object in Java.) When an object is
explicitly constructed, its attribute-value pairs (called
“properties”) are explicitly given, along with how the
value is asserted. For example, the line labeled (1) states
that Idea is a subclass of itself. (assertZ(val)
means “insert val as the new last value in the list of
values for attribute isA”. There is also
assertA(val): “insert as the new first value”, and
assert(val): “erase all previous values and only hold
val”).

Lines (2a) and (2b) show inherited values:
subAssertZ(val) specifying not values of Idea
directly, but values of its instances.

final While
{*
 isA­>assertZ(PredefCmdLoop);

 ideasImplicitConstructorA­>
 subAssert
 (^ImplicitConstructor
 [*
 [[commandsTestA, Idea],
 [commandsBodyA, Idea]
]
 *]
);
*};

Figure 2. Implicit construction.

Figure 2 illustrates SP8b's implicit construction of the
value inherited by instances of While for attribute

2 A web interface for this system is under active development.

ideasImplicitConstructorA, in this case
While's own constructor. Implicit construction creates
anonymous instances of classes where the constructor call
fills in values for attributes listed in the constructor.
Implicit construction is used extensively to define stylized
knowledge efficiently. It is also used to define procedural
knowledge like flow control and functions.

Implicit constructor calls begin with a caret (^), have
the class name, and then the arguments wrapped between
[* and *]. This particular constructor call initializes
attribute implicitConstructorsAttrUTypeListA
(not shown, but given in ImplicitConstructor's
definition) to the list of lists:

 [[commandsTestA,Idea],
 [commandsBodyA,Idea]]

What is being constructed is While's own constructor.
The first argument to a While constructor call will be its
value for attribute commandsTestA, and the second
argument, its value for attribute commandsBodyA.
Thus

^While[* true,stdOut
­>printLn("Hi!")*];

is an infinite loop that prints “Hi!”.
All objects may be elaborated upon further with

subsequent explicit constructions until the keyword
final is given in the last one (as shown for While in
figure 2). final means no more assertions may be made
for that object. For classes, there is also the keyword
noMore, meaning no more instances of the class may be
created.

From the start SP8b was designed to (1) support
communities of scientists, (2) handle scientific knowledge
like distributions, iterative simulations, meta-data and
meta-knowledge, and (3) treat explanations as first-class
scientific objects. Support for communities of scientists
comes from SP8b's huge shared virtual address space and
its internal grammatical knowledge structures which
attempt to make it language independent.

SP8b programs are intended to reside on a server.
Running an SP8b program follows the client-server
computing model. This allows one user's SP8b
knowledge structures to be selectively “published” on the
server for other users to access. Users may define groups
of other users, assign the work done during a particular
session to one of those groups, and specify
user/group/other permissions in the style of the Unix file-
system.

SP8b programs are composed of objects stored in a
virtual 320 bit “address space”3. We intend to allow all

3 It is different from an address space in that SP8b “addresses” are
variably-sized. The addresses of sparsely-described identities will
be smaller than those of richly-described ones.

interesting4 work of all users to be saved forever. (If 320
bits are not enough, then we have built-in upwards
compatibility to increase it.)

Starting a new session causes a 256 bit hash function5 to
be computed from the user name, log-in time, a counter6,
and other parameters to uniquely identify that new
session. Objects created during that session share the
same 64 bit “page” and are generated at sequential virtual
addresses from 0 to 264-1.

Having a scientific community's work on a single
virtual server facilitates collaboration. The full arc of
documentation and publication – from lab notebook to
textbook – is gathered in one virtual spot, in one form.
Anything is viewable by anyone (permissions permitting),
with considerably less effort than following a tree of
references in printed journals, or even conventional online
links.

Further, the SP8b attempts to be natural language
independent. The 320 bit address uniquely identifies each
frame, and is called its identity. At each address could lie
either an idea node (a data-structure that is a node in a
frame system) or a node of a container data-structure (e.g.
a linked list or binary tree node). Separate dictionaries
map identities to natural language terms; thus the system
can support multiple languages.

As much as possible, we have avoided making SP8b
output hard-coded strings of text in English (or any other
natural language) in favor of building structures that may
be translated by grammars into strings for natural
languages. A primitive grammar for English currently
exists, and we intend to follow it up with grammars for
Spanish, German and Japanese.

The second major design principle of the SP8b is
greater support for scientific knowledge like distributions,
iterative simulations, meta-data and meta-knowledge.
Why do scientists turn to computers? (1) for their speed,
(2) for their precision, and (3) for their ability to handle
large datasets. Our 320 bit “address space” was
developed with large datasets in mind. As for speed, a
dedicated, single-purpose program will always have faster
run-time speed than SP8b. However, if you want to
minimize the developer's (knowledge-engineer's or
scientist's) time, then perhaps SP8b is a better option.
Additionally, SP8b is designed to facilitate scientific
knowledge representation and reasoning by supporting
iterative simulations and distributions, checking and
computing meta-data and meta-knowledge, and doing
thoughtful garbage collection.

Although its syntax is different, SP8b has been
developed with contemporary C/C++/Java/C#
programmers in mind. It has C-inspired flow control

4 A subject term that is more precisely defined below.

5 Currently SHA-256.

6 In case of collision: when the hash function regenerates a number
already in use, the counter is incremented and another hash value is
computed.

instructions corresponding to for (For), while
(While) and do-while (Repeat) loops, as well as the
if-else (If) conditional. It also has a Test statement
meant to encode rules or decision trees concisely. Test
is in some ways more general and in other ways more
restrictive than C's switch statement.

This contrasts with languages like Scala, where
“elegant” programs minimize variable usage and
emphasize recursion. Scientific simulation programming
relies heavily on variables and iteration.

Another basic design principle of SP8b is to minimize
the number of basic data-types by favoring more general
ones over less general ones. Thus:
 Instead of an integer data-type, there is a rational type.

Integers are just rationals with denominators of 1.
 Instead of a set data-type, there is a bag type, which is a

cross between sets and lists. Bags are like sets in that
items are unordered. Bags are like lists in that the
same item may be present more than once. (Bags may,
of course, be used as if they were sets.)

 Instead of a simple floating point type, there will be a
distribution of floating points. Binary operations
(other than equivalence) on distributions grow the
resulting distributions combinatorially until some
maximum distribution size is reached. After that,
results are stochastically sampled.

 Instead of arrays, there will be maps. If the map's
domain has a fixed finite size, then amortized access
time is guaranteed to be O(1) (physical memory
limitations permitting).

No floating point (distribution) equivalence operator
exists. Instead, equivalence between floating point values
will be checked algebraically, by a theorem prover, based
on the distribution's derivation, and on domain
knowledge.

Although rationals, floating point distributions and non-
numeric “symbols” are all idea nodes, a distinction is
made between unannotated and annotated values.
Unannotated values are the rationals, floating point
distributions and identities themselves. For example, 2.0
is an SP8b unannotated value. Annotated values are
unannotated values which have been augmented by meta-
data, like dimensionality, units, limits, attributes, etc. For
example, 2.0(*meters) is an SP8b annotated value.
Operations on values automatically checks meta-data for
compatibility (e.g. attempting to add 2 meters to 2
seconds is illegal), and generates values with the meta-
data appropriately computed.

Slightly different operators exist for unannotated and
annotated values. For example, ordinary addition is
defined over unannotated numbers. However, for
annotated values representing numbers, this is
insufficiently specific. Instead, four types of addition are
defined:
 Group addition: creating a collection of things from

two existing collections,
 Delta group addition: increasing the size of a collection

of things by adding a semantically (if not numerically)
small collection to it,

 Extension addition: creating not a collection, but a new
single thing, whose attribute is extent of the first and
second combined, and,

 Delta extension addition: extending the degree of some
thing by a semantically small amount.

While all four of these addition operators add 2+2 to 4,
they differ in how they manipulate their corresponding
meta-data. For example, the algorithm for group addition
does a set union among the sets of two lists of sets. For
more details, please see Phillips 2010 and Phillips 2011.

Naturally, identities differ in their importance. Some are
intermediary results along the way to some uninteresting
computation, like temporarily used iterators. These are
uninteresting, and unworthy of saving. Others result from
a user calculation on some empirical data or object.
These are all potentially interesting.

Conventional garbage collecting languages use
algorithms that recycle memory which is no longer being
pointed to from the outside. This approach is too crude
for SP8b for several reasons, including the fact that all
objects have pointers to them from the outside since
everything is in the ontology. Instead, an object's position
in the ontology dictates its default interestingness, which
in turn automatically determines whether it may be
garbage collected.7

SP8b will get double-use from the infrastructure for
garbage collection, even for objects not subject to
automatic garbage collection. Counters in objects that
keep track of how many times other objects refer to them
may be used to compute an overall information content of
a knowledge base. This can be used as a gross Occam's
Razor heuristic: a combination of terms and prediction
corrections, used to describe a scientific knowledge base,
which the system can try to minimize.

SP8b computations will automatically generate a trace
of their reasoning. This trace can both be displayed to the
user for them to double-check, and can be run as an
answer-generating program for stochastic computations.

5. Experiments

SP8b's large virtual address space, and its ability to
selectively publish results, are straightforward
programming problems inspired by decades-old file-
system permission schemes. Either they work properly or
do not, and thus will not be examined here.

Because both the SOM8b and SP8b are under
development, presently insufficient knowledge bases and
insufficient reasoning abilities are coded to properly test
justification graphs.

This leaves the testing of its meta-data handling. Since
Phillips 2010, there was an open question regarding how

7 Garbage collection is implemented but primitive.

much meta-data handling slowed computation. Here, we
report on an effort to find out.

In designing the infrastructure for manipulating meta-
data, we face a common conundrum of quasi-compiled
system builders. The more we hard-code in our
implementation language (currently C++), the more speed
we gain, yet the more flexibility we lose, in defining how
SP8b handles meta-data.

For these experiments, we chose to use libraries written
in SP8b. This approach accomplishes two things: (1) it
establishes a base-level of performance: inflexibility of
implementing meta-data handling in C++, in the future,
should be outweighed by speeds significantly faster than
this, and (2) it shows users how to write their own meta-
data libraries.

All experiments were done on a Lenovo R61 laptop
with 3GB RAM and an Intel dual-core T7100 1.80GHz
processor running Fedora 16 Linux. The program was
compiled with GNU gcc 4.6.3 with optimization level O2.

Data on 694 exoplanets (planets not orbiting our Sun)
was download on or shortly after 2013 January 30th from
http://exoplanets.org/table. The planetary minimum mass
was extracted along with its units (fraction of the size of
Jupiter) and references (URLs). This data was translated
into SP8b as files, with all of the references as
independent objects, and information on 7, 70 or all 694
planets.

^Do
[*[
 ^VarDecl[* @iter, Iterator *],
 ^VarDecl[* @sum, Value *],
 ^VarDecl[* @count, Rational *],
 ^VarDecl[* @value, Idea *],
 @count := 0,
 @sum := 0.0,
 ^For
 [*
 @iter :=
 Planet­>
 localProp_iter(hasInstance),

 !@iter­>iter_isAtEnd(),

 ^Do
 [*[
 @value :=
 @iter­>iter_value()­>
 localGet(minMassA),
 ^If
 [*
 @value­>isInstanceOf(Value),
 ^Do
 [*[
 @sum :=
 @sum +grp @value,
 @count := @count +ext 1
]*]

 *]
]*],

 @iter­>iter_advance()

 *],

 stdOut­>printLn(""),
 stdOut­>print("Sum: ")­>
 printLn(@sum),
 stdOut­>print("Count: ")­>
 printLn(@count)
]*];
quit;

Figure 3. Summation loop.

We ran a loop that computed the sum of the minimum
mass. Not all of the planets had their mass listed, so the
loop checked for that (see figure 3). For the “No meta-
data” case, the loop was run with unannotated values of
minMassA: no meta-data was computed. This measured
the loop's time, apart from meta-data computation.

For the “Units, subject and attribute” case, the loop
was run on annotated values which computed the units
and attribute by checking that they matched. It also
computed the subject by looking for a class that subsumes
the subjects of both operands (see Phillips 2010).

For the “All meta-data” case, the loop was run on
annotated values with the units, subject and attribute
computed as above, as well as references. Reference
symbols were kept in a bag that was used as a set (single
occurrences only). Bag sizes grew monotonically.

All cases described above were run 9 times. The first
run was always thrown out (to discount any filesystem
buffering issues). The table below shows the averages
and standard deviations of the times taken by the latter 8
runs. (The summing loop was timed, file parsing was
not.) All values are times in seconds.

n=7 n=70 n=694

No meta-data 0.1102
±0.00024

0.5459
± 0.00077

5.003
±0.048

Units, subject
and attribute

0.2815
±0.0016

3.126
±0.016

60.90±8.7

All meta-data 0.4656
±0.0020

4.706
±0.035

235.5±68.

Table 1.

We interpret these results as follows:
(1) As expected, computing meta-data makes calculating
more expensive. Meta-data computing loops took 3-47
times longer. Assuming the worst figures are due to
virtual memory, we are heartened that the marginal cost
of additional meta-data seems to be relatively low.
Although computing the resulting set of references is O(n
lg n), for the n=7 and 70 cases “All meta-data” only ran

65% longer than the “Units, subject and attribute”.
(2) For the n=694 cases of “All meta-data” and “Units,
subject and attribute” we believe the system took
significantly longer because of virtual memory. The
system has a primitive garbage collector. We expect
these times to go down as it is made more sophisticated.

One interpretation of this is that meta-data computation
is too expensive: if not in time, then in memory. That
interpretation, however, assumes that computing
resources are more valuable than a scientist's time. Had
we summed numbers with nothing in common – times,
distances, and masses of planets, insects, and atoms –
SP8b would have alerted us of trouble. This ability
becomes more important as computation becomes more
deeply embedded in large, inhomogeneous, computational
frameworks. SP8b can check (and convert) units, and
detect errors in assumptions.

Still, the problem of the poor times remain. The
garbage collection algorithm is primitive. We believe that
as it is refined and database access are implemented, this
problem will no longer manifest.

Alternatively, perhaps we can gain both the speed of
unannotated computation with the correctness of
annotated computation, by defining functions that operate
over whole classes, not just two operands at a time. We
expect data of instances from the same class to have
similar meta-data. This could be recorded at the level of
the class, or checked by algorithms that were optimized
with this assumption. Then, sums or other computations
could be done with the efficiency of unannotated values,
but with the security of knowing meta-data was handled
correctly.

6. Discussion

Here we discuss design decisions, as well as the
methodological one: “Why a frame-based system instead
of a Bayesian approach?” One potential criticism is that
the semantic web obviates the need for an “operating
system” for scientific reasoning like SOM8b: the role of
SP8b could be done by an XML-based markup language.
This, however, is a misunderstanding of the scope of our
research. We seek not only to specify meta-data (e.g.
units) but also knowledge, like algorithms. Thus, on one
hand, our scope is extremely broad: a marriage of XML-
like mark up with something like the Java Virtual
Machine's algorithm generality. On the other hand, we
are consciously limiting ourselves to science.

Another potential criticism is that because we intend to
incorporate a theorem prover, why not build our system
around one? The answer is that deductive reasoning is
only a subset of scientific reasoning. We believe that a
meta-reasoner that calls deductive reasoners, as needed,
better models how scientists actually behave.

A third potential criticism is on the use of a fixed-
length address space. We did this purely for simplicity.
And, as all knowledge currently resides on the same
virtual server, there is less of a need to point to resources

outside of itself. (It can refer to resources outside with
URL strings. However, when that data or knowledge is
internalized, it is assigned its own page. Humans find
specifying a 320 bit number difficult, so the system uses
“Local Resource Locators” like natural language strings.)

The Bayesian approach is perhaps the most well known
alternative to the frame system approach to scientific
knowledge representation. The Bayesian networks or
“graphical models” have been widely adopted, especially
for diagnosis applications, such as medicine and for
mechanical failures (Szolovits 1978, Isermann and Ballé
1997). Such approaches, however, generally assume a
very specific type of wisdom, and a very specific type of
ignorance. The wisdom is that the principles of the
system under study (e.g. an automobile, a human body)
are well understood, and that sufficiently similar
populations have been studied from which relevant
statistics have been gathered. The ignorance is that while
we can readily observe symptoms of a malfunctioning
system, we cannot observe its exact state because it is
either too costly and time-consuming to dismantle (e.g.
the car), or because doing so would cause more harm than
good (e.g. vivisection on the human). When used
diagnostically, Bayesian reasoning's power derives from
applying knowledge of both how a system grossly works
(the graph's layout), and about the population (the priors),
to make an educated guess about a data-poor individual.

We acknowledge Bayesian reasoning's power, yet we
seek not to be constrained by its limitations for adequate
domain knowledge, to build a graph and adequate
distribution knowledge, and to populate it with priors.
We believe the best solution is to give the system the
ability to build its own Bayesian networks as needed.

Fortunately, SP8b supports the traditional programming
flow-control structures and variables to implement
Bayesian network building algorithms.

We believe that default reasoning is a better model of
how scientists grapple with their grander issues: “What is
light exactly: particle, wave, or kind of both?”, “Are the
number of species fixed or can they evolve over time?”,
“Does phlogiston have negative weight or should I
believe in Lavoisier's 'oxygen'?” We believe that it is an
abuse of Bayesian network notation to require a priori
enumerations of all alternatives, and it is impossible to
assign prior probabilities, in a principled fashion, for such
cases. Default reasoning, however, lets us proceed. “Let
us assume option 1, and go as far as we can. Now let us
try something else.”

Kuhn tells us that most scientists most of the time are
doing “normal science”: extending the current paradigm
instead of overthrowing it. And, in such cases, we intend
to use the logic portion of default logic as far as it can go,
and even to be able to use Bayesian reasoning and related
tools, such as stochastic simulations, to extend our
reasoning further.

7. Conclusion

Although SP8b is unfinished, it shows early promise. It
successfully computes meta-data, and can compute
additional meta-data attributes for a marginal additional
cost. We intend to implement measures to increase the
scale of computations which our system can compute,
with features like thoughtful garbage collection, database
access, and improved operations.

Further, we look forward to handling justifications as
we would other scientific objects, and to scaling the
system up to handle multiple users.

References

Frenkel, Karen A. 1991. The Human Genome Project and
Informatics Communications of the ACM. 34(11), Nov.
1991. pg 40-51.
Friedland, Noah; et al. 2004. Project Halo: Towards a
Digital Aristotle AI Magazine (AIM), 25(4): 29-48.
Gunning, David; et al. 2010. Project Halo Update –
Toward Digital Aristotle AI Magazine, 31(3): 33-58.
Giere, Ronald. 1999. Visual Models. Science without
Laws. Chicago, IL, USA: University of Chicago Press.
Chapter 7.
Isermann, R., Ballé, P. 1997. Trends in the Application of
Model-based Fault Detection and Diagnosis of Technical
Processes. Control Engineering Practice. 5(5). 709–719.
Korpela, E.; Werthimer, D.; Anderson, D.; Cobb, J.;
Lebofsky, M. 2001. SETI@home-massively Distributed
Computing for SETI, Computing in Science &
Engineering. 3(1). Jan/Feb 2001. 78 – 83.
Kuhn, Thomas. 1962. The Structure of Scientific
Revolutions, 2nd Edition. Chicago, IL, USA: University of
Chicago Press. Chapters 3 and 4.
Mayr, Ernst. 1988. The Multiple Meanings of
Teleological. Toward a New Philosophy of Biology.
Cambridge, MA, USA: Harvard Univ. Press. Chapter 3.
Phillips, Joseph. 2010. A Proposed Semantics for the
Sampled Values and Metadata of Scientific Values.
Midwest Artificial Intelligence and Cognitive Science
Conference. 16-23.
Phillips, Joseph. 2011. Towards a Technique of
Incorporating Domain Knowledge for Unit Conversion in
Scientific Reasoning Systems. Midwest Artificial
Intelligence and Cognitive Science Conference. 154-159.
Szolovits, Peter. 1978. Categorical and Probabilistic
Reasoning in Medical Diagnosis. Artificial Intelligence.
11(1-2). 115–144.
van Fraassen, Bas C. 1980. The Pragmatic Theory of
Explanation. The Scientific Image. New York City, NY,
USA: Oxford University Press. Chapter 5.

