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Abstract
Scientific knowledge representation and reasoning presents 
unique  challenges  which  the  computer  language 
community under-appreciates.  We present early work on a 
scientific  reasoning  environment  and  knowledge  base 
designed  to  simultaneously  support  a  community  of 
scientists,  to  handle  scientific  knowledge  like  floating 
point distributions, meta-data and meta-knowledge, and to 
treat  explanations  as  natural  objects.   We  present  the 
results of preliminary experiments on the speed with which 
it handles meta-data.

1. Introduction

Science  is  different  things  at  different  scales. 
Macroscopically,  science  is  a  multi-generational, 
transnational, multicultural human undertaking that seeks 
to obtain ever more observations of the Universe. It seeks 
to explain these observations in as metaphysically-neutral 
a  manner  as  deemed  warranted.   At  medium  scales, 
science is what a community of scientists does.  Scientific 
communities share interest  in a common field and hold 
broad yet mutable principles of how to accept and reject 
observations  and  explanations.   More  specific  still, 
science  is  the  day-to-day  actions  of  the  scientist  going 
about  their  business:  observing,  calculating,  theorizing, 
collaborating, reading, and writing.

As  hopefully  non-controversial  as  the  previous 
paragraph was, it is easy to overlook, for that is not how 
science  is  studied.   Indeed,  the  fragmentation  of 
disciplines  which  study  science  (history,  philosophy, 
sociology) echoes the fragmentation of science itself into 
fields,  sub-fields, and Kuhnian “paradigms” within sub-
fields (Kuhn 1962).

Unfortunately,  attempts  at  applying  computing  to 
science have been not only similarly fragmented, but also 
piecemeal.   Large  computing  projects  have  been 
undertaken  in  science,  the  Human  Genome  Project 
(Frenkel  1991)  and  SETI@home  (Korpela  et  al.  2001) 
being  two  ready  examples,  but  they  generally  show 
immense  computing  power  being  applied  to  important, 
yet narrow problems.

A computing system designed to address the full sweep 
of science, by field and by scale, requires the following 
characteristics:
 Support  for  the  truly  large  scale  collaboration  (e.g. 

support for a large portion of the world's scientists)
 Built-in support for handling scientific meta-data and 

meta-knowledge
 Built-in  support  for  creating  and  manipulating 

explanations as first class objects in their own right
 Sophisticated  support  for  numbers,  especially 

distributions of floating points
 Allowance  for  detecting  and  limiting  degrees  of 

contradiction, and mechanisms for keeping it limited
 Allowance  for  building  and  supporting  simulations 

(loops not being disfavored over recursion)
 Extendable support for incorporating both existing and 

new special-purpose computing packages

We are building the Scienceomatic 8b (SOM8b) as an 
environment  for  science:  scientific  reasoning,  scientific 
representation,  scientific  visualization,  etc.   It  is  being 
designed to utilize existing, more specialized, programs to 
do reasoning, analysis, graphing and other computational 
tasks.

One of the main tools of SOM8b is its representational 
language:  StructProc8b  (SP8b).   SP8b  is  designed  to 
address all of the issues listed above.  In this paper, we 
discuss its  abilities to deal  with explanations as objects 
and its ability to support a community of allied scientists. 
We concentrate  on  its  ability  to  handle  meta-data  in  a 
timely  manner  after  discussing  science  and  other 
approaches to representing scientific knowledge.

2. On Science and Meta-data

Science is a broad, dynamic and multifaceted endeavor. 
This  section  concentrates  on  three  aspects,  instead  of 
attempting an in-depth survey.

First,  at  medium and large  scales,  science  is  a  social 
enterprise:  multi-generational,  collaborative,  and  even 
tribal.  New scientists are generally indoctrinated into their 



discipline  by  apprenticeships  under  more  established 
scientists.  Scientists of a given discipline often meet at 
conferences to share ideas and discuss their work.

Furthermore,  scientists  are  expected  to  publish  their 
work, except when outweighed by competitive concerns 
such as national security or trade secrecy.   As scientific 
knowledge  traverses  the  arc  of  documentation  and 
publication – from lab notebook, to group meeting talk, to 
conference  paper,  to  journal  article,  to  textbook  –   the 
knowledge is cleansed, neatened and packaged.  Tables of 
supporting  data  are  sampled,  summarized  or  altogether 
omitted.   Data-points  that  do  not  fit  well,  and  the 
rationalizations for why they do not belong, are removed. 
Counter arguments to conclusions are presented in outline 
form, if they are given at all.

Ideally,  however,  later  compilations  reference  earlier 
sources  so that  the sufficiently  curious and diligent  can 
follow the links from the textbook back to the original lab 
notebook.

Second,  scientific  data  and  algorithms  often  have 
several unique characteristics.  Scientists often deal with 
distributions of  numbers,  rather  than individual floating 
point  values.   Scientific  algorithms,  especially 
numerically-intensive and simulation algorithms, heavily 
use variables and iterations.

Further,  scientists  place  importance  on  meta-data  and 
meta-knowledge associated with scientific values.  Some 
data relates  to the single  numbers,  like dimensions and 
units.   Other  data  and  knowledge  are  about  organized 
collections of numbers.  For example, when statistics are 
computed, it is expected that the sample size (N) will be 
given.  Other data and knowledge still relate to multiple 
collections  of  data,  multiple  sets  of  experiments  or  a 
series  of  calculations.   These  include  the  answers  to 
questions  like  “Who  did  them?”, “Which  institution 
facilitated  their  research?” and  “Who  paid  for  the  
research?”

Third, explanations are themselves scientific objects.  In 
many  ways,  this  situation  extends  mathematics' 
relationship with proofs.  A proof is a mathematical object 
which is graded by at least two criteria: (1) “Are all the  
premises reasonable and are all the steps valid?” and (2) 
“Is the whole structure elegant?”.

Purely  deductive  scientific  reasoning  steps,  like  some 
equation  manipulations1,  share  the  same  criteria. 
However, science is rarely purely deductive.  The validity 
of non-deductive premises and steps are often gauged by 
fidelity  to  established  protocol.   In  the  experimental 
sciences,  this  means  learning  acceptable  lab  or  field 
technique.  As exciting research often pushes boundaries, 
new  protocols  have  to  be  scrutinized  relative  to  meta-
protocols.

1 An example of a non-deductive equation manipulation step comes 
from physics.  The 2-body quantity known of the reduced mass of a 
system of two masses m1 and m2 is (m1*m2)/(m1+m2).  For m1 >> m2 

it is common to approximate this just as m2.

What counts as an explanation is specific  to both the 
discipline and the Kuhnian paradigm of a scientific field. 
In  some  fields,  diagrams  are  an  essential  part  of 
explanations.  Particular diagrams are highly idiosyncratic 
to  particular  disciplines  (Giere  1999).   Thought 
experiments are much the same.  Further, what counts as 
an explanation depends on what one allows to count as 
reasonable  alternatives  (van  Fraassen  1980).   For 
example, in most sciences, constructing an explanation of 
why some natural phenomena exists in terms of its use to 
us (e.g. humanity) is not allowed.  However, it is allowed 
in biology, in the narrow sense of advancing the adaptive 
fitness of the organism or species (Mayr 1988).

3. Prior Work

Computing  has  been  applied  to  science  and  related 
technological problems since the invention of computers. 
However, then as now, the emphasis has been on solving 
specific scientific problems.

More recently people have been interested in scientific 
reasoning  systems.   In  2004,  teams from SRI,  Cycorp, 
Ontoprise  Team  and  the  Knowledge  Based  Systems 
Group at the University of Texas at Austin competed in 
building systems that could answer Advanced Placement 
chemistry questions (Friedland et al. 2004).  One of these 
groups kept on going to build a system for biology too 
(Gunning et al. 2010).  Their systems generally are able to 
handle pure college freshman-level science questions, but 
are brittle in that they are less able to reason about their 
own internal knowledge state.

Such systems advance the art of scientific knowledge 
representation, but as best we can tell, purposefully lack 
advanced  abilities  to  handle  conflicting  data  and 
knowledge.   The fundamental  assumption they seem to 
share  is  that  science  is  a  more-or-less  static  body  of 
knowledge.  Once entered correctly, the system is usable.

For us, however,  science is an on-going collaborative 
process.  Different people can hold different opinions at 
the same time.  One person can hold different opinions at 
different times.  We emphasize the history of changes of 
thought.

Bayesian network based systems are an alternative to 
logic and frame-based systems such as Cyc and the others 
mentioned above, and our own SP8b.  We discuss why we 
think  our  frame-based  system  is  better  suited  to  open-
ended scientific knowledge representation in section 6.

4. The Scienceomatic 8b and StructProc8b

The  Scienceomatic  8b  (SOM8b)  is  an  environment  for 
scientific  reasoning  designed  to  support  a  variety  of 
general  and  specialized  scientific  programs,  including 
theorem provers.  We hope to grow it into an “operating 
system of scientific reasoning”: an allocator of computing 



resources to various programs to solve given problems2.
StructProc8b  (SP8b)  is  a  frame-based  language  for 

representing scientific knowledge. It is strongly-typed and 
classes are instances which may be created dynamically. 
SP8b has some inherent reasoning abilities, and will be a 
Turing-complete language in which reasoning algorithms 
may be written. However, currently its main use is to store 
knowledge for the SOM8b environment.

Idea
{*
  isA­>assertZ(Idea);        // (1)
  instanceOf­>assertZ(Idea);

  ideasIsImmutableA­>        // (2a)
        subAssertZ(false);   // (2b)
  ideasIsSingletonA­>
        subAssertZ(false);
  isIdeaANonspecifiedSetMemberA­>
        subAssertZ(false);
*};

Figure 1. Explicit construction.

Figure  1  illustrates  SP8b's  explicit  construction  of 
Idea.  (Idea is the root set of which everything else is 
an instance, akin to Object in Java.)  When an object is 
explicitly  constructed,  its  attribute-value  pairs  (called 
“properties”)  are  explicitly  given,  along  with  how  the 
value is asserted.  For example, the line labeled (1) states 
that  Idea is  a  subclass  of  itself.   (assertZ(val) 
means  “insert  val as  the  new  last value  in  the  list  of 
values  for  attribute  isA”.   There  is  also 
assertA(val):  “insert  as  the  new  first value”,  and 
assert(val): “erase all previous values and only hold 
val”).

Lines  (2a)  and  (2b)  show  inherited  values: 
subAssertZ(val) specifying  not  values  of  Idea 
directly, but values of its instances.

final While
{*
  isA­>assertZ(PredefCmdLoop);

  ideasImplicitConstructorA­>
    subAssert
    (^ImplicitConstructor
      [*
        [[commandsTestA, Idea],
         [commandsBodyA, Idea]
        ]
      *]
    );
*};

Figure 2. Implicit construction.

Figure 2 illustrates SP8b's implicit construction of the 
value  inherited  by  instances  of  While for  attribute 

2 A web interface for this system is under active development.

ideasImplicitConstructorA,  in  this  case 
While's  own constructor.   Implicit  construction creates 
anonymous instances of classes where the constructor call 
fills  in  values  for  attributes  listed  in  the  constructor. 
Implicit construction is used extensively to define stylized 
knowledge efficiently.  It is also used to define procedural 
knowledge like flow control and functions.

Implicit  constructor calls begin with a caret  (^),  have 
the class name, and then the arguments wrapped between 
[* and  *].   This  particular  constructor  call  initializes 
attribute  implicitConstructorsAttrUTypeListA 
(not  shown,  but  given  in  ImplicitConstructor's 
definition) to the list of lists:

   [[commandsTestA,Idea],
    [commandsBodyA,Idea]]

What is being constructed is While's own constructor. 
The first argument to a While constructor call will be its 
value  for  attribute  commandsTestA,  and  the  second 
argument,  its  value  for  attribute  commandsBodyA. 
Thus

^While[* true,stdOut 
­>printLn("Hi!")*];

is an infinite loop that prints “Hi!”.
All  objects  may  be  elaborated  upon  further  with 

subsequent  explicit  constructions  until  the  keyword 
final is given in the last one (as shown for  While in 
figure 2).  final means no more assertions may be made 
for  that  object.   For  classes,  there  is  also  the  keyword 
noMore, meaning no more instances of the class may be 
created.

From  the  start  SP8b  was  designed  to  (1)  support 
communities of scientists, (2) handle scientific knowledge 
like  distributions,  iterative  simulations,  meta-data  and 
meta-knowledge, and (3) treat explanations as first-class 
scientific objects.  Support for communities of scientists 
comes from SP8b's huge shared virtual address space and 
its  internal  grammatical  knowledge  structures  which 
attempt to make it language independent.

SP8b  programs  are  intended  to  reside  on  a  server. 
Running  an  SP8b  program  follows  the  client-server 
computing  model.   This  allows  one  user's  SP8b 
knowledge structures to be selectively “published” on the 
server for other users to access.  Users may define groups 
of other users, assign the work done during a particular 
session  to  one  of  those  groups,  and  specify 
user/group/other permissions in the style of the Unix file-
system.

SP8b  programs  are  composed  of  objects  stored  in  a 
virtual 320 bit “address space”3.  We intend to allow all 

3 It is different from an address space in that SP8b “addresses” are 
variably-sized.  The addresses of sparsely-described identities will 
be smaller than those of richly-described ones.



interesting4 work of all users to be saved forever.  (If 320 
bits  are  not  enough,  then  we  have  built-in  upwards 
compatibility to increase it.)

Starting a new session causes a 256 bit hash function5 to 
be computed from the user name, log-in time, a counter6, 
and  other  parameters  to  uniquely  identify  that  new 
session.   Objects  created  during  that  session  share  the 
same 64 bit “page” and are generated at sequential virtual 
addresses from 0 to 264-1.

Having  a  scientific  community's  work  on  a  single 
virtual  server  facilitates  collaboration.  The  full  arc  of 
documentation  and  publication  –  from lab  notebook  to 
textbook – is gathered in one virtual spot, in one form. 
Anything is viewable by anyone (permissions permitting), 
with  considerably  less  effort  than  following  a  tree  of 
references in printed journals, or even conventional online 
links.

Further,  the  SP8b  attempts  to  be  natural  language 
independent.  The 320 bit address uniquely identifies each 
frame, and is called its identity.  At each address could lie 
either an  idea node (a data-structure that is a node in a 
frame system) or a node of a container data-structure (e.g. 
a linked list or binary tree node).  Separate dictionaries 
map identities to natural language terms; thus the system 
can support multiple languages.

As much as  possible,  we have  avoided  making SP8b 
output hard-coded strings of text in English (or any other 
natural language) in favor of building structures that may 
be  translated  by  grammars  into  strings  for  natural 
languages.   A primitive  grammar  for  English  currently 
exists, and we intend to follow it up with grammars for 
Spanish, German and Japanese.

The  second  major  design  principle  of  the  SP8b  is 
greater support for scientific knowledge like distributions, 
iterative  simulations,  meta-data  and  meta-knowledge. 
Why do scientists turn to computers?  (1) for their speed, 
(2) for their precision, and (3) for their ability to handle 
large  datasets.   Our  320  bit  “address  space”  was 
developed with large datasets in mind.  As for speed, a 
dedicated, single-purpose program will always have faster 
run-time speed  than  SP8b.   However,  if  you  want  to 
minimize  the  developer's  (knowledge-engineer's  or 
scientist's)  time,  then  perhaps  SP8b  is  a  better  option. 
Additionally,  SP8b  is  designed  to  facilitate  scientific 
knowledge  representation  and  reasoning  by  supporting 
iterative  simulations  and  distributions,  checking  and 
computing  meta-data  and  meta-knowledge,  and  doing 
thoughtful garbage collection.

Although  its  syntax  is  different,  SP8b  has  been 
developed  with  contemporary  C/C++/Java/C# 
programmers  in  mind.  It  has  C-inspired  flow  control 

4 A subject term that is more precisely defined below.

5 Currently SHA-256.

6 In case of collision: when the hash function regenerates a number 
already in use, the counter is incremented and another hash value is 
computed.

instructions  corresponding  to  for (For),  while 
(While) and do-while (Repeat) loops, as well as the 
if-else (If) conditional.  It also has a Test statement 
meant to encode rules or decision trees concisely.  Test 
is  in some ways  more general  and in  other  ways  more 
restrictive than C's switch statement.

This  contrasts  with  languages  like  Scala,  where 
“elegant”  programs  minimize  variable  usage  and 
emphasize recursion.  Scientific simulation programming 
relies heavily on variables and iteration.

Another basic design principle of SP8b is to minimize 
the number of basic data-types by favoring more general 
ones over less general ones.  Thus:
 Instead of an integer data-type, there is a rational type. 

Integers are just rationals with denominators of 1.
 Instead of a set data-type, there is a bag type, which is a 

cross between sets and lists.  Bags are like sets in that 
items  are  unordered.   Bags  are  like  lists  in  that  the 
same item may be present more than once.  (Bags may, 
of course, be used as if they were sets.)

 Instead of a simple floating point type, there will be a 
distribution  of  floating  points.   Binary  operations 
(other  than  equivalence)  on  distributions  grow  the 
resulting  distributions  combinatorially  until  some 
maximum  distribution  size  is  reached.   After  that, 
results are stochastically sampled. 

 Instead  of  arrays,  there  will  be  maps.   If  the  map's 
domain has a fixed finite size, then amortized access 
time  is  guaranteed  to  be  O(1)  (physical  memory 
limitations permitting).

No  floating  point  (distribution)  equivalence  operator 
exists.  Instead, equivalence between floating point values 
will be checked algebraically, by a theorem prover, based 
on  the  distribution's  derivation,  and  on  domain 
knowledge.

Although rationals, floating point distributions and non-
numeric  “symbols”  are  all  idea  nodes,  a  distinction  is 
made  between  unannotated  and  annotated  values. 
Unannotated values are  the  rationals,  floating  point 
distributions and identities themselves.  For example, 2.0 
is  an  SP8b  unannotated  value.   Annotated  values are 
unannotated values which have been augmented by meta-
data, like dimensionality, units, limits, attributes, etc.  For 
example,  2.0(*meters) is an SP8b annotated value. 
Operations on values automatically checks meta-data for 
compatibility  (e.g.  attempting  to  add  2  meters  to  2 
seconds is  illegal),  and generates  values with the meta-
data appropriately computed.

Slightly  different  operators  exist  for  unannotated  and 
annotated  values.   For  example,  ordinary  addition  is 
defined  over  unannotated  numbers.   However,  for 
annotated  values  representing  numbers,  this  is 
insufficiently specific.  Instead, four types of addition are 
defined:
 Group  addition:  creating  a  collection  of  things  from 

two existing collections,
 Delta group addition: increasing the size of a collection 



of things by adding a semantically (if not numerically) 
small collection to it,

 Extension addition: creating not a collection, but a new 
single thing, whose attribute is extent of the first and 
second combined, and,

 Delta extension addition: extending the degree of some 
thing by a semantically small amount.

While all four of these addition operators add 2+2 to 4, 
they differ  in  how they manipulate  their  corresponding 
meta-data.  For example, the algorithm for group addition 
does a set union among the sets of two lists of sets.  For 
more details, please see Phillips 2010 and Phillips 2011.

Naturally, identities differ in their importance. Some are 
intermediary results along the way to some uninteresting 
computation, like temporarily used iterators.   These are 
uninteresting, and unworthy of saving.  Others result from 
a  user  calculation  on  some  empirical  data  or  object. 
These are all potentially interesting.

Conventional  garbage  collecting  languages  use 
algorithms that recycle memory which is no longer being 
pointed to from the outside.  This approach is too crude 
for  SP8b for  several  reasons,  including the fact  that  all 
objects  have  pointers  to  them  from  the  outside  since 
everything is in the ontology.  Instead, an object's position 
in the ontology dictates its default interestingness, which 
in  turn  automatically  determines  whether  it  may  be 
garbage collected.7

SP8b  will  get  double-use  from  the  infrastructure  for 
garbage  collection,  even  for  objects  not  subject  to 
automatic  garbage  collection.   Counters  in  objects  that 
keep track of how many times other objects refer to them 
may be used to compute an overall information content of 
a knowledge base.  This can be used as a gross Occam's 
Razor  heuristic:  a  combination  of  terms  and  prediction 
corrections, used to describe a scientific knowledge base, 
which the system can try to minimize.

SP8b computations will automatically generate a trace 
of their reasoning.  This trace can both be displayed to the 
user  for  them  to  double-check,  and  can  be  run  as  an 
answer-generating program for stochastic computations.

5. Experiments

SP8b's  large  virtual  address  space,  and  its  ability  to 
selectively  publish  results,  are  straightforward 
programming  problems  inspired  by  decades-old  file-
system permission schemes.  Either they work properly or 
do not, and thus will not be examined here.

Because  both  the  SOM8b  and  SP8b  are  under 
development, presently insufficient knowledge bases and 
insufficient reasoning abilities are coded to properly test 
justification graphs.

This leaves the testing of its meta-data handling.  Since 
Phillips 2010, there was an open question regarding how 

7 Garbage collection is implemented but primitive.

much meta-data handling slowed computation. Here, we 
report on an effort to find out.

In designing the infrastructure for manipulating meta-
data,  we face  a  common conundrum of quasi-compiled 
system  builders.   The  more  we  hard-code  in  our 
implementation language (currently C++), the more speed 
we gain, yet the more flexibility we lose, in defining how 
SP8b handles meta-data. 

For these experiments, we chose to use libraries written 
in SP8b.  This approach accomplishes two things: (1) it 
establishes  a  base-level  of  performance:  inflexibility  of 
implementing meta-data handling in C++, in the future, 
should be outweighed by speeds significantly faster than 
this, and (2) it shows users how to write their own meta-
data libraries.

All  experiments  were  done on  a  Lenovo  R61 laptop 
with 3GB RAM and an Intel dual-core T7100 1.80GHz 
processor  running  Fedora  16  Linux.  The  program  was 
compiled with GNU gcc 4.6.3 with optimization level O2.

Data on 694 exoplanets (planets not orbiting our Sun) 
was download on or shortly after 2013 January 30th from 
http://exoplanets.org/table.  The planetary minimum mass 
was extracted along with its units (fraction of the size of 
Jupiter) and references (URLs).  This data was translated 
into  SP8b  as  files,  with  all  of  the  references  as 
independent objects, and information on 7, 70 or all 694 
planets.

^Do
[*[
  ^VarDecl[* @iter,  Iterator *],
  ^VarDecl[* @sum,   Value    *],
  ^VarDecl[* @count, Rational *],
  ^VarDecl[* @value, Idea     *],
  @count := 0,
  @sum := 0.0,
  ^For
  [*
    @iter :=
      Planet­>
        localProp_iter(hasInstance),

    !@iter­>iter_isAtEnd(),

    ^Do
    [*[
      @value :=
        @iter­>iter_value()­>
                 localGet(minMassA),
      ^If
      [*
        @value­>isInstanceOf(Value),
        ^Do
        [*[
          @sum :=
            @sum +grp @value,
           @count := @count +ext 1
        ]*]



      *]
    ]*],

    @iter­>iter_advance()

  *],

  stdOut­>printLn(""),
  stdOut­>print("Sum:   ")­>
            printLn(@sum),
  stdOut­>print("Count: ")­>
            printLn(@count)
]*];
quit;

Figure 3. Summation loop.

We ran a loop that computed the sum of the minimum 
mass.  Not all of the planets had their mass listed, so the 
loop checked for that (see figure 3).  For the “No meta-
data” case, the loop was run with unannotated values of 
minMassA: no meta-data was computed. This measured 
the loop's time, apart from meta-data computation.

For  the  “Units,  subject  and  attribute”  case,  the  loop 
was run on annotated values  which computed the units 
and  attribute  by  checking  that  they  matched.   It  also 
computed the subject by looking for a class that subsumes 
the subjects of both operands (see Phillips 2010).

For  the  “All  meta-data”  case,  the  loop  was  run  on 
annotated  values  with  the  units,  subject  and  attribute 
computed  as  above,  as  well  as  references.   Reference 
symbols were kept in a bag that was used as a set (single 
occurrences only).  Bag sizes grew monotonically.

All cases described above were run 9 times.  The first 
run was always  thrown out  (to discount any filesystem 
buffering issues).   The table below shows the averages 
and standard deviations of the times taken by the latter 8 
runs.   (The summing loop was timed,  file  parsing was 
not.)  All values are times in seconds. 

n=7 n=70 n=694

No meta-data 0.1102
±0.00024

0.5459 
± 0.00077

5.003
±0.048

Units, subject 
and attribute

0.2815 
±0.0016

3.126 
±0.016

60.90±8.7

All meta-data 0.4656 
±0.0020

4.706 
±0.035

235.5±68.

Table 1.

We interpret these results as follows:
(1) As expected, computing meta-data makes calculating 
more  expensive.  Meta-data  computing  loops  took  3-47 
times  longer.   Assuming  the  worst  figures  are  due  to 
virtual memory, we are heartened that the marginal cost 
of  additional  meta-data  seems  to  be  relatively  low. 
Although computing the resulting set of references is O(n 
lg n), for the n=7 and 70 cases “All meta-data” only ran 

65% longer than the “Units, subject and attribute”.
(2) For the n=694 cases of “All meta-data” and “Units,  
subject  and  attribute”  we  believe  the  system  took 
significantly  longer  because  of  virtual  memory.   The 
system  has  a  primitive  garbage  collector.   We  expect 
these times to go down as it is made more sophisticated.

One interpretation of this is that meta-data computation 
is  too expensive:  if  not  in  time,  then in  memory.  That 
interpretation,  however,  assumes  that  computing 
resources are more valuable than a scientist's time.  Had 
we summed numbers with nothing in common – times, 
distances,  and  masses  of  planets,  insects,  and  atoms  – 
SP8b  would  have  alerted  us  of  trouble.   This  ability 
becomes more important  as computation becomes more 
deeply embedded in large, inhomogeneous, computational 
frameworks.   SP8b can  check  (and  convert)  units,  and 
detect errors in assumptions.

Still,  the  problem  of  the  poor  times  remain.   The 
garbage collection algorithm is primitive.  We believe that 
as it is refined and database access are implemented, this 
problem will no longer manifest.

Alternatively,  perhaps we can gain both the speed of 
unannotated  computation  with  the  correctness  of 
annotated computation, by defining functions that operate 
over whole classes, not just two operands at a time.  We 
expect  data  of  instances  from  the  same  class  to  have 
similar meta-data.  This could be recorded at the level of 
the class, or checked by algorithms that were optimized 
with this assumption.  Then, sums or other computations 
could be done with the efficiency of unannotated values, 
but with the security of knowing meta-data was handled 
correctly.

6. Discussion

Here  we  discuss  design  decisions,  as  well  as  the 
methodological one: “Why a frame-based system instead 
of a Bayesian approach?”  One potential criticism is that 
the  semantic  web  obviates  the  need  for  an  “operating 
system” for scientific reasoning like SOM8b: the role of 
SP8b could be done by an XML-based markup language. 
This, however, is a misunderstanding of the scope of our 
research.   We seek  not  only to  specify meta-data  (e.g. 
units) but also knowledge, like algorithms.  Thus, on one 
hand, our scope is extremely broad: a marriage of XML-
like  mark  up  with  something  like  the  Java  Virtual 
Machine's algorithm generality.   On the other hand, we 
are consciously limiting ourselves to science.

Another potential criticism is that because we intend to 
incorporate a theorem prover, why not build our system 
around one?  The answer is that deductive reasoning is 
only a subset of scientific reasoning.  We believe that a 
meta-reasoner that  calls deductive reasoners,  as needed, 
better models how scientists actually behave.

A third  potential  criticism is  on  the  use  of  a  fixed-
length address space.  We did this purely for simplicity. 
And,  as  all  knowledge  currently  resides  on  the  same 
virtual server, there is less of a need to point to resources 



outside of itself.  (It  can refer to resources outside with 
URL strings.  However,  when that data or knowledge is 
internalized,  it  is  assigned  its  own page.   Humans find 
specifying a 320 bit number difficult, so the system uses 
“Local Resource Locators” like natural language strings.)

The Bayesian approach is perhaps the most well known 
alternative  to  the  frame  system  approach  to  scientific 
knowledge  representation.   The  Bayesian  networks  or 
“graphical models” have been widely adopted, especially 
for  diagnosis  applications,  such  as  medicine  and  for 
mechanical failures (Szolovits 1978,  Isermann and Ballé 
1997).   Such  approaches,  however,  generally  assume a 
very specific type of wisdom, and a very specific type of 
ignorance.   The  wisdom  is  that  the  principles  of  the 
system under study (e.g. an automobile, a human body) 
are  well  understood,  and  that  sufficiently  similar 
populations  have  been  studied  from  which  relevant 
statistics have been gathered.  The ignorance is that while 
we  can  readily  observe  symptoms  of  a  malfunctioning 
system,  we cannot  observe  its  exact  state  because  it  is 
either  too costly and time-consuming to dismantle (e.g. 
the car), or because doing so would cause more harm than 
good  (e.g.  vivisection  on  the  human).   When  used 
diagnostically,  Bayesian reasoning's  power derives from 
applying knowledge of both how a system grossly works 
(the graph's layout), and about the population (the priors), 
to make an educated guess about a data-poor individual.

We acknowledge Bayesian reasoning's  power,  yet  we 
seek not to be constrained by its limitations for adequate 
domain  knowledge,  to  build  a  graph  and  adequate 
distribution  knowledge,  and  to  populate  it  with  priors. 
We believe  the  best  solution  is  to  give  the  system the 
ability to build its own Bayesian networks as needed.

Fortunately, SP8b supports the traditional programming 
flow-control  structures  and  variables  to  implement 
Bayesian network building algorithms.

We believe that default reasoning is a better model of 
how scientists grapple with their grander issues: “What is  
light exactly: particle, wave, or kind of both?”, “Are the  
number of species fixed or can they evolve over time?”,  
“Does  phlogiston have  negative  weight  or  should  I  
believe in Lavoisier's 'oxygen'?”  We believe that it is an 
abuse  of  Bayesian  network  notation to  require  a priori 
enumerations  of  all  alternatives,  and it  is  impossible to 
assign prior probabilities, in a principled fashion, for such 
cases.  Default reasoning, however, lets us proceed.  “Let  
us assume option 1, and go as far as we can.  Now let us  
try something else.”

Kuhn tells us that most scientists most of the time are 
doing “normal science”:  extending the current paradigm 
instead of overthrowing it.  And, in such cases, we intend 
to use the logic portion of default logic as far as it can go, 
and even to be able to use Bayesian reasoning and related 
tools,  such  as  stochastic  simulations,  to  extend  our 
reasoning further.

7. Conclusion

Although SP8b is unfinished, it shows early promise.  It 
successfully  computes  meta-data,  and  can  compute 
additional  meta-data attributes for  a  marginal  additional 
cost.  We intend to implement measures to increase the 
scale  of  computations  which  our  system  can  compute, 
with features like thoughtful garbage collection, database 
access, and improved operations.

Further,  we look forward to handling justifications as 
we  would  other  scientific  objects,  and  to  scaling  the 
system up to handle multiple users.
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