
Fuzzy Patterns Based Approach for Environment Analysis in
Adversarial Games

Stephany Coffman-Wolph and Dionysios Kountanis

Department of Computer Science, Western Michigan University

1903 West Michigan Avenue, Kalamazoo, Michigan 49008
stephany.s.coffman-wolph@wmich.edu and dionysios.kountanis@wmich.edu

Abstract
Adversarial game-playing situations have been commonly
studied in both game theory and artificial intelligence since
the 1950s. However, developing strategies for game play-
ing has been a challenge due to large search tree size – es-
pecially as the environment size increases. In this work, we
introduce a new concept entitled Fuzzy Patterns that is in-
spired from Stilman’s zone concept and utilizes a combina-
tion of fuzzy logic and division of the environment into
mini-goals to prune a large search tree. Our proposed ap-
proach provides an essential tool to break a large environ-
ment into smaller interest areas to focus, study, and select
possible moves. Our proposed Fuzzy Patterns approach
improves upon the existing zone concept from Stilman’s
Linguistic Geometry algorithm in two ways: quicker to
compute and producing significantly smaller number of
patterns. Even though our proposed approach is generic
and can be applied to any adversarial game-playing scenar-
io, in this paper we use a standard chessboard as the envi-
ronment with standard chess pieces and movement to
demonstrate the potential benefits of our proposed ap-
proach (up to 80% reduction in the number of fuzzy pat-
terns that need to be evaluated over the non-fuzzy based
approach).

Analysis of the environment for any adversarial game-
playing situation can be a daunting task. The larger the
environment, the greater the number of potential sequences
of moves and the harder the task of choosing among vari-
ous strategies. The game of chess has a fairly restricted
environment of only 8 by 8. Chess is known to have an
average branching factor of 35 with 50 moves per game
for each side resulting in searching trees with 35100 nodes
(Russell and Norvig 1995). Even the extremely simple
game of tic-tac-toe contains a branching factor of 9 at the
first level alone – the same size as the environment (Rus-
sell and Norvig 1995). Therefore, it is essential to develop
techniques to eliminate search branches in order to im-
prove any viable adversarial game-playing algorithm.
 A pattern is used to analyze and identify potential moves
for various pieces within the environment. Patterns are
used primarily to sub-divide the environment into smaller

 Copyright retained by the authors.

and easier to analyze areas. Patterns contain five essential
elements: a starting piece (location), an ending piece (loca-
tion), a shortest path between the starting and ending loca-
tion (the main path), the attacking or blocking pieces to this
shortest path, and the shortest paths of any attacking or
blocking pieces. The shortest path contains a candidate
next move for the starting piece and the information to
evaluate the potential impact the move has on the end goal
of the system. It is important to note that each pattern only
contains one valid shortest path and that all larger paths are
not considered for either the main path or any attack-
ing/blocking paths.
 There are several key terms that need to be defined or
clarified including: step, reach-ability, attack-ability, and
shortest path. A step, in this context, is a single move
made by a piece during a turn in the game (assumed to be a
valid move via the rules of the game in question). Reach-
ability is the ability of a piece to reach a given location
within the environment given the rules or physical limita-
tions of the piece. Attack-ability is the ability of a piece to
attack/remove a piece in a given location within the envi-
ronment given the rules or physical limitations of the piece.
In some situations the reach-ability and attack-ability are
the same – a good example is the queen piece in chess. In
the case of the pawn, the reach-ability and the attack-ability
are not the same. The shortest path is defined as the mini-
mum number of moves or steps a piece needs in order to
each an ending location assuming that the location is reach-
able or attack-able. In many game situations, including
chess, there are often multiple shortest paths between two
locations.
 The Linguistic Geometry (LG) Search Strategy intro-
duced by Stilman contains 4 layers (from lowest to high-
est): trajectories, zones, translations, and searches (Stilman
2000). The first two layers of the LG are part of the inspi-
ration to the patterns based approach presented in this pa-
per. The lowest level, trajectories, finds all shortest paths
between a starting location and ending location (Stilman
1994). The second lowest level, zones, finds all reachable
starting and ending piece combinations and any intersec-
tions. The zone is used to analyze the environment in small
focused areas (Stilman 2000).
 There are several key differences between the zone and
the pattern concepts. The LG algorithm is written as a se-
ries of grammars that are designed to be used with older

rule-based or recursive computer programming languages
(Stilman 2000). Our proposed pattern based algorithm is
designed to be used with modern object-oriented pro-
gramming languages (java, C#, etc). The LG grammars
are recursive in nature (Stilman 2000) while the algorithms
for patterns are not. The storage of a pattern is an object
while a zone is a complex string that requires complex
processing for interpretation. The pattern is also a compu-
tationally less complex algorithm due to restricting the
depth of examination of intersections. Patterns only exam-
ine the first level of pieces that can attack or block the
main path while the zones look at all levels in a recursive
manner. A major difference between zones and patterns is
that patterns differentiate between reach-ability and attack-
ability for each given piece. The grammar of trajectory, a
method for calculating all the shortest paths between two
elements, is used extensively in the pattern generation al-
gorithm but it has been modified from the recursive gram-
mar format to a straightforward procedural algorithm.
 This paper presents the algorithm to generate fuzzy pat-
terns. A detailed example is used to illustrate the applica-
bility of our proposed approach to an adversarial game.
Additionally, an in-depth analysis of the efficacy of using
our proposed fuzzy approach is presented.

The Problem Description
The environment is the area to which the patterns (fuzzy or
non-fuzzy) are applied. For the examples in this paper, the
environment is a chessboard. A standard chessboard is 8
rows by 8 columns for a total of 64 squares. Each chess-
board square is shaded by one of two contrasting colors in
an alternating dark/light color scheme (the color scheme is
commonly referred to as black and white, sometimes white
and red or even black and red). A standard chess set comes
with 8 pawns, 2 rooks, 2 bishops, 2 knights, 1 queen, and 1
king of each of two colors usually white (attack) and black
(defense).

Reach-ability and Attack-ability
The reach-ability is the set of locations within the chess-
board that a given piece at a specific location on the board
can reach and the minimum number of steps it takes to get
there (ignoring the positions of any other pieces on the
board). The attack-ability is the locations within the
chessboard that a given piece (at a specific location) can
remove a piece of the opposing side (assuming that a piece
is in place to be taken). Each category of pieces has a
unique reach-ability and/or attack-ability within the chess-
board determined by the rules of the game. Pieces could
take longer paths to reach a given location. However, in
this algorithm the focus will exclusively be on shortest
paths.
 The obtain-ability matrix is found using a similar pro-
cess to the reach-ability for the starting piece, except it is
centered on the ending piece. In other words, the calcula-
tion is similar to that of the reach-ability of the starting

piece, but from the point of view of the ending location.
Like reach-ability, obtain-ability is based on the rules or
laws of the piece. Basically the obtain-ability is the reverse
of the reach-ability starting at the end location.
 Rooks, bishops, and the queen can move any number of
spaces across the chessboard within a single turn. Rooks
can only move north, south, east, or west. Therefore, a
rook can reach any space within the chessboard in either 1
or 2 steps. Every location on the board that is not directly
north, south, east, or west of the rook has a shortest path of
2 steps. All locations that are directly north, south, east,
and west of the rook are 1 step. The reach-ability matrix of
a rook (R) currently located at (4,3) is seen in figure 1.

 The number within each square represents the smallest
number of steps it would take the rook to make it to the
given location. For example, it takes the rook 2 steps to
reach location (8,1) and only 1 step to reach location (4,7).
 A similar reach-ability matrix can be developed for all of
the other chess pieces. Pawns are a special case because
pawns have different attack-ability and reach-ability.
Pawns can only move in a “forward” direction (i.e., to-
wards the opposing side). Pawns are also unique in their
ability to move one or two spaces on their first move but
only one space on subsequent moves. The pawns have the
most complex reach-ability and attack-ability patterns.
Pawns have the most restricted movement and cannot reach
all locations within the chessboard.

Finding the Shortest Paths
A key element in the pattern generation algorithm is find-
ing the shortest path between two pieces. The LG Search
Strategy introduces an algorithm entitled “Grammar of
Trajectory”, which finds all the shortest paths between two
elements within a defined environment (Stilman 2000).
This recursive algorithm extensively uses the overlap of
reach-ability matrices to identify the shortest path loca-
tions.
 A modified non-recursive algorithm inspired by the tra-
jectory approach to find the shortest paths is given as fol-
lows:

1. Determine the reach-ability matrix for the starting
piece

2 2 2 2 1 2 2 2 8
2 2 2 2 1 2 2 2 7
2 2 2 2 1 2 2 2 6
2 2 2 2 1 2 2 2 5
2 2 2 2 1 2 2 2 4
1 1 1 1 R 1 1 1 3
2 2 2 2 1 2 2 2 2
2 2 2 2 1 2 2 2 1
8 7 6 5 4 3 2 1

Figure 1: Rook

2. Determine the obtain-ability matrix for the ending
piece

3. Add the reach-ability from step 1 and the obtain-
ability from step 2

4. Find the minimum values within the combined
matrix and eliminate all non-minimum values

5. Generate the list of shortest paths using the loca-
tions identified in previous step

Definition of Fuzzy Pattern
A pattern is defined by a starting element of one side being
able to reach an ending element of the opposing side, a
single shortest path between these two elements and all
elements from either side that could interact (positively by
blocking or negatively by intersecting). Each pattern has a
calculated rank, which combines several elements to de-
termine goodness. The rank is based on the distances be-
tween the elements, the value of the elements involved,
and the number of intersecting or blocking pieces and the
values of these pieces.
 A fuzzy pattern is a fuzzified version of the pattern
where (1) distances are replaced with fuzzy values, (2)
exact shortest paths are replaced with the environment
locations that could be part of any shortest path between
these two elements, and (3) the calculated rank is also re-
placed by a fuzzy value (Coffman-Wolph and Kountanis
2013b). The pattern is fully contained within the fuzzy
pattern.

The Algorithm for Finding Patterns
The calculation of the shortest path begins by finding the
reach-abilities and/or attack-abilities for each possible
combination of starting and ending elements within the
environment. The starting and the ending elements are
always from different sides. In chess, there are two sides
(generally white and black). Therefore, if the starting ele-
ment were white, then the ending element would be the
opposite - black.
 Our patterns extraction algorithm generates all the pat-
terns for all possible combinations of starting and ending
pieces where the starting and ending pieces are from op-
posing sides. The pattern also finds any intersecting or
blocking pieces. After identification of these pieces, the
shortest paths from these pieces to the shortest main path
are found. Any time multiple shortest paths are found, a
new pattern is created for each of these shortest paths.

Pseudocode for Finding Patterns
1 Find the reach-ability/attack-ability for each piece
2 For each piece x in the environment {
3 For each piece y in the environment {
4 If((x != y) && (x.side != y.side)) {
5 Find the shortest paths S between (x, y)
6 For each shortest path s in S {

7 Create a pattern
8 Find all intersecting/blocking pieces (I)
9 For each i piece in I {
10 Find shortest paths B between (i, locations in s{
11 If B > 1, for each shortest path b in B {
12 Create new pattern w/same main path
13 Add shortest path b to pattern }
14 Else: Add shortest path b to pattern }}}}}}

The Algorithm for Finding Fuzzy Patterns
Fuzzification of a concept provides for a more abstract
view of information (Yen and Langari 1998). It can also be
thought of as a tool that trades abstraction for a less precise
representation of information (Zadeh 1965). A fuzzy pat-
tern is simply an abstract view of the pattern. The intro-
duction of abstraction to the pattern increases the overall
speed of the algorithm by decreasing the algorithm’s com-
plexity and storage requirements. The less information
there is to analyze, the faster the information can be inter-
preted and used.
 The fuzzy pattern generation algorithm is similar to the
pattern generation algorithm. There are two major differ-
ences between the algorithms – the removal of two loops.
The first change is the removal of the for-each loop that
walks through each of the shortest path choices generated
for the main path and generates a new pattern (line 6). The
second change is the removal of the for-each loop that
walks through each of the shortest path choices generated
from the blocking/attacking pieces (line 11).
 The fuzzy pattern stores the shortest paths together as a
group. In other words, the fuzzy pattern is concerned with
the ability of a piece to get from the starting location to the
end piece’s location, but not with the exact path that is tak-
en. The shortest paths within the fuzzy pattern will, there-
fore, be analyzed and evaluated as a group, enabling us to
achieve a significant speedup factor.
 The removal of these two loops decreases the complexity
of the algorithm. Each fuzzy pattern may contain a larger
amount of information than the equivalent non-fuzzy pat-
tern because all the shortest paths are stored in a group.
Further, since there does not need to be a pattern for each
shortest path or intersecting/attacking shortest path the
overall number of fuzzy patterns is smaller.

Pseudocode for Finding Fuzzy Patterns
1 Find the reach-ability/attack-ability for each piece
2 For each piece x in the environment {
3 For each piece y in the environment {
4 If((x != y) && (x.side != y.side)) {
5 Find the shortest paths S between (x, y)
6 Create a fuzzy pattern f (store all shortest paths)
7 Find any intersecting/blocking pieces (I)
8 For each i piece in I {
9 Find the shortest paths B between (i, locations in s)
10 Add to fuzzy pattern f }}}}

Finding Patterns and Fuzzy Patterns
Figure 2 shows an example scenario of a chessboard con-
taining a total of 7 pieces: black king (Bkg), black queen
(BQ), black knight (Bkn), white king (Wkg), white bishop
(WB), white rook (WR), and a white pawn (WP). This
scenario is used to demonstrate the generation of both the
pattern and the fuzzy pattern. It is also used to illustrate
the differences between the resulting patterns and the
fuzzy patterns. For comparison, pattern and fuzzy pattern
generation algorithms will be reviewed step-by-step. For
simplicity, the pattern and fuzzy pattern generation will
only be for the white pieces going to the location of the
black pieces. In other words, this is from the white side’s
point of view.

 The algorithms for both the pattern and fuzzy pattern
begin with finding the reach-ability and attack-ability for
all pieces. Figure 3 illustrates the reach-ability of the bish-
op.

 The next step is to find the obtain-abilities. Since these
patterns and fuzzy patterns are from the perspective of the
white side, we will only need to find the obtain-abilities for
the black pieces. Figures 4 and 5 illustrate the obtain-
abilities for the Black Queen using the King and Rook
reach-abilities.

Finding the Shortest Paths
The current list of potential combinations to check after
eliminating the unreachable pairs are as follows: (white
rook, black knight), (white rook, black queen), (white rook,
black king), (white pawn, black queen), (white pawn, black
king), (white bishop, black queen), (white bishop, black
king), (white king, black knight), (white king, black
queen), and (white king, black king).

 Shortest Path(s) for (white rook, black king)
 Using the calculations in step 1 of the algorithm, com-
bine (i.e., add the values at) each location and get the re-
sulting combined reach-ability. Figure 6 illustrates the

Bkg 8

7

BQ 6

WB 5

Bkn 4

WP 3

2

WR Wkg 1

8 7 6 5 4 3 2 1

Figure 2: Example Scenario

2 1 2 2 8
2 2 1 2 7
2 2 1 1 6

2 2 2 WB 5
2 2 1 1 4

2 2 1 2 3
2 1 2 2 2

2 1 2 2 1
8 7 6 5 4 3 2 1

Figure 3: Bishop Reach-Ability

2 1 2 2 2 2 2 2 8
2 1 2 2 2 2 2 2 7
1 BQ 1 1 1 1 1 1 6
2 1 2 2 2 2 2 2 5
2 1 2 2 2 2 2 2 4
2 1 2 2 2 2 2 2 3
2 1 2 2 2 2 2 2 2
2 1 2 2 2 2 2 2 1
8 7 6 5 4 3 2 1

Figure 5: Black Queen using
Rook Reach-ability

1 2 2 2 2 2 2 2 8
1 2 2 2 2 2 2 2 7
1 2 2 2 2 2 2 2 6
1 2 2 2 2 2 2 2 5
1 2 2 2 2 2 2 2 4
1 2 2 2 2 2 2 2 3
1 2 2 2 2 2 2 2 2
R 1 1 1 1 1 1 1 1
8 7 6 5 4 3 2 1

Figure 6: White Rook Reach-
Ability

2 2 2 2 3 4 5 6 8
1 1 1 2 3 4 5 6 7
1 BQ 1 2 3 4 5 6 6
1 1 1 2 3 4 5 6 5
2 2 2 2 3 4 5 6 4
3 3 3 3 3 4 5 6 3
4 4 4 4 4 4 5 6 2
5 5 5 5 5 5 5 6 1
8 7 6 5 4 3 2 1

Figure 4: Black Queen using
King Reach-ability

reach-ability for the white rook and figure 7 illustrates the
obtain-ability for the black king. Figure 8 illustrates the
combined reach-ability.

 As seen in figure 8, the minimum cost path is 2. Look-
ing at only the spaces with a 2 in them, it can be seen that
there are two shortest paths:
 white rook → (5,1) → black king
 white rook → (8.8) → black king
 Therefore, there will be at least two patterns, one for
each of the shortest paths. The black queen could intersect
the path in 1 step by means of multiple shortest paths. The
white bishop could also become involved in 1 step, but
only one shortest path. The black queen would take differ-
ent shortest paths depending on the main path and there are
multiple choices for each. Each of these choices generates
a different path.
• White rook (8,1) → (5,1) → Black king (5,8), length =

2, attack: Black queen (7,6) → (5,4), block: White bish-
op (2,5) → (5,8)

• White rook (8,1) → (5,1) → Black king (5,8), length =
2, attack: Black queen (7,6) → (7,1), block: White bish-
op (2,5) → (5,8)

• White rook (8,1) → (5,1) → Black king (5,8), length =
2, attack: Black queen (7,6) → (5,6), block: White bish-
op (2,5) → (5,8)

• White rook (8,1) → (8,8) → Black king (5,8), length =
2, attack: Black queen (7,6) → (7,8), block: White bish-
op (2,5) → (5, 8)

• White rook (8,1) → (8,8) → Black king (5,8), length =
2, attack: Black queen (7,6) → (8,7), block: White bish-
op (2,5) → (5,8)

• White rook (8,1) → (8,8) → Black king (5,8), length =
2, attack: Black queen (7,6) → (8,6), block: White bish-
op (2,5) → (5,8)

• White rook (8,1) → (8,8) → Black king (5,8), length =
2, attack: Black queen (7,6) → (8,5), block: White bish-
op (2,5) → (5,8)

 The fuzzy pattern, as stated before, combines the multi-
ple paths of information. Also, the fuzzy pattern ignores
the specifics of the attack/block locations to decrease com-
putational complexity. Additionally, the lengths have been
fuzzified (see figure 9 for the definitions of the fuzzy
lengths used for this example). The above seven (non-
fuzzy) patterns are reduced to the following single fuzzy
pattern:
 White rook (8,1) → (5,1) or (8,8) → Black king (5,8),
length = very short, attack: Black queen, block: White
bishop

Analysis of Patterns vs. Fuzzy Patterns
The following is an analysis of the computational ad-
vantages obtained by using the fuzzy pattern representation
over the pattern representation. Informally from the exam-
ple scenario in the last section, it can be observed that the
number of patterns is often greater than the number of
fuzzy patterns. This section quantifies this observation.
An approximation of the computational savings for each
piece can be calculated by looking at the average number
of patterns required. There is always only one fuzzy pat-
tern for each starting and ending pair of pieces. In the abso-
lute worst case (i.e., only one shortest path between a pair
of pieces), the number of fuzzy patterns would be equal to
the number of patterns. As mentioned before, the patterns
and the fuzzy patterns are similar in structure. An individ-
ual fuzzy pattern may require a slightly larger amount of
storage space, as noted earlier, but there are fewer fuzzy
patterns overall.
 Continuing using the standard chess game as an exam-
ple, the following paragraphs demonstrate that statistically
there are significantly fewer fuzzy patterns needed than
patterns. Each side in a chess game has 8 pawns, 2 rooks, 2
bishops, 2 knights, 1 queen, and 1 king. Pawns are the most
restricted in movement and the lowest value pieces within
the game. Pawns are extremely restrictive in movement

1 1 1 K 1 1 1 1 8
2 2 2 1 2 2 2 2 7
2 2 2 1 2 2 2 2 6
2 2 2 1 2 2 2 2 5
2 2 2 1 2 2 2 2 4
2 2 2 1 2 2 2 2 3
2 2 2 1 2 2 2 2 2
2 2 2 1 2 2 2 2 1
8 7 6 5 4 3 2 1

Figure 7: Black King using Rook
Reach-ability

2 3 3 K,2 3 3 3 3 8
3 4 4 3 4 4 4 4 7
3 4 4 3 4 4 4 4 6
3 4 4 3 4 4 4 4 5
3 4 4 3 4 4 4 4 4
3 4 4 3 4 4 4 4 3
3 4 4 3 4 4 4 4 2
R,2 3 3 2 3 3 3 3 1
8 7 6 5 4 3 2 1

Figure 8: Combined Reach-ability for White Rook
and Black King

Values Fuzzy Variable
0-2 Very Short
2-4 Short
4-6 Long
6-8 Very Long

Figure 9: Definition of Fuzzy
Length Variables

and, therefore, usually have only one shortest path to a
destination. The bishops are the next most restricted as
they can only move on the diagonal and each can only
reach 50 percent of the board. Knights and rooks, unlike
bishops, can travel to any location on the board. Knights
are restricted to moving in an “L” pattern while rooks are
restricted to moving north, south, east, and west. Kings can
move in any direction, but can only move one space at a
time. The queens are the least restricted pieces as they can
move in any direction and for any number of spaces.

Special Case: Pawns
As stated earlier, the pawns are greatly restricted in
movement and rarely have multiple shortest paths. There-
fore, when calculating the approximation, all patterns and
fuzzy patterns with a pawn starting piece are assumed to
be equivalent. For analysis purposes it is assumed that the
pawns will not increase (or decrease) the total number of
patterns or fuzzy patterns.

Rooks, Bishops, Knights, Queens, and Kings
Calculating an approximate number of patterns for a given
chess piece is not an easy task. The task begins by exam-
ining the number of spaces that are reachable from a given
starting location by a specific piece, how many moves are
required to reach each of these locations, and most im-
portantly the number of shortest paths. To do these com-
plex calculations, each piece (rook, bishop, knight, queen,
and king) must be examined individually with respect to its
reach-ability. To further complicate the calculations for
some pieces, the destination location can play a significant
role in the total number of shortest paths. (The greater the
number of moves required to reach the ending location, the
greater the number of shortest paths).

General Formula
The general formula for calculating the number of patterns
needed for a single starting point is as follows:
 [(L1/r * 1) + (L2/r * 2) + (L3/r * 3) + … (Ln/r * n)]

 Lj = number of locations reach-able in j steps
 r = number of locations reach-able for a give piece
 n = maximum number of steps a piece could take

Several starting locations are equivalent to each other (in
terms of the reach-ability). So the general formula for
calculating the number of patterns needed for a given chess
piece considering all 64 spaces as a starting point is as
follows:

{[(L1/r * 1) + (L2/r * 2) + (L3/r * 3) + … (Ln/r * n)] *
z1/t} + … + {[(L1/r * 1) + (L2/r * 2) + (L3/r * 3) + …
(Ln/r * n)] * zk/t}

 Lj and r are the same as above
 k = number of different situations for a given piece
 zk = number of equivalent locations for the kth situation
 t = total number of locations a piece can be placed

 n = maximum number of steps a piece could take

Most pieces will have an r-value of 63. (There are 64 loca-
tions on the chessboard and the piece is sitting on 1 loca-
tion so there are 63 locations the piece could visit). The
bishop is the only exception with r being equal to 31 since
it can only visit half of the locations. The value of k is spe-
cific to each piece and is partly dependent on the move-
ment of the piece. The formulas given above are best ex-
plained by use of examples.

Example: Rook
Due to the unique properties of the rook chess piece, it is
the easiest to analyze. (For the purposes of this analysis we
ignore the unique move involving the rook and king known
as castling). The calculation for the rook begins with the
examination of locations on the chessboard reach-able with
only one move. Because rooks can move north, south, east,
or west as many spaces as desired, anything along the
north, south, east, or west of the rook is reachable in one
move. In figure 10, a rook (R) is located at (6,5) and the
chessboard locations marked with an “X” are the locations
reachable in only one move.

 A chessboard is 8 by 8 and, therefore, has 64 locations.
The rook is sitting on one location leaving 63 locations that
the rook could move. There are 14 total locations that a
rook can reach in only one move from location (6,5).
Therefore, for these 14 locations there is only one shortest
path. The other 49 locations within the chessboard are
reach-able in two moves. There are always only two short-
est paths that can be used to reach any of these two-move
locations. Regardless of the starting position of the rook,
there are always 14 locations reach-able in 1 step and 49
locations reach-able in 2 steps.
 From this information and using the general formula
(provided earlier), the value of r equals 63 (total number of
reachable locations), the value of n equals 2, the value of k
equals 1, and the value of t equals 64. The average number
of patterns for a given rook piece to a location on the
chessboard is calculated using the following general formu-
la:
 [(L1/63 * 1) + (L2/63 * 2)] * z1/64

X 8
X 7
X 6

X X R X X X X X 5
X 4
X 3
X 2
X 1

8 7 6 5 4 3 2 1

Figure 10: Reachable Locations
for Rook at (6,5) in 1 Move

 Plugging in the numbers for the rook (the value of L1
equals 14, the value of L2 equals 49, and the value of z1
equals 64):

[(14/63 * 1) + (49/63 * 2)] * (64/64) = (14/63) + (98/63)
= 112/63 = 1.778

 Therefore, there are on average 1.778 patterns for each
rook piece using the non-fuzzy pattern generation algo-
rithm instead of only one fuzzy pattern. Using a fuzzy
pattern provides computational savings of over 40%.

Further Analysis of the Other Pieces:
A similar analysis can be done for all other chess pieces.
However, the logic is more complex. For starters, most
pieces (except rook and bishop) have the property that the
number of shortest paths is not constant and depends great-
ly on location within the chessboard environment. Calcula-
tions for both the king and the knight are significantly
more complex because reaching any location does not
happen in one or two moves (a property of the rook, bish-
op, and queen). Consequently, the king introduces a new
level of complexity to the analysis: the number of shortest
paths for a king depends on both the starting location and
the distance to the end location. When the king is farther
away from the end location, the number of shortest paths
increases dramatically.

 From figure 11 it can be seen that, as the king and the
end piece get farther apart, the number of possible shortest
paths increases dramatically (nearly exponentially). To
calculate the approximate number of patterns, it was de-
cided to use the extremely conservative number of 5. This
number is the average number of shortest paths for the
king piece and an end piece at 2 or 3 steps away. It was
selected to reflect the usage of the king in more tight-
cornered situations, because the king pieces are rarely used
strategically in long-term attack strategies.
 Figure 12 contains a table that displays the average
number of patterns for each chess piece. The value of 5 is
used in the estimate for both the queen and the king, while

the value of 6 is used as the estimate for the knight. In both
cases 5 and 6 are an underestimate given the ranges for
each piece and selected for consistency purposes (i.e., al-
ways selecting the lower bound). Unlike the king, both the
queen and knight are used in long range planning and are
actively used throughout a game of chess.

 As can be seen from the table in figure 12, the greatest
amount of computational savings involves the knight.
There are on average 5.167 patterns in the non-fuzzy algo-
rithm and only one fuzzy pattern. The knights are active
chess pieces and two per side. By using a fuzzy pattern
there is a computational savings of slightly over 80%. Fig-
ure 13 and previous analysis clearly demonstrates the sav-
ings of using fuzzy patterns over patterns.

Conclusions
Our proposed fuzzy patterns approach for adversarial game
playing provides a far superior time advantage over the
pattern or zones (from the LG algorithm) approaches. As
has been shown, the fuzzy patterns eliminate two loops in
the algorithm. Thus, reducing the complexity of the algo-
rithm by O(n2). Each fuzzy pattern is slightly larger in
storage size, but there are significantly fewer for any given
scenario. The computational savings are greatest any time
a knight or king is involved (average of 5 patterns to every

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

20

40

60

80

100

120

140

Figure 11: Number of Shortest Paths for King as
Distance From End Piece Increases

Rook Bishop Queen King Knight
0

10

20

30

40

50

60

70

80

90

Figure 13: % Savings

Piece

Pawn 8 1-2 1 1
Rook 2 2 2 1.778
Bishop 2 2 2 1.718
Knight 2 6-12 6 5.167
Queen 1 5-12 5 3.681
King 1 3-125 5 4.475

Figure 12: Average Number of Patterns for Each Chess Piece

Number
on Board

Range of Upper
Bound of Shortest

Paths

Number
used for
Estimate

Average
Number of
Patterns

1 fuzzy pattern for knight and 4.5 patterns to every 1 fuzzy
pattern for king). The rooks and bishops save close to half
with the usage of fuzzy patterns. The queen pieces have
around a 3.5 to 1 savings.
 Furthermore, the computational saving discussed has
been on the main path (i.e., the path between the starting
and ending pieces). There is an additional multiplicative
computational saving for all attacking or blocking pieces.
In the pattern generation algorithm, whenever there is an
attacking or blocking piece discovered that had multiple
shortest paths, separate patterns are generated for each of
these paths. The fuzzy pattern generation algorithm con-
siders the multiple shortest paths as a set (same as the main
path) providing even further savings than shown in the
above analysis.

 The fuzzy patterns are just one part of a larger search
algorithm (Coffman-Wolph and Kountanis 2013a). The
patterns and their fuzzy counterparts are used to determine
the possible moves for each chess piece. By representing
several related moves as a single entity, the fuzzy patterns
have a much smaller branching factor and, thus, a signifi-
cantly smaller search tree. Specifically using the values
calculated in the results section and weighting for the
number of each chess piece, the search tree for a chess
game would be cut at least in half.

Acknowledgments
The authors would like to thank Dr. Ala Al-Fuqaha for his
careful review and helpful suggestions that were incorpo-
rated into this paper. The authors would like to thank the
reviewers for their suggestions and comments.

References
1. Coffman-Wolph, S. and Kountanis, D. 2013.

Fuzzy Process Particle Swarm Optimization. In

the Proceedings of the 43rd Southeastern Confer-
ence on Combinatorics, Graph Theory, & Compu-
ting. Winnipeg: Utilitas Mathematica Pub., Inc.
Forthcoming.

2. Coffman-Wolph, S. and Kountanis, D. 2013. A
General Framework for the Fuzzification of Algo-
rithms. In the Proceedings of MICWIC 2013.
Forthcoming.

3. Cox, E. 2005. Fuzzy Modeling and Genetic Algo-
rithms for Data Mining and Exploration. San
Francisco, California: Morgan Kauffman Publish-
ing.

4. David-Tabibi, O., Koppel, M., and Netanyahi, N.
S. 2010. Optimizing Selective Search in Chess. In
the Proceedings of the ICML Workshop on Ma-
chine Learning and Games. Madison, Wisconsin:
ICML.

5. Groen, F. C. A., den Boer, G. A., van Inge, A.,
and Stam, R. 1992. A Chess Playing Robot: Lab
Course in Robot Sensor Integration, IEEE Trans-
actions on Instrumentation and Measurement 41:
911-914.

6. Ross, T. J. 2004. Fuzzy Logic with Engineering
Applications. West Sussex, England: John Wiley
& Sons Ltd.

7. Russell, S., and Norvig, P. 1995. Artificial Intelli-
gence: A Modern Approach. Saddle River, New
Jersey: Prentice Hall.

8. Si, J., and Tang, R. 1999. Trained Neural Network
Play Chess Endgames. In the Proceedings of the
International Joint Conference on Neural Net-
works (IJCNN ‘99), 3730-3733. Institute of Elec-
trical and Electronics Engineers, Inc.

9. Stilman, B. 1994. A Formal Model for Heuristic
Search. In the Proceedings of the 22nd Annual
ACM Computer Science Conference, 380-389.
New York, New York: Association for Computing
Machinery.

10. Stilman, B. 2000. Lingustic Geometry: From
Search to Construction, Norwell, Massachusetts:
Kluwer Academic Publishers.

11. Wang, J., Dong, L., Gao, X., Xu, C., Wang, F.,
and Zhang, C. 2009. The Research and Develop-
ment of Super-Master-Like Chess Playing Robot.
In the Proceedings of the Chinese Control and De-
cision Conference (CCDC ’09), 1332-1335. Insti-
tute of Electrical and Electronics Engineers, Inc.

12. Yen, J., and Langari, R. 1998. Fuzzy Logic Intel-
ligence, Control, and Information. Upper Saddle
River, New Jersey: Pearson Education.

13. Zadeh, L.A. 1965. Fuzzy Sets. Information and
Control 8: 338-353.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Figure 14: Number of Fuzzy vs Non-Fuzzy Patterns

Number Fuzzy Patterns
Number of Non-Fuzzy Patterns

