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Abstract. Knowledge-based systems are often used to support
search and navigation in a set of financial services. In a typical pro-
cess users are defining their requirements and the system selects and
ranks alternatives that seem to be appropriate. In such scenarios sit-
uations can occur in which requirements can not be fulfilled and al-
ternatives (repairs) must be proposed to the user. In this paper we
provide an overview of model-based diagnosis techniques that can
be applied to indicate ways out from such a ”no solution could be
found” dilemma. In this context we focus on scenarios from the do-
main of financial services.

1 Introduction

Knowledge-based systems such as recommenders [2, 18] and config-
urators [6, 9, 28] are often used to support users (customers) who are
searching for solutions fitting their wishes and needs. These systems
select and also rank alternatives of relevance for the user. Examples
of such applications are knowledge based recommenders that support
users in the identification of relevant financial services [10, 11] and
configurators that actively support service configuration [12, 20].

The mentioned systems have the potential to improve the under-
lying business processes, for example, by reducing error rates in the
context of order recording and by reducing time efforts related to
customer advisory. Furthermore, customer domain knowledge can
be improved by recommendation and configuration technologies;
through the interaction with these systems customers gain a deeper
understanding of the product domain and – as a direct consequence
– less efforts are triggered that are related to the explanation of basic
domain aspects. For a detailed overview of the advantages of apply-
ing such technologies we refer the reader to [9].

When interacting with knowledge-based systems, situations can
occur where no recommendation or configuration can be identified.
In order to avoid inefficient manual adaptations of requirements,
techniques can be applied which automatically determine repair ac-
tions that allow to recover from an inconsistency. For example, if
a customer is interested in financial services with high return rates
but at the same time does not accept risks related to investments, no
corresponding solution will be identified.

There are quite different approaches to deal with the so-called no
solution could be found dilemma – see Table 1. In the context of
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this paper we will focus on the application of the concepts of model-
based diagnosis [27, 5]. A first application of model-based diagnosis
to the automated identification of erroneous constraints in knowl-
edge bases is reported in Bakker et al. [1]. In their work the au-
thors show how to model the task of identifying faulty constraints
in a knowledge base as a diagnosis task. Felfernig et al. [8] extend
the approach of Bakker et al. [1] by introducing concepts that al-
low the automated debugging of (configuration) knowledge bases
on the basis of test cases. If one or more test cases fail within the
scope of regression testing, a diagnosis process is activated that de-
termines a minimal set of constraints in such a way that the deletion
of these constraints guarantees that each test case is consistent with
the knowledge base. Model-based diagnosis [27] relies on the exis-
tence of conflict sets which represent minimal sets of inconsistent
constraints. Conflict sets can be determined by conflict detection al-
gorithms such as QUICKXPLAIN [19].

Beside the automated testing and debugging of inconsistent
knowledge bases, model-based diagnosis is also applied in situations
where the knowledge base per se is consistent but a set of customer
requirements induces an inconsistency. Felfernig et al. [8] also sketch
an approach to the application of model-based diagnosis to the iden-
tification of minimal sets of fault requirements. Their approach is
based on breadth-first search that uses diagnosis cardinality as the
only ranking criteria.

A couple of different approaches to the determination of person-
alized diagnoses for inconsistent requirements have been proposed.
DeKleer [4] introduces concepts for the probability-based identifica-
tion of leading diagnoses. O’Sullivan et al. [25] introduce the concept
of representative explanations (diagnosis sets) where each existing
diagnosis element is contained in at least one diagnosis of a repre-
sentative set of diagnoses. Felfernig et al. [13] show how to integrate
basic recommendation algorithms into diagnosis search and with this
to increase the prediction quality (in terms of precision) of diagnos-
tic approaches. Felfernig et al. [14] extend this work and compare
different personalization approaches with regard to their prediction
quality and the basis of real-world datasets. Based on the concepts of
QUICKXPLAIN, Felfernig et al. [15] introduced FASTDIAG which
improves the efficiency of diagnosis search by omitting the calcuala-
tion of conflicts as a basis for diagnosis calculation. This diagnostic
approach is also denoted as direct diagnosis [17]. The applicability
of FASTDIAG has also been shown in SAT solving scenarios [23].

Different types of knowledge-based systems have already been
applied to support the interactive selection and configuration of fi-



Topic Reference

Foundations of model-based diagnosis
Reiter 1987 [27], DeKleer

et al. 1992 [5]
Conflict detection and model-based diagnosis of inconsistent

constraint satisfaction problems (CSPs)
Bakker et al. 1993 [1]

Regression testing and automated debugging of configuration
knowledge bases using model-based diagnosis (breadth-first search)

Felfernig et al. 2004 [8]

Identification of minimal diagnoses for user requirements for the
purpose of consistency preservation (breadth-first search)

Identification of preferred minimal conflict sets on the basis of a
divide-and-conquer based algorithm (QUICKXPLAIN)

Junker 2004 [19]

Identification of representative explanations (each existing diagnosis
element is contained in at least one diagnosis of the result set)

O’Sullivan et al. 2007 [25]

Identification of personalized diagnoses on the basis of
recommendation algorithms

Felfernig et al. 2009,2013
[13, 14]

Probability based identification of leading diagnoses DeKleer 1990 [4]
Identification of preferred minimal diagnoses on the basis of a

divide-and-conquer based algorithm (FASTDIAG)
Felfernig et al. 2012 [15]

Preferred minimal diagnoses for SAT based knowledge representations
Marques-Silva et al. 2013

[23]

Table 1. Overview of research related to conflict management in knowledge-based systems.

nancial services. Fano and Kurth [7] introduce an approach to the
visualization and planning of financial service portfolios. The simu-
lation is based on an integrated model of a human’s household and
interdependencies between different financial decisions. Felfernig et
al. [10, 11] show how to apply knowledge-based recommender ap-
plications for supporting sales representatives in their dialogs with
customers. Major improvements that can be expected from such an
approach are less errors in the offer phase and more time for ad-
ditional customer meetings. An approach to apply the concepts of
cased-based reasoning [21] for the purpose of recommending finan-
cial services is introduced by Musto et al. [24].

The major focus of this paper is to provide an overview of tech-
niques that help to recover from inconsistent situations in an auto-
mated fashion. In this context we show how inconsistencies can be
identified and resolved. The major contributions of this paper are the
following: (1) we provide an overview of error identification and re-
pair techniques in the context of financial services recommendation
and configuration. (2) We show how diagnosis and repair techniques
can be applied on the basis of different knowledge representations
(CSPs as well as table-based representations). (3) We provide an out-
look of major issues for future work.

The remainder of this paper is organized as follows. In Section
2 we introduce basic definitions of a constraint satisfaction problem
(CSP) and a corresponding solution. On the basis of these defini-
tions we introduce a first working example from the financial ser-
vices domain. Thereafter (in Section 3) we introduce a basic defi-
nition of a diagnosis task and show how diagnoses and repairs for
inconsistent user requirements can be determined. In Section 4 we
switch from constraint-based to table-based knowledge representa-

tions where (personalized) solutions are determined on the basis of
conjunctive queries [13]. In Section 5 we provide one further exam-
ple of consistency management in the loan domain. In Section 6 we
discuss issues for future work. With Section 7 we conclude the paper.

2 Constraint-based Representations

Constraint Satisfaction Problems (CSPs) [16, 22] are successfully
applied in many industrial scenarios such as scheduling [26], con-
figuration [9], and recommender systems [18]. The popularity of this
type of knowledge representation can be explained by the small set
of representation concepts (only variables, related domains, and con-
straints have to be defined) and the still high degree of expressivity.

Definition 1 (Constraint Satisfaction Problem (CSP) and Solu-
tion). A constraint satisfaction problem (CSP) can be defined as a
triple (V,D,C) where V = {v1, v2, ..., vn} represents a set of vari-
ables, dom(v1), dom(v2), ..., dom(vn) represents the correspond-
ing variable domains, and C = {c1, c2, ..., cm} represents a set of
constraints that refer to corresponding variables and reduce the num-
ber of potential solutions. A solution for a CSP is defined by an as-
signment A of all variables in V where A is consistent with the con-
straints in C.

Usually, user requirements are interpreted as constraints
CREQ = {r1, r2, ..., rq} where ri represent individual user re-
quirements. In this paper we assume that the constraints in C are
consistent and inconsistencies are always induced by the constraints
in CREQ. If such a situation occurs, we are interested in the ele-
ments of CREQ which are responsible for the given inconsistency.
On the basis of a first example we will now provide an overview of



diagnosis techniques that can be used to recover from such incon-
sistent situations. An example of a CSP in the domain of financial
services is the following. For simplicity we assume that each vari-
able has the domain {low, medium, high}.

• V = {av,wr, rr}
• dom(av) = dom(wr) = dom(rr) = {low,medium, high}
• C = {c1 : ¬(av = high∧wr = high), c2 : ¬(wr = low∧rr =

high), c3 : ¬(rr = high ∧ av = high)}

An overview of the variables of this CSP is given in Table 2.

variable description ri ∈ CREQ

av availability r1 : av = high

wr willingness to take risks r2 : wr = low

rr expected return rate r3 : rr = high

Table 2. Overview of variables used in the example CSP definition.

In addition to this basic CSP definition we introduce an example
set of customer requirements CREQ = {r1 : av = high, r2 : wr =

low, r3 : rr = high} which is inconsistent with the constraints
defined in C. On the basis of this simplified financial service knowl-
edge base defined as a CSP we will now show how inconsistencies
induced by customer requirements can be identified and resolved.

3 Diagnosis & Repair of Inconsistent Constraints
In our working example, the requirements CREQ and the set of
constraints C are inconsistent, i.e., inconsistent(CREQ ∪ C). In
such situations we are interested in a minimal set of requirements
that have to be deleted or adapted such that consistency is restored.
Consistency resolution is in many cases based on the resolution of
conflicts. In our case, a minimal conflict is represented by a minimal
set of requirements inCREQ that have to be deleted or adapted such
that consistency can be restored.

Definition 2 (Conflict Set). A conflict setCS is a subset ofCREQ
s.t. inconsistent (CS ∪ C). A conflict set is minimal if there does
not exist another conflict set CS′ with CS′ ⊂ CS. A minimal car-
dinality conflict set CS is a minimal conflict set with the additional
property that there does not exist another minimal conflict CS′ with
|CS′| < |CS|.

Minimal conflict sets can be determined on the basis of con-
flict detection algorithms such as QUICKXPLAIN [19]. They can be
used to derive diagnoses. In our case, a diagnosis ∆ represents a
set of requirements that have to be deleted from CREQ such that
C ∪ (CREQ − ∆) is consistent, i.e., diagnoses help to restore the
consistency between CREQ and C.

Definition 3 (Diagnosis Task and Diagnosis). A diagnosis task can
be defined as a tuple (C,CREQ) where C represents a set of con-
straints in the knowledge base and CREQ represents a set of cus-
tomer requirements. ∆ is a diagnosis ifCREQ−∆∪C is consistent.
A diagnosis ∆ is minimal if there does not exist a diagnosis ∆′ with
∆′ ⊂ ∆. Furthermore, ∆ is a minimal cardinality diagnosis if there
does not exist a diagnosis ∆′ with |∆′| < |∆|.

A standard approach to the determination of diagnoses is based on
the construction of a hitting set directed acyclic graph (HSDAG) [27]
where minimal conflict sets are successively resolved in the process

of HSDAG construction (an example is depicted in Figure 1). In the
context of our example of C and CREQ, a first minimal conflict set
that could be returned by an algorithm such as QUICKXPLAIN [19]
is CS1 : {r1, r3}.

Figure 1. Hitting Set Directed Acyclic Graph (HSDAG) for requirements
CREQ = {r1 : av = high, r2 : wr = low, r3 : rr = high}.

There are two possibilities of resolving CS1, either by delet-
ing requirement r1 or by deleting requirement r3. If we delete r3

(see Figure 1), we managed to identify the first minimal diagnosis
∆1 = {r3} which is also a minimal cardinality diagnosis. The sec-
ond option to resolve CS1 is to delete r1. In this situation, another
conflict exists in CREQ, i.e., a conflict detection algorithm would
return CS2 : {r2, r3}. Again, there are two possibilities to resolve
the conflict (either by deleting r2 or by deleting r3). Deleting r3 leads
to a diagnosis which is not minimal since {r3} itself is already a di-
agnosis. Deleting r2 leads to the second minimal diagnosis which is
∆2 = {r1, r2}.

The diagnoses ∆1 and ∆2 are indicators of minimal changes that
need to be performed on the existing set of requirements such that
a consistency between CREQ and C can be restored. The issue of
finding concrete repair actions for the requirements contained in a
diagnosis will be discussed later in this paper.

There can be quite many alternative diagnoses. In this context it
is not always clear which diagnosis should be selected or in which
order alternative diagnoses should be shown to the user. In the fol-
lowing we present one approach to rank diagnoses. The approach we
sketch is based on multi-attribute utility theory [29] where we assume
that customers provide weights for each individual requirement. In
the example depicted in Table 3, two customers specified their pref-
erences in terms of weights for each requirement. For example, cus-
tomer 1 specified a weight of 0.7 for the requirement r3 : rr = high,
i.e., the attribute rr is of highest importance for the customer. These
weights can be exploited for ranking a set of diagnoses.

Formula 1 can be used for determining the overall importance
(imp) of a set of requirements (RS). The higher the importance the
lower the probability that these requirements are element of a diag-
nosis shown to the customer. Requirement r3 has a high importance
for customer 1, consequently, the probability that r3 is contained in
a diagnosis shown to customer 1 is low.

imp(RS) = importance(RS) = Σr∈RSweight(r) (1)

Formula 2 can be used to determine the relevance of a partial or
complete (minimal) diagnosis, i.e., this formula can be used to rank



customer weight(r1 : av = high) weight(r2 : wr = low) weight(r3 : rr = high)

1 0.1 0.2 0.7
2 0.3 0.5 0.2

Table 3. Individual weights regarding the importance of the requirements CREQ ={r1, r2, r3}.

diagnoses with regard to their relevance for the customer. The higher
the relevance of a diagnosis, the higher the ranking of the diagnosis
in a list of diagnoses shown to the customer.

rel(∆) = relevance(∆) =
1

importance(∆)
(2)

Tables 4 and 5 show the results of applying Formulae 1 and 2 to
the customer preferences (weights) shown in Table 3. For customer
1 (see Table 4), diagnosis ∆2 = {r1, r2} has the highest relevance.
For customer 2 (see Table 5), diagnosis ∆1 = {r3} has the highest
relevance. Consequently, diagnosis ∆2 is the first one that will be
shown to customer 1 and diagnosis ∆1 is the first one that will be
shown to customer 2.

diagnosis ∆j importance(∆j ) relevance(∆j )

∆1 : {r3} 0.7 1.43
∆2 : {r1, r2} 0.3 3.33

Table 4. Diagnosis with highest relevance (rel) determined for customer 1:
∆2 = {r1, r2}.

diagnosis ∆j importance(∆j ) relevance(∆j )

∆1 : {r3} 0.2 5.0
∆2 : {r1, r2} 0.8 1.25

Table 5. Diagnosis with highest relevance (rel) determined for customer 2:
∆1 = {r3}.

Figure 2. Personalized diagnosis determined for CREQ and the
individual importance weights defined in Table 3 (for customer1). In this

example, ∆2 is the preferred diagnosis since
relevance(∆2) > relevance(∆1).

On the basis of the relevance values depicted in Table 4, Figure 2
depicts a HSDAG [27] with additional annotations regarding diagno-
sis relevance (rel). The higher the relevance of a (partial) diagnosis,
the higher the ranking of the corresponding diagnosis.

Figure 3. FASTDIAG approach to diagnosis determination. CREQ
represents a set of customer requirements and C represents a set of

constraints. The algorithm is based on a divide-and-conquer approach: if
{r1, r2, ..., rk/2} is consistent with C then diagnosis search can be

continued in {rk/2+1...rk}. ∆ is a diagnosis if CREQ − ∆ ∪ C is
consistent.

The afore discussed approaches to diagnosis determination are
based on the construction of a HSDAG [27]. Due to the fact that con-
flicts have to determined explicitly when following this approach, di-
agnosis determination does not scale well [13, 14]. The FASTDIAG

algorithm [15] tackles this challenge by determining minimal and
preferred diagnoses without the need of conflict detection. This al-
gorithm has shown to have the same predictive quality as HSDAG
based algorithms that determine diagnoses in a breadth-first search
regime. The major advantage of FASTDIAG is a high-performance
diagnosis search for the leading diagnoses (first-n diagnoses).

FASTDIAG is based on the principle of divide and conquer – see
Figure 3: if a set of requirements CREQ is inconsistent with a cor-
responding set of constraints C and the first part {r1, r2, ..., rk/2}
of CREQ is consistent with C then diagnosis search can focus on
{rk/2+1, ..., rk}, i.e., can omit the requirements in {r1, r2, ..., rk/2}.
A detailed discussion of FASTDIAG can be found in [15].

Determination of Repair Actions. Repair actions for diagnosis el-
ements can be interpreted as changes to the originial set of require-
ments in CREQ in such a way that at least one solution can be
identified. If we assume that CREQ is a set of unary constraints that
are inconsistent with C and ∆ is a corresponding diagnosis, then a
set of repair actionsR = {a1, a2, ..., al} can be identified by the con-
sistency check CREQ − ∆ ∪ C where aj (a variable assignment)
is a repair for the constraint rj if rj is in ∆.

In this section we took a look at different approaches that support
the determination of diagnoses in situations where a given set of re-
quirements becomes inconsistent with the constraints in C. In the
following we will take a look at an alternative knowledge representa-
tion where tables (instead of CSPs) are used to represent knowledge



id return rate p.a. (rr) runtime in yrs. (rt) risk level (wtr) shares percentage (sp) acessibility (acc) bluechip(bc)

1 4.2 3.0 A 0.0 no yes
2 4.7 3.7 B 10.0 yes yes
3 4.8 3.5 A 10.0 yes yes
4 5.2 4.0 B 20.0 yes no
5 4.3 3.5 A 0.0 yes yes
6 5.6 5.0 C 30.0 no no
7 6.7 6.0 C 50.0 yes no
8 7.9 7.0 C 50.0 no no

Table 6. Investment products: return rate p.a. (rr), runtime in years (rt), risk level (wtr), shares percentage (sp), accessibility (acc), and bluechip (bc).

customer weight(r1 : rr ≥ 5.5) weight(r2 : rt = 3.0) weight(r3 : acc = yes) weight(r4 : bc = yes)

1 0.7 0.1 0.1 0.1
2 0.1 0.7 0.1 0.1

Table 7. Individual weights regarding the importance of the requirements CREQ ={r1, r2, r3, r4}.

about financial services. Again, we will show how to deal with in-
consistent situations.

4 Table-based Representations

In Section 3 we analyzed different ways of diagnosing inconsistent
CSPs [16, 22]. We now show how diagnosis can be performed on
a predefined set of solutions, i.e., a table-based representation. Ta-
ble 6 includes an example set of investment products. The set of
financial services {1, 2, ..., 8} is stored in an item table T [13] –
T can be interpreted as an explicit enumeration of the possible so-
lutions (defined by the set C in Section 2). Furthermore, we as-
sume that the customer has specified a set of requirements CREQ
= {r1 : rr ≥ 5.5, r2 : rt = 3.0, r3 : acc = yes, r4 : bc = yes}.
The existence of a financial service in T that is able to fulfill all re-
quirements can be checked by a relational query σ[CREQ]T where
CREQ represents a set of selection criteria and T represents the
corresponding product table.

An example query on the product table T could be σ[rr≥5.5]T

which would return the financial services {6,7,8}. For the query
σ[r1,r2,r3,r4]T there does not exist a solution. In such situations we
are interested in finding diagnoses that indicate minimal sets of re-
quirements in CREQ that have to be deleted or adapted in order to
be able to identify a solution.

Definition 4 (Conflict Sets in Table-based Representations). A con-
flict set CS is a subset of CREQ s.t. σ[CS]T returns an empty result
set. Minimality properties of conflict sets are the same as introduced
in Definition 2.

A diagnosis task and a corresponding diagnosis in the context of
table-based representations can be defined as follows.

Definition 5 (Diagnosis in Table-based Representations). A diag-
nosis task can be defined as a tuple (T,CREQ) where T represents a
product table and CREQ represents a set of customer requirements.

∆ is a diagnosis if σ[CREQ−∆]T returns at least one solution. Mini-
mality properties of diagnoses are the same as in Definition 3.

The requirements rj ∈ CREQ are inconsistent with the items
included in T (see Table 6), i.e., there does not exist a finan-
cial service in T that completely fulfills the user requirements in
CREQ. Minimal conflict sets that can be derived for CREQ =
{r1 : rr ≥ 5.5, r2 : rt = 3.0, r3 : acc = yes, r4 : bc = yes}
are CS1 : {r1, r2}, CS2 : {r2, r3}, and CS3 : {r1, r4}. The deter-
mination of the corresponding diagnoses is depicted in Figure 4.

Figure 4. Hitting Set Directed Acyclic Graph (HSDAG) for requirements
CREQ = {r1 : rr ≥ 5.5, r2 : rt = 3.0, r3 : acc = yes, r4 : bc = yes}.

Diagnoses are determined in the same fashion as discussed in
Section 2. Minimal diagnoses that can be derived from the conflict
sets CS1, CS2, and CS3 are ∆1 : {r1, r2}, ∆2 : {r1, r3} and
∆3 : {r2, r4} (see Figure 4).

Again, the question arises which of the diagnoses has the high-
est relevance for the user (customer). Table 7 depicts the importance
distributions for the requirements of our example. Based on the im-
portance distributions depicted in Table 7 we can derive a preferred
diagnosis (see Figure 5). Diagnosis ∆3 will be first shown to cus-
tomer 1 since ∆3 has the highest evaluation in terms of relevance
(see Formula 2). The first diagnosis shown to customer 2 is ∆2.



Figure 5. Personalized diagnoses determined for CREQ and the individual importance weights defined in Table 7 (for customer 1). In this example, ∆3 is
the preferred diagnosis.

diagnosis ∆j importance(∆j) relevance(∆j)

∆1 : {r1, r2} 0.8 1.25
∆2 : {r1, r3} 0.8 1.25
∆3 : {r2, r4} 0.2 5.0

Table 8. Diagnosis with highest relevance (rel) determined for customer 1: ∆3 = {r2, r4}.

diagnosis ∆j importance(∆j) relevance(∆j)

∆1 : {r1, r2} 0.8 1.25
∆2 : {r1, r3} 0.2 5.0
∆3 : {r2, r4} 0.8 1.25

Table 9. Diagnosis with highest relevance (rel) determined for customer 2: ∆2 = {r1, r3}.

id creditworthiness(cw) loan limit(ll) runtime in yrs.(rt) interest rate (ir)

1 1 30.000 5.0 3%
2 2 25.000 5.0 4%
3 3 20.000 5.0 5%
4 1 40.000 6.0 4%
5 2 35.000 6.0 5%
6 3 30.000 7.0 5.2%
7 1 40.000 5.0 3%
8 2 35.000 5.0 3.5%
9 3 30.000 5.0 5%

Table 10. Loans: creditworthiness (cw), loan limit (ll), runtime in years (rt), and interest rate (ir).



5 An Additional Example: Selection of Loans
As a third example we introduce the domain of loans. The entries in
Table 10 represent different loan variants that can be chosen by cus-
tomers. Customers can specify their requirements on the basis of the
variables depicted in Table 11. Furthermore, the different loan vari-
ants are characterized by their expected creditworthiness (cw), loan
limit (ll), runtime in yrs. (rt), and interest rate (ir). These variables
are basic elements of the definition of the following Constraint Sat-
isfaction Problem (CSP).

variable description ri ∈ CREQ

ccw current creditworthiness r1 : ccw = 3

ils intended loan sum r2 : ils = 30.000

mpp maximum periodical payment –
irt intended runtime r3 : irt = 6yrs.

pir preferred interest rate r4 : pir = 4.5%

Table 11. Overview of variables used in the example CSP definition
(loans).

• V = {ccw, ils, mpp, irt, pir, cw, ll, rt, ir}
• dom(ccw) = dom(cw) = {1,2,3}; dom(ils) = dom(ll) = float;

dom(mpp) = float; dom(irt) = dom(rt) = integer; dom(pir) =
dom(ir) = integer.

• C = {c1 : ccw ≤ cw, c2 : ils ≤ ls, c3 : irt = rt, c4 : pir ≥
ir, c5 : see below, c6,7 : see below}

Constraint c5 represents the entities of Table 10 in disjunctive nor-
mal form, for example, the first table row can be represented as ba-
sic constraint {cw = 1 ∧ ll = 30.000 ∧ rt = 5.0 ∧ ir = 3%}.
The disjunct of all basic constraints is the disjunctive normal form.
Constraints c6,7 can be used to avoid situations where the periodical
payments for a loan exceed the financial resources of the customer.

c6 : mpp ≥ costs(id) + ils

rt
(3)

c7 : costs(id) = ils× ir(id)× (rt(id) + 1)

2
(4)

For the purpose of our example let us assume that the customer
has the following requirements: CREQ = {r1 : ccw = 3, r2 :

ils = 30.000, r3 : irt = 6yrs., r4 : pir = 4.5%}. Since the
customer creditworthiness has been evaluated with 3, only three al-
ternative loan variants are available (the ids 3,6,9). These variants are
depicted in Table 12.

id cw ll rt ir

3 3 20.000 5.0 yrs. 5%
6 3 30.000 7.0 yrs. 5.2%
9 3 30.000 5.0 yrs. 5%

Table 12. Loans accessible for the customer with creditworthiness level 3.

Since CREQ is inconsistent with the constraints in C we could
determine minimal diagnoses as indicators for possible adaptations
in the requirements. A possible criteria for personalizing diagno-
sis ranking could be the costs related to a loan (see Formula 4).

The requirements CREQ include one minimal conflict set which
is CS1 : {r3, r4}. Consequently, there exist two different possibili-
ties to resolve the conflict: one possibility is to change the value for
the intended runtime (irt) from 6.0 years to 5.0 years and to keep the
preferred interest rate (pir) as is. The other possibility is to change
the preferred interest rate from 4.5% to 6% and to keep the intended
runtime as is. The overall loan costs related to these two alternatives
are depicted in Table 13. If the overall loan costs are a major criteria
then repair alternative 1 would be chosen by the customer, otherwise
– if the upper limit for periodical payments is strict – repair alterna-
tive 2 will be chosen.

repair alternative irt pir costs costs per year

1 5.0 yrs. 5.0% 4.500 900.00
2 7.0 yrs. 5.2% 6.240 891.43

Table 13. Loan costs for different repair alternatives.

6 Future Work

A major issue for interactive applications is to guarantee reasonable
response times which should be below one second [3]. This goal can
not be achieved with standard diagnosis approaches since they typi-
cally rely on the (pre-)determination of conflict sets. Although exist-
ing divide-and-conquer based diagnosis approaches are significantly
faster when determining only leading (preferred) diagnosis, i.e., not
all diagnoses have to be determined, there is still a need for improv-
ing diagnosis efficiency in more complex settings. In this context,
on research issue is the development of so-called anytime diagnosis
algorithms that help to determine nearly optimal (e.g., in terms of
prediction quality) diagnoses with less computational efforts.

Although the prediction quality of diagnoses significantly in-
creases and numerous recommendation algorithms have already been
evaluated, there is still a need for further advancing the state-of-the-
art in diagnosis prediction. One research direction is to focus on
learning-based approaches that help to figure out which combination
of a set of basic diagnosis prediction methods best performs in the
considered domain. Such approaches are also denoted as ensemble-
based methods which focus on figuring out optimal configurations of
basic diagnosis prediction methods.

Efficient calculation and high predictive quality are for sure central
issues of future research. Beyond efficiency and prediction quality,
intelligent visualization concepts for diagnoses are extremely impor-
tant. For example, the the context of group decision scenarios where
groups of users are in charge of resolving existing inconsistencies in
the preferences between group members, visualizations have to be
identified that help to restore consistency (consensus) in the group
as soon as possible. Such visualizations could focus on visualizing
the mental state on individual group members as well visualizing the
individual decision behavior (e.g., egoism vs. altruism).

7 Conclusions

In this paper we give an overview of existing approaches to deter-
mine diagnoses in situations were no solution can be found. We first



provide an overview of existing related work and then focus on ba-
sic approaches to determine diagnoses in the context of two knowl-
edge representation formalisms (constraint satisfaction and conjunc-
tive query based approaches). For explanation purposes we introduce
three different types of financial services as working examples (basic
investment decisions, selection of investment products, and loan se-
lection). On the basis of these examples we sketch the determination
of (preferred) diagnoses. Thereafter, we provide a short discussion of
open research issues which includes diagnosis efficiency, prediction
quality, and intelligent visualization.
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