
MT-Redland: An RDF Storage Backend for

Movable Type

Gregory Todd Williams

greg@evilfunhouse.com

Abstract. Existing content management systems and weblogging tools
are based on rigid database designs that suffer from a lack of flexibility in
the face of an ever increasing need for new types of structured data and
metadata. By modifying these systems to use RDF as the native storage
format, they may be easily extended in ways unimagined by the original
designers. I present just such a system, a combination of the Movable
Type weblogging tool and the Redland RDF Application Framework,
showing examples of how the system can more easily adapt to diverse
semantic annotation needs.

1 Introduction

The use of weblogging tools is continually increasing. Many of these tools allow
their data to be exported in structured formats such as RSS[2], thus allowing
the data to be used in more contexts than just the weblog’s HTML pages. Ag-
gregators and other tools utilize the structured nature of RSS to present weblog
data in new and useful ways.

With the use of weblogging tools, a large amount of structured data is being
created, with much of it being generated with either RDF-based formats, or
with formats that can be mapped to RDF. As a result, weblogs represent a
growing source of potential data for the Semantic Web. Despite this, most data
on weblogs represents information that is in a format inaccessible to Semantic
Web tools – namely in natural language. Only the basic structure of a weblog,
including such concepts as authors, entries, and categories, is commonly available
in a machine-readable form.

MT-Redland is an attempt to make it easier to add semantic data to weblogs
without requiring authors to work directly with RDF. The system replaces the
built-in storage facilities of the Movable Type weblogging tool with an RDF
backend that allows easy extensibility, and provides user interfaces meant to
ease the creation of semantic metadata.

2 Background

Movable Type[1] is one of the most popular weblogging tools aimed at authors
wanting to host their own weblog. It is available in both paid and free versions,
with both being distributed as Perl source code. Having access to the code, it

2

is possible to easily customize and integrate Movable Type with other products.
Like most tools of its kind however, Movable Type’s data storage features suffer
from a rigid design that make adding semantic data difficult.

Redland[3] is an RDF application framework consisting of RDF parsing, stor-
age, and querying facilities. Though written in C, bindings for several popular
scripting languages, including Perl, are available. This makes Redland a good
choice for integration with Movable Type.

Though there has been some work done on integrating semantic web features
into Movable Type[11, 7, 14], most of this effort has been in making small ad-
ditions to Movable Type’s template features, and allowing existing data to be
exported in new ways. There has been no effort spent on realizing the potential
of RDF as a storage mechanism, or on the potential of plugins to allow creation

of new semantic data.

3 Methodology

Movable Type has a clean, object-oriented design that provides the modularity
crucial to easily adding new storage backends. In addition, Movable Type has a
rich plugin API for enhancing the features of built-in classes.

MT-Redland is divided into two parts: the storage backend and a set of
plugins to manage new data. The storage backend consists of a Redland RDF
store, and manages the mapping of classes, objects and attributes to rdf:types,
predicates and triples. The plugins supplement the system with interfaces for
adding semantic data and functionality to utilize the Redland backend by adding
the data to weblog entries.

These plugins aim to use the Movable Type API to make the creation of
semantic metadata easy for both weblog authors and developers. MT-Redland
includes a framework for adding new user interfaces to Movable Type for col-
lecting metadata. It also includes sample plugins for adding common metadata
to weblog entries, such as topics, reviews, and locations. Finally, Movable Type
template tags are included for the export of RDF data as RSS 1.0; other syndi-
cation formats may be used as normal by construction of appropriate template
files.

3.1 Storage Backend

Movable Type’s framework maps all database structures to Perl classes and im-
plements the database access with a modular system of Object Drivers. Movable
Type ships with Object Drivers for common relational databases (MySQL, Post-
greSQL, and SQLite) as well as BerkeleyDB. Classes exist for the basic types
of data stored in the system: Authors, Weblogs, Entries, Categories, and so on.
Typically (in the relational Object Drivers) these classes all represent database
tables with object attributes as columns.

All the code necessary to interface with a particular type of database is
contained in a single Object Driver class that implements a common interface

3

for loading, creating, updating, and removing objects. This design makes the
process of adding support for new databases relatively simple.

MT-Redland implements the Object Driver interface by mapping classes and
attributes directly to RDF triples. Each object becomes an RDF resource (typ-
ically a blank node) with an rdf:type of the object’s class, and each attribute is
attached to the resource with a predicate for that attribute. For example, the
MT::Blog class defines an object to represent a single weblog in the system. The
class defines attributes such as name and url. The mapping of the Blog class to
RDF would be as follows:

<mt:Blog xmlns:mt="http://kasei.us/e/ns/mt/"

xmlns:blog="http://kasei.us/e/ns/mt/blog#">

<blog:name>My Weblog</blog:name>

<blog:url>http://example.com/blog/</blog:url>

...

</mt:Blog>

The rdf:type and predicates are defined by each class with the new methods
get rdf class node and get rdf column node. A default for each method is defined
in the Object superclass, allowing classes that have no special needs to inherit the
necessary code. Also defined by each Object class is a get rdf column constructor

method that defines the constructor used to create the Nodes for attribute val-
ues. This allows classes to specify the type of each attribute: Resource, Literal,
or Blank Node. Using this approach, the MT::Blog class could define the url

attribute more appropriately as a resource by implementing the column con-
structor method:

sub get_rdf_column_constructor {

my ($self, $col) = @_;

return ’new_from_uri’ if ($col eq ’url’);

return $self->SUPER::get_rdf_column_constructor($col);

}

This would produce the RDF:

<mt:Blog xmlns:mt="http://kasei.us/e/ns/mt/"

xmlns:blog="http://kasei.us/e/ns/mt/blog#">

<blog:name>My Weblog</blog:name>

<blog:url rdf:resource="http://example.com/blog/" />

...

</mt:Blog>

Classes may define a custom rdf:type for their objects with the get rdf type node

method. Since an Entry in Movable Type can be thought of as equivalent to an
RSS Item, the MT::Entry class might define a custom get rdf type node method:

sub get_rdf_type_node {

4

return RDF::Redland::Node->new_from_uri(

’http://purl.org/rss/1.0/item’);

}

An Entry also shares several attributes with elements from RSS; the column
predicates may similarly be mapped with the get rdf column node method. Since
mapping attributes to existing RDF predicates is a common task, MT-Redland
defines get rdf column node map as a shortcut method. It may be used to define
a mapping from attributes to predicate URIs:

sub get_rdf_column_node_map {

return (title => ’http://purl.org/rss/1.0/title’,

created_on => ’http://purl.org/dc/elements/1.1/date’);

}

Finally, a class may define a get rdf node method if the default blank node
representation is not sufficient. An Entry, now defined as an RSS item, ought
to refer to the entry directly. Thus, the get rdf node method may override the
default to return a Resource node:

sub get_rdf_node {

my $entry = shift;

return RDF::Redland::Node->new_from_uri($entry->archive_url);

}

An Entry object will now map to a reasonably sensible version of RSS:

<rss:item rdf:about="http://example.com/blog/welcome.html"

xmlns:rss="http://purl.org/rss/1.0/"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<rss:title>Welcome to my Blog</rss:title>

<dc:date>2005-04-01T13:00:00+00:00</dc:date>

...

</rss:item>

The MT-Redland backend is designed to give as much flexibility as possible
to the developer in mapping the Movable Type objects to appropriate RDF.
With the methods described above, MT-Redland is able to utilize common RDF
vocabularies in mapping the Movable Type objects: Entries use RSS 1.0[2], Au-
thors use FOAF[6], Categories use SKOS[12], and Dublin Core is used for com-
mon attributes such as dates. In these mappings, OWL[9] Functional and Inverse
Functional Properties are used wherever possible so that the exported RDF data
can be meaningfully merged with existing RDF data.

It is hoped that the MT-Redland backend API, combined with Movable
Type’s callback mechanism, will be able to address any RDF mapping require-
ment that may be desired, and also provide the ability to integrate with existing
vocabularies where appropriate.

5

3.2 Modifying Movable Type’s CMS Editing Interface

Creating a system of allowing plugins to easily add metadata has two goals:
integrating easily with Movable Type and providing a simple interface for plugin
developers to use. The system must integrate with Movable Type in such a way
that core Movable Type files are not modified, and doesn’t make end users spend
time modifying existing templates and code simply to use the plugin. This eases
installation of plugins and insures that updates to the Movable Type code do
not overwrite the plugin’s code. Likewise, creating a simple plugin API allows
developers to concentrate on the functionality of their plugins while being able
to develop the plugins quickly.

MT-Redland deals with the first goal by allowing plugins to add user in-
terfaces programmatically – without changing any of Movable Type’s code or
templates. The system exposes two methods for use by a plugin that allow the
plugin to add HTML header and body content to the Movable Type editing
interface. The HTML headers are useful for adding any styling and scripting to
the interface, while the body content allows new HTML form fields to be added.

The HTML content is added to the editing interface by overriding parts of
Movable Type’s page building code. To avoid the use of fragile regular expressions
for inserting the HTML body content directly into the page, a Javascript block
is inserted into the HTML header and content is then inserted into the page
using an onload handler (on the client side) and Javascript’s DOM interface.

Fig. 1. Movable Type’s Editing Interface with fields added for Topic and Review data.

The second goal of providing a simple API for plugin developers is aided
greatly by the design of Movable Type’s form handling code. During processing

6

of the form data from the object-editing interface, Movable Type looks up the
attributes of the object and uses those values as keys into the form data. As
a result, plugin code that adds form fields for custom data must simply add
values to the object’s list of attributes corresponding to the new form fields and
Movable Type will retrieve the form data and place it in the object.

By utilizing the Movable Type callback framework, it is possible to define
a pre save handler that intercepts the object just prior to being saved to the
database. In this case, the handler removes the custom attributes from the object,
and deals with them in an appropriate manner (typically adding statements
directly to the Redland model).

MT-Redland currently only supports Movable Type’s web-based editing in-
terface; lacking any current support or common approach to extensibility in
the weblog-editing application space, MT-Redland does not address the changes
that would be required to modify Movable Type’s XML-RPC interface. How-
ever, using the XML-RPC interface should result in the same functionality as
if MT-Redland was not installed. That is, none of the MT-Redland plugins will
be available for metadata creation, but Movable Type will otherwise continue to
function normally.

3.3 Using Movable Type’s Plugin System

MT-Redland includes several plugins that make use of the frameworks described
in the previous section. These plugins add useful metadata to weblog entries
while being relatively simple to implement. The most significant plugins deal
with adding metadata to describe the topic of an entry (using the foaf:topic pred-
icate). Individual plugins define specific types of topics that may be described,
such as images, books, and events. Each topic plugin defines characteristics of
its topic and the appropriate user interface for describing it.

As an example, the Book Topic plugin allows a weblog entry to be described
as discussing a specific book. The plugin uses the Reading List Schema[10]. Using
MT-Redland’s topic API, the code for implementing the book topic, including
user interfaces for adding the information, turns out to be rather simple.

First, RDF nodes are defined for the predicates and rdf:type that are used:

my ($t_book, $p_topic, $p_isbn, $p_title, $p_type) =

map { RDF::Redland::Node->new_from_uri($_) }

qw(http://purl.org/net/schemas/book/Book

http://xmlns.com/foaf/0.1/topic

http://purl.org/net/schemas/book/isbn

http://purl.org/dc/elements/1.1/title

http://www.w3.org/1999/02/22-rdf-syntax-ns#type);

Next, the user interface for adding the book’s ISBN is defined:

MT::Plugins::Redland::CMS::Topic->install_topic(’Book’, sub {

my $app = shift;

7

my $q = $app->{query};

my $id = $q->param(’id’);

return unless ($q->param(’_type’) eq ’entry’);

my $isbn = ’’;

if ($id) {

my $entry = MT::Entry->load($id);

$isbn = $entry->isbn if ($entry);

}

return qq(<p><label for="isbn">ISBN</label>:)

. qq(<input name="isbn" id="isbn" value="${isbn}" /></p>);

});

The MT::Entry object needs to have a new column to hold the ISBN, so the
column names method is overloaded:

my $orig = MT::Entry->can(’column_names’);

*MT::Entry::column_names = sub {

return (@{ $orig->(@_) }, ’isbn’);

};

Finally, object callbacks are defined to load the book data after object con-
struction, and to save the RDF triples for the foaf:topic and book data before
the object is saved:

MT::Entry->add_callback("post_load", 4, $plugin_data, sub {

my ($cb, $terms, $args, $entry) = @_;

my $model = $entry->driver->model;

my $topic = $entry->rdf_topic_of_type($t_book);

return unless ($topic);

my ($isbn) = $model->targets($topic, $p_isbn);

$entry->isbn($isbn->literal_value) if ($isbn);

});

MT::Entry->add_callback("pre_save", 4, $plugin_data, sub {

my ($cb, $entry) = @_;

my $model = $entry->driver->model;

if (my $isbn = delete $entry->{’column_values’}{’isbn’}) {

my $node = $entry->get_rdf_node;

my $l_isbn = RDF::Redland::Node->new_literal($isbn);

$entry->remove_rdf_topics_of_type($t_book);

my ($book) = $model->sources($p_isbn, $l_isbn);

unless ($book) {

$book = RDF::Redland::Node->new();

$model->add_statement($_) for

(RDF::Redland::Statement->new($book, $p_type, $t_book)

RDF::Redland::Statement->new($book, $p_isbn, $l_isbn));

}

8

$model->add_statement(

RDF::Redland::Statement->new($node, $p_topic, $book));

}

});

This results in RDF describing the book as topic:

<rss:item rdf:about="http://example.com/blog/hacking.html"

xmlns:rss="http://purl.org/rss/1.0/"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:book="http://purl.org/net/schemas/book/">

<rss:title>Hacking Movable Type</rss:title>

<foaf:topic><book:Book book:isbn="076457499X" /></foaf:topic>

...

</rss:item>

By making the process of creating new plugins for MT-Redland simple, it is
hoped that developers will be able to easily add plugins for new types of semantic
data as new RDF vocabularies emerge.

4 Results and Analysis

The MT-Redland project has been successful in integrating Redland and Mov-
able Type, and making use of the flexibility that an RDF backend provides.
Despite this, there are several issues that present challenges to adoption of MT-
Redland as a good first-choice for a Movable Type Object Driver.

4.1 Performance Issues

Compared to the relational database Object Drivers, MT-Redland is noticeably
slower. The core object classes in Movable Type all map directly to fixed schemas.
This makes them perfectly suited for implementation in a relational database
where fields are typed and may be indexed efficiently. By using a triple-based
storage framework like Redland, this efficiency is lost to flexibility. Since Redland
currently lacks typing in its storage facilities, the literals that constitute object
attributes are stored as strings, regardless of their actual data type.

The lack of sorting in Redland, and in particular Redland’s current imple-
mentation of the SPARQL[13] query language, has dramatic speed implications
for a system, such as Movable Type, that relies on sorting. Since the data literals
that need to be sorted are stored as strings in Redland, MT-Redland must resort
to an inefficient sorting routine that attempts to sort string data as expected,
regardless of the intended type of the data.

Sorting has been accepted by the W3C Data Access Working Group as an ob-
jective of RDF query languages, but has not yet been addressed in the SPARQL
query language[8, 13].

9

4.2 Security and Privacy Concerns

Currently, the RDF MT-Redland stores in the Redland model is not suitable for
export to the Web without taking into consideration the security implications.
The current implementation of user authentication in Movable Type uses the
crypt one-way hash function to store user passwords. [5] discusses the security
issues with crypt -based authentication in the context of UNIX systems. If the
RDF containing the crypted passwords of the weblog were made available on
the Web, the problems noted in [5] would be compounded by the availability of
the crypted passwords to the entire population of the Web.

Also of concern when making RDF public is the privacy of the users who’s
data is represented. In Movable Type, email addresses of the authors of a weblog
and people who comment on the weblog are stored in the database. Often, if a
URL is provided by a commenter, only the URL and not the email address is
made visible in the HTML. By making public the RDF containing these email
addresses, the privacy of the users is compromised. To alleviate this problem, a
one-way hash of the email addresses may be performed and added to the RDF
using the foaf:mbox sha1sum predicate (or similar).

MT-Redland addresses these security and privacy issues by not exporting any
RDF triples that use default predicates. In other words, only object attributes
that have been mapped onto external predicates are publicly available.

4.3 Uses of MT-Redland’s Metadata

There are clear benefits to having Movable Type’s data in an RDF database that
may be queried using an RDF query language such as SPARQL. By allowing
users to access the RDF through exported RSS, and indirectly with SPARQL-
based searches, the value of the new semantic data may be seen.

MT-Redland allows objects to be loaded from the database with a SPARQL
query. With only minor changes to Movable Type’s search interface, weblog
entries may be found based on this structured search data. For example, using
the included plugins, it is possible to: find all entries about an image that has
been rated higher than seven out of ten (Figure 2); find all entries that link to a
particular page or site; or find all entries that a specific person has commented
on.

The benefit of allowing SPARQL queries to be run against the weblog data
may be increased by returning search results in formats other than HTML.
Again, with very minor changes to Movable Type’s search code, results of a
SPARQL query may be returned in any number of formats including RSS or
SPARQL’s Variable Binding Results XML Format[4].

Systems with the ability to utilize a weblog’s semantic data are much more
powerful than their regular counter parts, which must rely on keyword-based
searches. The availability of new semantic data will allow users to find and make
use of relevant data quickly and accurately.

10

Fig. 2. A weblog search using a SPARQL query.

5 Conclusion and Future Work

MT-Redland is an ongoing project aimed at aiding in the creation of new se-
mantic data and enhancing the extensibility of Movable Type. Despite issues of
scaling and privacy, MT-Redland already shows the possibilities of integrating
RDF backends with existing weblogging tools. As weblogs and other content
management tools become more widespread on the Web, the ability to store and
use their data in a structured manner, while remaining extensible, will become
increasingly important.

MT-Redland shows how existing tools may be modified to work with the
Semantic Web, while retaining their core design and functionality. This approach
ought to be available when using triple stores other than Redland and other
content management systems than Movable Type. MT-Redland’s mapping of
relational tables to RDF predicates and statements can be used to easily convert
existing relational data to RDF. The higher-level design pattern of implementing
all database code in a single Object Driver, however, may not always map easily
to an existing code base. In these cases, converting the existing system to use
an RDF backend may present more challenges than MT-Redland faced.

To extend the usefulness of MT-Redland, it is desirable to allow the system’s
RDF data to be exported beyond the boundaries of the system, or to import
external RDF that could augment the system’s existing RDF. To make this
feasible, the security and privacy concerns mentioned above need to be addressed.
Potential solutions are to always use hashed values of sensitive object attributes

11

(email addresses) and to rely on a distributed authentication scheme such as
TypeKey1, which already sees use in some sections of Movable Type.

A second issue that must be addressed before MT-Redland’s RDF could
be merged with external RDF, and one which might involve more serious struc-
tural changes to Movable Type or MT-Redland, is the reliance of Movable Type’s
classes on integers to uniquely identify objects. This reliance makes sense when
using a relational database or BerkeleyDB, where a Movable Type installation
can rely on a private database space (BerkeleyDB files or database tables), but
poses serious problems to merging RDF from multiple Movable Type installa-
tions into one RDF model. The use of statement provenance (using contexts
in Redland), may provide a solution to this problem. Other possible solutions
involve using predicates that are private to the URL space of the weblog, or
modifying the Movable Type code to accept non-integer values as unique iden-
tifiers.

References

1. Movable type personal publishing system. http://www.sixapart.com/movabletype/.
2. RDF Site Summary (RSS) 1.0. http://web.resource.org/rss/1.0/spec, May 2001.
3. Dave Beckett. Redland rdf application framework. http://librdf.org/. ILRT,

University of Bristol.
4. Dave Beckett. SPARQL variable binding results xml format.

http://www.w3.org/TR/rdf-sparql-XMLres/.
5. Walter Belgers. UNIX password security. Technical report, 1993.
6. Dan Brickley and Libby Miller. FOAF vocabulary specification.

http://xmlns.com/foaf/0.1/.
7. Riccardo Cambiassi. Mtfriends movable type plugin.

http://www.sixapart.com/pronet/plugins/plugin/foaf.html.
8. Kendall Grant Clark. RDF data access use cases and requirements.

http://www.w3.org/TR/2005/WD-rdf-dawg-uc-20050325/.
9. Mike Dean and Guus Schreiber. OWL web ontology language reference.

http://www.w3.org/TR/owl-ref/.
10. Leigh Dodds. Reading list schema. http://www.ldodds.com/schemas/book/.
11. Seth Ladd. Sha1 movable type plugin. http://www.sixapart.com/pronet/plugins/plugin/sha1.html.
12. Alistair Miles and Dan Brickley. SKOS core guide.

http://www.w3.org/2004/02/skos/core/guide/.
13. Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for rdf.

http://www.w3.org/TR/rdf-sparql-query/.
14. Gregory Todd Williams. MTCommentIcon.

http://kasei.us/code/mtcommenticon/.

1 http://www.sixapart.com/typekey/

