
From Graph to GUI: Displaying RDF Data from

the Web with Arago

Hannes Gassert1 and Andreas Harth2

1 Université de Fribourg, DIUF/PAI, Chemin du Musée 3, Fribourg/Switzerland.
hannes.gassert@deri.org

2 Digital Enterprise Research Institute, NUIG, University Road, Galway/Ireland.
andreas.harth@deri.org

Abstract. In this paper we discuss approaches to display user interfaces
for RDF data. Scripting languages such as PHP are used for building user
interfaces on the current Web, and are a strong candidate for constructing
UIs on the Semantic Web as well. We show how to use RDF for expressing
and applying presentation knowledge in a way that is flexible enough
to deal with arbitrary data from the Web. We present Arago, an early
implementation of a presentation engine that utilizes Fresnel, an RDF
display ontology.

Keywords

Semantic Web, RDF User Interfaces, PHP5, XML, N3

1 Introduction

Data on the Semantic Web is meant for consumption by machines. However,
most current Semantic Web scenarios are centered around humans: as creators
of data, as programmers and, last but not least, as end users. Viewing and
browsing RDF in a convenient graphical user interface (UI) is crucial for each of
these roles.

The question we try to answer is how to display Semantic Web data with
minimal hardwired knowledge about the vocabularies used in the data set. In
the scenario discussed in this paper, we look at instance data gathered from the
Web, for which we cannot make any guarantees. The main goal is to explore
ways to leverage presentation knowledge to create UIs that are able to display
specific kinds of resources.

There are a couple of differences to currently used UI creation methods that
are particular for RDF data from the Web:

– weak knowledge about the schema of the data; even if we know, we cannot
be sure whether the instances adhere to the schema, or whether they use
other vocabularies as well

– we want to specify the presentation knowledge declaratively; i.e, we want to
carry out the rendering process based on a declarative specification

UIs can be identified as one of the areas where scripting languages have gained
a strong foothold in industry. Particularly on the Web, server-side scripting

languages are driving a massive amount of generated pages on sites where short
development cycles and fast adaptability are important. We believe that scripting
languages are going to play a key role in the area of user interfaces for the
Semantic Web because they enable developers to quickly prototype systems that
exploit the new possibilities.

The rest of the paper is organized as follows: First, we survey existing ap-
proaches to displaying RDF which are based on CSS, XML, and XSLT. Next,
we discuss Fresnel [3], an RDF-based display vocabulary currently under devel-
opment. Then, we describe Arago, an early implementation of a Fresnel display
engine based on the PHP5 scripting language

2 Related Work

We identified two approaches in prior work on user interface/output genera-
tion based on RDF: the model perspective, which perceives RDF data as a set
of interconnected instances in a semantically coherent model, or the markup-
centric view, which sees the data in a particular (XML) serialization. XML,
originating in the publishing world, has proven to be a strong underlying format
for many kinds of documents. A multitude of vocabularies (HTML, XSL:FO,
SVG,. . .) have been used to express both data and style information. A great
many browsers and renderers are in use today, and industrial strength publish-
ing frameworks like Cocoon3 provide highly sophisticated means for complex
XML-based output generation tasks.

2.1 Markup-level processing

Processing RDF data on the XML level with XML tools is possible when one
preprocesses the RDF and derives a canonical serialization of the RDF. Working
with RDF as XML benefits from a large range of powerful tools developed for
XML publishing processes. Experiences with new approaches being developed
will have to be compared with these established methods. The number of existing
tools and concepts in this area are evidence both of the practical importance and
the maturity of the field.

RDF plus CSS Departing from an XML-centric perspective, CSS can be used
directly on the RDF document, using namespace-aware selector as proposed in
the CSS Namespace Enhancements document [4] and implemented in all major
HTML browsers. While this approach is limited due to the inability of CSS to
restructure the document, it can already be useful for very simple cases that
do not require such alterations. For an example applying CSS2 to an unpre-
pared RDF (FOAF[2]) document see http://www.gassert.ch/foaf/hannes.

rdf.xml. However, just using CSS2 on RDF directly doesn’t allow to display an
URL as a hyperlink or replacing the URL of an image with the image itself.

3 http://cocoon.apache.org/

RDF plus XSLT plus CSS The limitations of the approach above can be
addressed by adding an additional processing phase after an XML canonicaliza-
tion, applying an XSLT to the RDF/XML document. The full power of XSLT,
a Turing-complete functional programming language for XML transformation
can now be used to reshape the document into a form suitable for rendering,
delegating styling to CSS. This combined approach, which can be considered as
the current state of the art, benefits significantly from the maturity and wide
deployment of XML toolkits.

While it can be argued that a process aiming at displaying RDF should
therefore be built on XML technologies as early as possible, the authors don’t
consider it advisable to abandon the benefits and capabilities of RDF, RDFS
and OWL at an early processing stage. The power of such approaches is limited
by the fundamental differences between RDF and XML: Working on graphs with
formal semantics using tree-oriented tools has been found to be suboptimal by
a number of authors, resulting in tools like Treehugger [9] or RDF Twig [10].
In the absence of a standard canonicalization of RDF/XML both approaches
offer but very limited reuse of the stylesheets and the presentation knowledge
encoded within them.

For an example applying XSLT and CSS on RDF instance data that has
been preprocessed (smushing, serialization) by CWM see Figure 5, a screen-shot
taken from http://sw.deri.org/search. The PHP-based prototype uses a set
of XSLT templates for instances of classes like FOAF persons, DBLP documents,
or RSS items as well as a generic template for instances of unknown type.

2.2 Model-level processing

From a theoretical point of view, model-level processing is the preferred way of
dealing with RDF: all its semantic richness can be accessed and exploited for
processing, logical reasoning can be applied and rules be used to generate output
from the model directly. The latter has been done in the work of C. Lung [5],
using N3 output rules to directly generate HTML from the RDF model. This
elegant rule-based approach inherently has a strong focus on markup, which
makes such ”logic stylesheets” not very reusable. The presentation knowledge
encoded into the N3 rules will have to be entirely rephrased when targeting a
different output format.

A number of other applications directly use programming languages to ex-
tract and style the contents of an RDF model, hard-coding all the presentation
knowledge. This leads to similar effects as in the above approach, namely limited
reusability across applications.

Striving for a means of expressing such presentation knowledge in a flexible,
interoperable and integrative way, researchers have started to use RDF to model
presentation knowledge. Specified and implemented by the Haystack [7] team,
the Xenon [8] display ontology is an example of such practice. One of Xenon’s
main concerns is flexible recombination of presentation knowledge, which is nec-
essary when dealing with combined RDF data from multiple ontologies and in
different contexts. Xenon is modeled after XSLT, but replaces the XPath tree
traversal language with an RDF query language. While it has been argued that
Xenon, in building a powerful and highly expressive language on top of RDF,
goes too far in building a full programming language on top of RDF we very

much agree with the general idea of expressing presentation knowledge in RDF.
The benefits of RDF, its flexibility and formal semantics, should be also applied
to meta-data describing the presentation of resources. In this way, resources can
be self-descriptive also in respect to their representation displayed to humans.
We think that a special-purpose declarative language allowing a suitable level of
abstraction can substantially facilitate the process of expressing such knowledge.
The conceptual and practical benefits compared to lower-level, graph-oriented
approaches as mentioned beforehand can be seen in this improved semantic ex-
pressivity, and in the ability to use the same languages and tools for both data
and its presentation.

3 Data Set

In our example scenario we use both data gathered from the Web and data
converted to RDF from large databases. The data set from the Web 4 consists
of around 2.5m statements in 14146 files, connected via rdfs:seeAlso links.
The overall size of the dataset is 356 MB. A large number of the individuals are
described in FOAF and RSS, additionally we have to deal with instances in a
large number of numerous vocabularies. Figure 1 shows an exemplary instance
of foaf:Person with usual properties.

_:boid23 rdf:type foaf:Person;

foaf:name "Stefan Decker";

foaf:firstName "Stefan";

foaf:lastName "Decker";

foaf:title "Dr";

foaf:mbox <mailto:stefan.decker@deri.org>;

foaf:mbox_sha1sum "1bc1f862b688a45b7e0c8d4a8467c23177c53fad";

foaf:depiction <http://www.isi.edu/~stefan/sde.gif>;

foaf:knows _:boid24;

foaf:knows _:boid32.

Fig. 1. A sample (partial) FOAF file in RDF/N3.

4 Presentation Knowledge in the Fresnel Vocabulary

RDF-based user interfaces are built of three kinds of knowledge: that comprised
in the RDF statements itself, additional information from the schema, and usu-
ally a fair amount of presentation knowledge regarding visual display. While
both data and schema are being expressed in RDF, similarly common means of
expressing display knowledge are currently lacking. This kind of information is
being expressed in other languages, explicitly or implicitly, most of the time in
procedural manner.

4 http://sw.deri.org/2005/04/semWebbase/

In many cases, deriving a visual representation of an RDF graph is equiv-
alent to transforming it to a specific XML/DOM tree. Trees have proven to
be a suitable model for documents and their usually ordered and hierarchical
structure; therefore, choosing a tree model when transforming a graph model for
presentation is a reasonable choice.

Presentation knowledge has to encompass statements about how to perform
such a transformation in a meaningful way, preserving as much of the original
semantics as possible. This transformation step determines the structure and
content of the visual representation. Additionally, presentation knowledge in-
cludes information on styling, covering topics like colors, fonts, and positioning,
for which – on the current Web – CSS is the language of choice. This leads us
to Fresnel, which has been called a “CSS for RDF”.

According to its (preliminary) online manual [1] Fresnel is a ”simple vocab-
ulary for specifying which parts of an RDF graph are displayed and how they
are styled using existing style languages like CSS.“ Fresnel is a very recent5 ap-
proach developed in a joint effort by the teams of SIMILE6, IsaViz7 and RAP8.
Fresnel builds on and interfaces with CSS and is purely declarative. It applies
directly to the instance level instead of making statements on the graph-level
like for example GSS [6].

In order to describe the presentational properties of such instances, Fresnel
defines two main concepts for expressing presentation knowledge: Lenses, dealing
with content selection and structuring, and Styles, dealing with properties such
as colors determining the visual display of the selected data.

:foafPersonShortLens rdf:type fresnel:Lens ;

fresnel:lensDomain foaf:Person ;

fresnel:purpose fresnel:defaultLens;

fresnel:showProperties (foaf:name

foaf:depicts

foaf:mbox

fresnel:allProperties

) ;

fresnel:hideProperties (foaf:title

foaf:mbox_sha1sum

) .

Fig. 2. A simple fresnel:Lens for a FOAF person in RDF/N3.

5 There are not yet any reviewed and published results on the Fresnel language itself.
This early discussion is therefore based on the preliminary manual as of the end of
March 2005, as well as on numerous online discussions.

6 http://www.simile.mit.edu/
7 http://www.w3.org/2001/11/IsaViz/
8 http://www.wiwiss.fu-berlin.de/suhl/bizer/rdfapi/

These Lenses and Styles are to be applied to RDF instances, i.e. typed re-
sources and their properties. An interpretation of this model consists in first
finding all Lenses whose fresnel:lensDomain matches with an instance to be
displayed, taking into account the application context a lens is said to be suit-
able for as stated in its fresnel:purpose property. The application of a lens
to an instance results in a new, structured instance containing an ordered list
(or tree) of the properties selected by the lens. Please see Figure 2 for a simple
Lens to be applied by default to foaf:Person instances. The lens first selects
three properties considered important for display, followed by all the properties
of the instance. Additionally, the lens specifies that the properties foaf:title

and foaf:mbox sha1sum are not displayed. In this way, Fresnel lenses allow for
mixed inclusive/exclusive display schemes applied to RDF instances9. After the
selection phase carried out according to the Lens definitions, Fresnel Styles are
applied in a similar manner, where styling instructions are associated with the
different parts of the structured RDF instance.

In the following paragraphs we discuss a number of practical aspects of our
work with Fresnel, pointing out some of its features important for our scenario.
We leave a formal introduction of Fresnel’s semantics and the associated pro-
cessing model to the upcoming paper by the Fresnel core group.

:styleHomepage rdf:type fresnel:Style ;

fresnel:styleDomain foaf:homepage ;

fresnel:propertyStyle "color: blue"^^fresnel:cssStylingInstruction ;

fresnel:valueStyle [fresnel:contentNoValue

"Homepage not indicated."^^xsd:string] .

Fig. 3. Handling missing content with Fresnel style.

When working with RDF data integrated from various (uncontrollable) sources,
two situations affecting the user-friendly display of information can easily arise:
Often there is either too much data in an instance, or not enough. Fig. 3 presents
an example of “presentation knowledge” to be applied to the foaf:homepage

property. Besides stating that this property should be blue, the Style further
states that in case of a missing property value a certain string is to be displayed
instead.

9 Note that there are issues with the exact definition of an “instance”, the so-called
“Decker problem” (see http://lists.w3.org/Archives/Public/public-sws-ig/

2004Feb/0037.html). Fresnel (partially) addresses this issue by introducing the term
of “recursive sublens relationships”, which includes a property for defining the num-
ber of “hops” to follow when determining the content to be displayed.

5 Arago, a Fresnel Implementation

Arago10 is our early PHP5 implementation of the Fresnel specification as of the
end of March 2005.

Using Fresnel to drive a scripted UI layer combines the very practicable
application of scripting languages with the strengths of Fresnel as an RDF-
based encoding for presentation knowledge. By implementing Fresnel in PHP5
we hope not only to create a UI layer matching the demands of our integration
and search system, but also help to advance the development of Fresnel itself.

To date, Arago implements the core Lens and Style vocabularies along with
an XHTML serializer. The examples included in this paper can be success-
fully parsed, interpreted and applied to real-world instance data. In Figure 4
we present the class diagram of our implementation. The overall control flow
is coordinated by the main Arago class, which delegates to “management and
matchmaking” classes for Lenses and Styles, respectively. These classes manage
the process of extracting, matching and applying Lenses and Styles.

Fig. 4. Abridged UML class diagram of Arago

5.1 Selection - Structuring - Styling

As a first step, we extract a superset of the subgraph going to be displayed.
Possible sources are files, any RAP model (in-memory, database-backed,. . .) or
a YARS repository interfaced with using RDF/N3 SPARQL-like queries over
HTTP. In our example scenario, the resulting RDF contains an instance of
foaf:Person together with arbitrary RDF for which we have no presentation
knowledge.

10 Fresnel is named after a French physicist of the 19th century, an inventor of inno-
vative lenses. Thus we named our implementation after a colleague and friend who
warmly supported Augustin Fresnel: Francois Arago, known for his “adventurous
conduct in the cause of science”. The software package is to be found online at
http://sw.deri.org/~hannes/arago/.

Fig. 5. Screenshot: Rendering of the example FOAF instance

We then hand over control to the LensManager, which matches the instance
data with the available Lenses in order to find the correct Lens to apply to each
instance identified. Matching is carried out according to domain indications of
Lenses and Styles — if no applicable Lenses or Styles can be found, the generic
display indications applying every owl:Thing provided in the Arago distribu-
tion. The Lenses found in this process will be then applied to the instances to be
displayed, effectively determining what will be displayed. As a visual representa-
tion usually implies a certain order, and usual RDF does not, we need to create
an ordered sequence of properties. This is done by consecutively applying the
indications in fresnel:showProperties and fresnel:hideProperties, taking
into account fresnel:
allProperties. These operations are carried out (without loss of information)
on an array structure, because array manipulation in PHP is both considerably
easier and faster. Because mapping these ordered, hierarchical data structures
to RDF is rather inconvenient, we pass them right on to the styling component.
Writing the changes back into the RDF model for consumption by the next
component would have been worthwhile for interoperability reasons, but doing
so has turned out to be not feasible.

The styling component, taking control after the application of Lenses, is
structured similar to the Lens part. Again a management class implements the
process of bringing together instances and the styling instructions to be applied
to them and their properties. This involved the application of “container styles”,
which determine how an instance as a whole is to be embedded and displayed in
the output area, label lenses specifying the style in which instances (resources)
are to be labeled, as well as value and property styles, which specify the visual
display of single properties and their respective values. For all instances and all
their properties (and possibly instances connected to them), these styling instruc-
tions are collected and linked into an intermediate structure. This application
is steered by objects of the Style class, again like the Lens class implemented
as “active resources”, resources with behavior. The resulting structure of these
processing steps is then serialized as XHTML output stream by iterating over
the statements in the order determined in the selection/structuring phase. As
typical with data from the Web, additional care has to be taken when external

files such as images are required for displaying a certain instance - such files may
or may not be available.

5.2 Extensions to RAP

As a side effect to Arago’s implementation, we try to contribute to the contin-
uous improvement of the tools we use. This intention has manifested already
in a series of patches to RAP, the RDF application programming interface in
and for PHP5. As of today, these improvements have mainly concerned the ar-
eas of RDF/N3 parsing and RDF list processing: We implemented RDF/N3 list
parsing (unavailable beforehand) as an enhancement for RAP’s N3 parser, and
consecutively improved its robustness in order to help it deal better with uncon-
trolled “low-quality” RDF from the Web. This included fixing and committing
bugs in namespace and whitespace handling that previously lead to corrupt RDF
models.

We expect the ongoing development to yield a number of additional im-
provements to this maturing toolkit, for which the processing of all kinds of
data gathered from the Web is promising to be a good test. Further insights and
improvements are expected to arise from using RAP, which has been designed
and built for PHP4, with PHP5. As RAP is thoroughly object-oriented, we ex-
pect the improved scripting engine of PHP5 to have a significant impact on the
performance of RAP. The effects of the new object model on a system of RAP’s
complexity remain to be seen, at least minor complications and inconsistencies
can be expected.

6 Future Work

First experiences with this implementation advise the use of a caching sub-
system, as parsing RDF and building an in-memory object model of the RDF
graphs to be processed are expensive operations. Due to the PHP’s nature as a
webserver module reinitializing scripts on every HTTP request, these operations
would have to be carried out every time a user interacts with the system. We
therefore plan to integrate our prototype with the Popoon framework11. Popoon
is an Open Source XML publishing framework for PHP, based on the idea of
processing pipelines. It implements a component caching system, which allows
output to be combined from cachable and non-cachable sources and processes.
Besides from the efficient caching mechanisms, integration into Popoon will also
allow for post-processing and integration of Arago’s output, e.g. to further refine
of the produced output, to combine the output with non-RDF data or to embed
it within other Web applications running in the Popoon framework. We want
to emphasize the component nature of Arago, which is being integrated with a
“faceted browsing” component written in Java. After the full implementation
of the core Lens and Style vocabularies, an immediate goal is to include rudi-
mentary presentation logic functionality, such as linear traversal of the instance
graph.

11 http://popoon.org/

7 Conclusions

We have presented Arago, a presentation engine which is able to implement the
functionality needed by the Fresnel vocabulary to display data from the Web.
Our survey of different existing approaches to UI building for RDF applications
reveals a trend towards the coalescence of domain knowledge and presentation
knowledge, both modeled and expressed in RDF. Blurring the distinction be-
tween domain knowledge and presentation knowledge helps in making the user
interface and output generation profit from the benefits of RDF.

Although RDF support stills is scarce in the PHP world (compared e.g to
Java or Python), with RAP there is development platform of considerable matu-
rity. We pointed out that improving its robustness in dealing with uncontrollable
data from the Web. Failover issues where also discussed when RAP was ported to
PEAR (see http://pear.php.net/package/RDF/). Advancement in reliability
therefore is key in further advocating RAP — and RDF — in the world of PHP.
Nevertheless, the combination of PHP and the RAP toolkit already allowed for
rapid prototyping of the system presented, whose speed can be mostly credited
to the powerful scripting language and its ease of use.

We think that the Fresnel display vocabulary has the potential to serve as
a base for presentation-oriented RDF-based Web applications, due to its good
integration with established Web standards like CSS and XHTML. By imple-
menting Fresnel’s ideas in PHP5, we attempt to validate and test the approach
and study its feasibility, working towards the final aim of being able to build
flexible, RDF-based data integration systems with powerful and adaptable end
user interfaces.

References

1. C. Bizer and R. Lee. Fresnel - Display Vocabulary for RDF - User Manual, 3 2005.
http://simile.mit.edu/repository/fresnel/trunk/docs/manual/.

2. D. Brickley and L. Miller. FOAF Vocabulary Specification. http://xmlns.com/

foaf/0.1/.
3. R. Lee. Fresnel web page, 3 2005. http://simile.mit.edu/fresnel/.
4. P. Linss. CSS Namespace Enhancements (Proposal). Technical report, W3C, 6

1999. http://www.w3.org/1999/06/25/WD-css3-namespace-19990625/.
5. C. Y. Lung. Rules Processing and HTML Translation for the Semantic Web.

Technical report, HP Labs Bristol, 2003.
6. E. Pietriga. Graph Stylesheets (GSS) in IsaViz. http://www.w3.org/2001/11/

IsaViz/gss/gssmanual.html.
7. D. Quan, D. Huynh, and D. Karger. Haystack: A Platform for Authoring End

User Semantic Web Applications. In ISWC 2003, 2003.
8. D. Quan and D. Karger. Xenon: An RDF Stylesheet Ontology. In WWW 2005,

Chiba, 5 2005.
9. D. Steer. TreeHugger 0.1. http://rdfweb.org/people/damian/treehugger/.

10. N. Walsh. RDF Twig: Accessing RDF Graphs in XSLT, 2003. http://rdftwig.

sourceforge.net/.

Acknowledgements

The authors would like to thank the Fresnel core team for the openness and
accessibility of their ongoing work and discussions. We thank for the support of
Soraya Kouadri Mostéfaoui and Béat Hirsbrunner at the University of Fribourg.

